1
|
Nagargoje AA, Deshmukh TR, Shaikh MH, Khedkar VM, Shingate BB. Anticancer perspectives of monocarbonyl analogs of curcumin: A decade (2014-2024) review. Arch Pharm (Weinheim) 2024; 357:e2400197. [PMID: 38895952 DOI: 10.1002/ardp.202400197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/13/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024]
Abstract
Monocarbonyl analogs of curcumin (MACs) represent structurally modified versions of curcumin. The existing literature indicates that MACs exhibit enhanced anticancer properties compared with curcumin. Numerous research articles in recent years have emphasized the significance of MACs as effective anticancer agents. This review focuses on the latest advances in the anticancer potential of MACs, from 2014 to 2024, including discussions on their mechanism of action, structure-activity relationship (SAR), and in silico molecular docking studies.
Collapse
Affiliation(s)
- Amol A Nagargoje
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar (Aurangabad), Maharashtra, India
- Department of Chemistry, Khopoli Municipal Council College, Khopoli, Maharashtra, India
| | - Tejshri R Deshmukh
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar (Aurangabad), Maharashtra, India
| | - Mubarak H Shaikh
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar (Aurangabad), Maharashtra, India
- Department of Chemistry, Radhabai Kale Mahila Mahavidyalaya, Ahmednagar, Maharashtra, India
| | - Vijay M Khedkar
- School of Pharmacy, Vishwakarma University, Pune, Maharashtra, India
| | - Bapurao B Shingate
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar (Aurangabad), Maharashtra, India
| |
Collapse
|
2
|
Besasie BD, Saha A, DiGiovanni J, Liss MA. Effects of curcumin and ursolic acid in prostate cancer: A systematic review. Urologia 2024; 91:90-106. [PMID: 37776274 DOI: 10.1177/03915603231202304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2023]
Abstract
The major barriers to phytonutrients in prostate cancer therapy are non-specific mechanisms and bioavailability issues. Studies have pointed to a synergistic combination of curcumin (CURC) and ursolic acid (UA). We investigate this combination using a systematic review process to assess the most likely mechanistic pathway and human testing in prostate cancer. We used the PRISMA statement to screen titles, abstracts, and the full texts of relevant articles and performed a descriptive analysis of the literature reviewed for study inclusion and consensus of the manuscript. The most common molecular and cellular pathway from articles reporting on the pathways and effects of CURC (n = 173) in prostate cancer was NF-κB (n = 25, 14.5%). The most common molecular and cellular pathway from articles reporting on the pathways and effects of UA (n = 24) in prostate cancer was caspase 3/caspase 9 (n = 10, 41.6%). The three most common molecular and cellular pathway from articles reporting on the pathways and effects of both CURC and UA (n = 193) in prostate cancer was NF-κB (n = 28, 14.2%), Akt (n = 22, 11.2%), and androgen (n = 19, 9.6%). Therefore, we have identified the potential synergistic target pathways of curcumin and ursolic acid to involve NF-κB, Akt, androgen receptors, and apoptosis pathways. Our review highlights the limited human studies and specific effects in prostate cancer.
Collapse
Affiliation(s)
- Benjamin D Besasie
- Department of Urology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Achinto Saha
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, USA
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, USA
| | - Michael A Liss
- Department of Urology, University of Texas Health San Antonio, San Antonio, TX, USA
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, USA
- Department of Urology, South Texas Veterans Healthcare System, USA
| |
Collapse
|
3
|
Ilhan H. Nanoarchitectonics of the Effects of Curcumin Carbon Dot-Decorated Chitosan Nanoparticles on Proliferation and Apoptosis-Related Gene Expressions in HepG2 Hepatocellular Carcinoma Cells. ACS OMEGA 2023; 8:33554-33563. [PMID: 37744806 PMCID: PMC10515349 DOI: 10.1021/acsomega.3c03405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023]
Abstract
This study examines the potential anticancer properties of curcumin carbon nanodot-decorated chitosan nanoparticles (CCM@CD/CS-NP) in HepG2 hepatocellular carcinoma cells. CCM@CD/CS-NPs were synthesized, and their size, morphology, and elemental analysis were characterized. The combination of curcumin carbon dots and chitosan in the form of a nanoparticle has a number of benefits, including improved solubility and bioavailability of curcumin, enhanced stability and biocompatibility of carbon dots, and sustained release of the drug due to the mucoadhesive properties of chitosan. The purpose of this research was to examine the efficacy of curcumin carbon dot-decorated chitosan nanoparticles as an anticancer agent in the treatment of HepG2 cell lines. The cell proliferation and apoptosis-related gene expressions in HepG2 cells were assessed to investigate the potential use of nanoparticles in vitro. The IC50 value for the inhibitory effect of CCM@CD/CS-NPs on cell growth and proliferation was determined to be 323.61 μg/mL at 24 h and 267.73 μg/mL at 48 h. Increased caspase-3 and -9 activation shows that CCM@CD/CS-NPs promoted apoptosis in HepG2 cells. It was also shown