1
|
Wang J, Wang Y, Jiang X. Targeting anticancer immunity in melanoma tumour microenvironment: unleashing the potential of adjuvants, drugs, and phytochemicals. J Drug Target 2024; 32:1052-1072. [PMID: 39041142 DOI: 10.1080/1061186x.2024.2384071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Melanoma poses a challenge in oncology because of its aggressive nature and limited treatment modalities. The tumour microenvironment (TME) in melanoma contains unique properties such as an immunosuppressive and high-density environment, unusual vasculature, and a high number of stromal and immunosuppressive cells. In recent years, numerous experiments have focused on boosting the immune system to effectively remove malignant cells. Adjuvants, consisting of phytochemicals, toll-like receptor (TLR) agonists, and cytokines, have shown encouraging results in triggering antitumor immunity and augmenting the therapeutic effectiveness of anticancer therapy. These adjuvants can stimulate the maturation of dendritic cells (DCs) and infiltration of cytotoxic CD8+ T lymphocytes (CTLs). Furthermore, nanocarriers can help to deliver immunomodulators and antigens directly to the tumour stroma, thereby improving their efficacy against malignant cells. The remodelling of melanoma TME utilising phytochemicals, agonists, and other adjuvants can be combined with current modalities for improving therapy outcomes. This review article explores the potential of adjuvants, drugs, and their nanoformulations in enhancing the anticancer potency of macrophages, CTLs, and natural killer (NK) cells. Additionally, the capacity of these agents to repress the function of immunosuppressive components of melanoma TME, such as immunosuppressive subsets of macrophages, stromal and myeloid cells will be discussed.
Collapse
Affiliation(s)
- Jingping Wang
- Emergency Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| | - Yaping Wang
- Respiratory and Oncology Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| | - Xiaofang Jiang
- Respiratory and Oncology Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| |
Collapse
|
2
|
Zhang X, Lin Z, Feng Y, Kang F, Wang J, Lan X. Melanin-Targeting Radiotracers and Their Preclinical, Translational, and Clinical Status: From Past to Future. J Nucl Med 2024; 65:19S-28S. [PMID: 38719238 DOI: 10.2967/jnumed.123.266945] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/31/2024] [Indexed: 07/16/2024] Open
Abstract
Melanin is one of the representative biomarkers of malignant melanoma and a potential target for diagnosis and therapy. With advancements in chemistry and radiolabeling technologies, promising strides have been made to synthesize radiolabeled melanin-binding molecules for various applications. We present an overview of melanin-targeted radiolabeled molecules and compare their features reported in preclinical studies. Clinical practice and trials are also discussed to elaborate on the safety and validity of the probes, and expanded applications beyond melanoma are reviewed. Melanin-targeted imaging holds potential value in the diagnosis, staging, and prognostic assessment of melanoma and other applications. Melanin-targeted radionuclide therapy possesses immense potential but requires more clinical validation. Furthermore, an intriguing avenue for future research involves expanding the application scope of melanin-targeted probes and exploring their value.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, Ministry of Education, Wuhan, China; and
| | - Zhaoguo Lin
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, Ministry of Education, Wuhan, China; and
| | - Yuan Feng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, Ministry of Education, Wuhan, China; and
| | - Fei Kang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China;
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, Ministry of Education, Wuhan, China; and
| |
Collapse
|
3
|
Moftah HK, Mousa MHA, Elrazaz EZ, Kamel AS, Lasheen DS, Georgey HH. Novel quinazolinone Derivatives: Design, synthesis and in vivo evaluation as potential agents targeting Alzheimer disease. Bioorg Chem 2024; 143:107065. [PMID: 38150939 DOI: 10.1016/j.bioorg.2023.107065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/02/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
Since Alzheimer disease is one of the most prevalent types of dementia with a high mortality and disability rate, so development of multi-target drugs becomes the major strategy for battling AD. This study shows the development of a series of quinazolinone based derivatives as novel, multifunctional anti-AD drugs that exhibit both cholinesterase inhibitoryand anti-inflammatory properties. The preliminary results of the in vitro AChE inhibition activity showed that compounds 4b, 5a, 6f, 6h and 7b were better represented for further evaluation. Furthermore, in-vivo AChE inhibition activity and behavior Morris water maze test against donepezil as reference drug were evaluated. Additionally, hippocampal inflammatory markers; TNF-α, NFĸB, IL-1β and IL-6 and antioxidant markers; SOD and MDA were assessed to evaluate the efficacy of quinazolinone derivatives against AD hallmarks. The results showed that 6f, 6h and 7b have promising anti-acetylcholinesterase, anti-inflammatory and antioxidant activities thus, have a significant effect in treatment of AD. Moreover, Histopathological examination revealed that 6f, 6h and 7b derivatives have neuroprotective effect against neuronal damage caused by induced scopolamine model in mice. Finally, the binding ability of the synthesized derivatives to the target, AChE was investigated through molecular docking which reflected significant interactions to the target based on their docking binding scores. Hence, the newly designed quinazolinone derivatives possess promising anti-acetylcholinesterase activity and challenging for the management of AD in the future.
Collapse
Affiliation(s)
- Hadeer K Moftah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Gesr El Suez st, PO 11786, Cairo, Egypt
| | - Mai H A Mousa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Gesr El Suez st, PO 11786, Cairo, Egypt
| | - Eman Z Elrazaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Cairo 11566, Egypt
| | - Ahmed S Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo P.O. Box 11562, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Gesr El Suez st, PO 11786 Cairo, Egypt
| | - Deena S Lasheen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Cairo 11566, Egypt
| | - Hanan H Georgey
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo P.O. Box 11562, Egypt.
| |
Collapse
|
4
|
Targeting Melanin in Melanoma with Radionuclide Therapy. Int J Mol Sci 2022; 23:ijms23179520. [PMID: 36076924 PMCID: PMC9455397 DOI: 10.3390/ijms23179520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/13/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022] Open
Abstract
Nearly 100,000 individuals are expected to be diagnosed with melanoma in the United States in 2022. Treatment options for late-stage metastatic disease up until the 2010s were few and offered only slight improvement to the overall survival. The introduction of B-RAF inhibitors and anti-CTLA4 and anti-PD-1/PD-L1 immunotherapies into standard of care brought measurable increases in the overall survival across all stages of melanoma. Despite the improvement in the survival statistics, patients treated with targeted therapies and immunotherapies are subject to very serious side effects, the development of drug resistance, and the high costs of treatment. This leaves room for the development of novel approaches as well as for the exploration of novel combination therapies for the treatment of metastatic melanoma. One such approach is targeting melanin pigment with radionuclide therapy. Advances in melanin-targeting radionuclide therapy of melanoma can be viewed from two spheres: (1) radioimmunotherapy (RIT) and (2) radiolabeled small molecules. The investigation of mechanisms of the action and efficacy of targeting melanin in melanoma treatment by RIT points to the involvement of the immune system such as complement dependent cytotoxicity. The combination of RIT with immunotherapy presents synergistic killing in mouse melanoma models. The field of radiolabeled small molecules is focused on radioiodinated compounds that have the ability to cross the cellular membranes to access intracellular melanin and can be applied in both therapy and imaging as theranostics. Clinical applications of targeting melanin with radionuclide therapies have produced encouraging results and clinical work is on-going. Continued work on targeting melanin with radionuclide therapy as a monotherapy, or possibly in combination with standard of care agents, has the potential to strengthen the current treatment options for melanoma patients.
Collapse
|
5
|
Halim PA, Georgey HH, George MY, El Kerdawy AM, Said MF. Design and synthesis of novel 4-fluorobenzamide-based derivatives as promising anti-inflammatory and analgesic agents with an enhanced gastric tolerability and COX-inhibitory activity. Bioorg Chem 2021; 115:105253. [PMID: 34390973 DOI: 10.1016/j.bioorg.2021.105253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/27/2021] [Accepted: 08/04/2021] [Indexed: 01/28/2023]
Abstract
Responding to the great demand of developing potent NSAIDs with an enhanced safety profile and reasonable selectivity, in the present study novel 4-fluorobenzamide derivatives were synthesized and screened for their anti-inflammatory and analgesic activities using carrageenan-induced rat paw edema method and acetic acid-induced abdominal writhing in mice, respectively. All the new target compounds except the carbamothioylhydrazine series (5a-d), and the 4-fluorophenyl thiadiazolo derivative 6b showed promising anti-inflammatory activity ranged between 53.43 and 92.36% inhibition of edema (at 3 h) compared to the reference standard indomethacin (65.64%). All the newly synthesized compounds showed potent analgesic activity ranged between 71 and 100 % writhing protection compared to indomethacin (74.06%). Moreover, the most active compounds; the ester hybrids 2a,b, the thioureido quinazolinones 4b,c, and the thiadiazole congener 6a, showed promising gastric tolerability with ulcer index ranged between 0 and 6.60 compared to indomethacin (12.13). The thioureido quinazolinone derivatives 4b,c showed the most potent anti-inflammatory and analgesic activities with a remarkable gastric tolerability compared to the other derivatives. The 4-chlorophenyl derivative 4b is considered the most promising analogue showing 92.36% inhibition of edema, 100% writhing protection in analgesia testing, and a COX-2 selectivity index of 5.75 which was better than that of indomethacin and celecoxib standards (selectivity index = 0.27 and 4.55; respectively). Moreover, it showed an ulcer index equals zero with gastric acidity and mucin levels comparable to that of the control group indicating its minor effect on gastric cell physiology and its high tolerability. Molecular docking studies predicted the binding pattern of the newly synthesized compounds in COX-1 and COX-2 enzymes confirming the ability of the most active candidates to satisfy the structural features required for binding and rationalized their selectivity based on their docking binding patterns and scores. Furthermore, the newly synthesized 4-fluorobenzamide derivatives possess promising predicted pharmacokinetic properties indicated by calculating their key physicochemical parameters and absorption percentages.
Collapse
Affiliation(s)
- Peter A Halim
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt
| | - Hanan H Georgey
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo 11777, Egypt.
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Cairo 11566, Egypt
| | - Ahmed M El Kerdawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt; Department of Organic and Pharmaceutical Chemistry, School of Pharmacy, NewGiza University, Newgiza, km 22 Cairo-Alexandria Desert Road, Cairo, Egypt.
| | - Mona F Said
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt.
| |
Collapse
|
6
|
Palav A, Misal B, Chaturbhuj G. NCBSI/KI: A Reagent System for Iodination of Aromatics through In Situ Generation of I-Cl. J Org Chem 2021; 86:12467-12474. [PMID: 34339212 DOI: 10.1021/acs.joc.1c01642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In situ iodine monochloride (I-Cl) generation followed by iodination of aromatics using NCBSI/KI system has been developed. The NCBSI reagent requires no activation due to longer bond length, lower bond dissociation energy, and higher absolute charge density on nitrogen. The system is adequate for mono- and diiodination of a wide range of moderate to highly activated arenes with good yield and purity. Moreover, the precursor N-(benzenesulfonyl)benzenesulfonamide can be recovered and transformed to NCBSI, making the protocol eco-friendly and cost-effective.
Collapse
Affiliation(s)
- Amey Palav
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai 400 019, India.,Loba Chemie Pvt. Ltd., Research, and Development Center, Tarapur, Thane 401 506, India
| | - Balu Misal
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai 400 019, India.,Loba Chemie Pvt. Ltd., Research, and Development Center, Tarapur, Thane 401 506, India
| | - Ganesh Chaturbhuj
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai 400 019, India
| |
Collapse
|
7
|
Rouanet J, Quintana M, Auzeloux P, Cachin F, Degoul F. Benzamide derivative radiotracers targeting melanin for melanoma imaging and therapy: Preclinical/clinical development and combination with other treatments. Pharmacol Ther 2021; 224:107829. [PMID: 33662452 DOI: 10.1016/j.pharmthera.2021.107829] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2021] [Indexed: 12/16/2022]
Abstract
Cutaneous melanoma arises from proliferating melanocytes, cells specialized in the production of melanin. This property means melanin can be considered as a target for monitoring melanoma patients using nuclear imaging or targeted radionuclide therapy (TRT). Since the 1970s, many researchers have shown that specific molecules can interfere with melanin. This paper reviews some such molecules: benzamide structures improved to increase their pharmacokinetics for imaging or TRT. We first describe the characteristics and biosynthesis of melanin, and the main features of melanin tracers. The second part summarizes the preclinical and corresponding clinical studies on imaging. The last section presents TRT results from ongoing protocols and discusses combinations with other therapies as an opportunity for melanoma non-responders or patients resistant to treatments.
Collapse
Affiliation(s)
- Jacques Rouanet
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, 58 Rue Montalembert, 63005 Clermont-Ferrand, Cedex, France; Department of Dermatology and Oncodermatology, CHU Estaing, 1 place Lucie et Raymond Aubrac, 63000 Clermont-Ferrand, France; Centre Jean Perrin, Clermont-Ferrand F-63011, France.
| | - Mercedes Quintana
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, 58 Rue Montalembert, 63005 Clermont-Ferrand, Cedex, France.
| | - Philippe Auzeloux
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, 58 Rue Montalembert, 63005 Clermont-Ferrand, Cedex, France.
| | - Florent Cachin
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, 58 Rue Montalembert, 63005 Clermont-Ferrand, Cedex, France; Centre Jean Perrin, Clermont-Ferrand F-63011, France.
| | - Françoise Degoul
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, 58 Rue Montalembert, 63005 Clermont-Ferrand, Cedex, France.
| |
Collapse
|
8
|
Wei W, Ehlerding EB, Lan X, Luo Q, Cai W. PET and SPECT imaging of melanoma: the state of the art. Eur J Nucl Med Mol Imaging 2018; 45:132-150. [PMID: 29085965 PMCID: PMC5700861 DOI: 10.1007/s00259-017-3839-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/18/2017] [Indexed: 12/12/2022]
Abstract
Melanoma represents the most aggressive form of skin cancer, and its incidence continues to rise worldwide. 18F-FDG PET imaging has transformed diagnostic nuclear medicine and has become an essential component in the management of melanoma, but still has its drawbacks. With the rapid growth in the field of nuclear medicine and molecular imaging, a variety of promising probes that enable early diagnosis and detection of melanoma have been developed. The substantial preclinical success of melanin- and peptide-based probes has recently resulted in the translation of several radiotracers to clinical settings for noninvasive imaging and treatment of melanoma in humans. In this review, we focus on the latest developments in radiolabeled molecular imaging probes for melanoma in preclinical and clinical settings, and discuss the challenges and opportunities for future development.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600# Yishan Road, Shanghai, 200233, China
- Department of Radiology, University of Wisconsin-Madison, Room 7137, 1111 Highland Avenue, Madison, WI, 53705-2275, USA
| | - Emily B Ehlerding
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, China.
| | - Quanyong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600# Yishan Road, Shanghai, 200233, China.
| | - Weibo Cai
- Department of Radiology, University of Wisconsin-Madison, Room 7137, 1111 Highland Avenue, Madison, WI, 53705-2275, USA.
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- University of Wisconsin Carbone Cancer Center, Madison, WI, 53705, USA.
| |
Collapse
|
9
|
Rizzo-Padoin N, Chaussard M, Vignal N, Kotula E, Tsoupko-Sitnikov V, Vaz S, Hontonnou F, Liu WQ, Poyet JL, Vidal M, Merlet P, Hosten B, Sarda-Mantel L. [ 18F]MEL050 as a melanin-targeted PET tracer: Fully automated radiosynthesis and comparison to 18F-FDG for the detection of pigmented melanoma in mice primary subcutaneous tumors and pulmonary metastases. Nucl Med Biol 2016; 43:773-780. [PMID: 27693672 DOI: 10.1016/j.nucmedbio.2016.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/09/2016] [Accepted: 08/16/2016] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Melanoma is a highly malignant cutaneous tumor of melanin-producing cells. MEL050 is a synthetic benzamide-derived molecule that specifically binds to melanin with high affinity. Our aim was to implement a fully automated radiosynthesis of [18F]MEL050, using for the first time, the AllInOne™ synthesis module (Trasis), and to evaluate the potential of [18F]MEL050 for the detection of pigmented melanoma in mice primary subcutaneous tumors and pulmonary metastases, and to compare it with that of [18F]FDG. METHODS Automated radiosynthesis of [18F]MEL050, including HPLC purification and formulation, were performed on an AllInOne™ synthesis module. [18F]MEL050 was synthesized using a one-step bromine-for-fluorine nucleophilic heteroaromatic substitution. Melanoma models were induced by subcutaneous (primary tumor) or intravenous (pulmonary metastases) injection of B16-F10-luc2 cells in NMRI mice. The maximum percentage of [18F]MEL050 Injected Dose per g of lung tissue (%ID/g Max) was determined on PET images, compared to [18F]FDG and correlated to in vivo bioluminescence imaging. RESULTS The automated radiosynthesis of [18F]MEL050 required an overall radiosynthesis time of 48min, with a yield of 13-18% (not-decay corrected) and radiochemical purity higher than 99%. [18F]MEL050 PET/CT images were concordant with bioluminescence imaging, showing increased radiotracer uptake in all primary subcutaneous tumors and pulmonary metastases of mice. PET quantification of radiotracers uptake in tumors and muscles demonstrated similar tumor-to-background ratio (TBR) with [18F]MEL050 and [18F]FDG in subcutaneous tumors and higher TBR with [18F]MEL050 than with [18F]FDG in pulmonary metastases. CONCLUSION We successfully implemented the radiosynthesis of [18F]MEL050 using the AllInOne™ module, including HPLC purification and formulation. In vivo PET/CT validation of [18F]MEL050 was obtained in mouse models of pigmented melanoma, where higher [18F]MEL050 uptake was observed in sub-millimetric pulmonary metastases, comparatively to [18F]FDG.
Collapse
Affiliation(s)
- Nathalie Rizzo-Padoin
- Assistance Publique - Hôpitaux de Paris, Hôpital Saint-Louis, Unité Claude Kellershohn, Paris, 75010, France; Inserm, UMR-S 1144, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, 75006, France.
| | - Michael Chaussard
- Assistance Publique - Hôpitaux de Paris, Hôpital Saint-Louis, Unité Claude Kellershohn, Paris, 75010, France
| | - Nicolas Vignal
- Assistance Publique - Hôpitaux de Paris, Hôpital Saint-Louis, Unité Claude Kellershohn, Paris, 75010, France; Inserm, UMR-S 1144, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, 75006, France
| | - Ewa Kotula
- Inserm, UMRS 1160, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, 75010, France
| | - Vadim Tsoupko-Sitnikov
- Assistance Publique - Hôpitaux de Paris, Hôpital Saint-Louis, Unité Claude Kellershohn, Paris, 75010, France
| | - Sofia Vaz
- Assistance Publique - Hôpitaux de Paris, Hôpital Lariboisière, Médecine nucléaire, Paris, 75010, France
| | - Fortune Hontonnou
- Assistance Publique - Hôpitaux de Paris, Hôpital Saint-Louis, Unité Claude Kellershohn, Paris, 75010, France; Université Paris Diderot, Paris, 75010, France
| | - Wang-Qing Liu
- UMR 8638 CNRS, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, 75006, France
| | - Jean-Luc Poyet
- Inserm, UMRS 1160, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, 75010, France; Université Paris Diderot, Paris, 75010, France
| | - Michel Vidal
- UMR 8638 CNRS, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, 75006, France
| | - Pascal Merlet
- Université Paris Diderot, Paris, 75010, France; Assistance Publique - Hôpitaux de Paris, Hôpital Saint-Louis, Médecine nucléaire, Paris, 75010, France
| | - Benoit Hosten
- Assistance Publique - Hôpitaux de Paris, Hôpital Saint-Louis, Unité Claude Kellershohn, Paris, 75010, France; Inserm, UMR-S 1144, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, 75006, France
| | - Laure Sarda-Mantel
- Assistance Publique - Hôpitaux de Paris, Hôpital Saint-Louis, Unité Claude Kellershohn, Paris, 75010, France; Assistance Publique - Hôpitaux de Paris, Hôpital Lariboisière, Médecine nucléaire, Paris, 75010, France; Université Paris Diderot, Paris, 75010, France; Inserm UMR-S 942, Hôpital Lariboisière, Paris, 75010, France
| |
Collapse
|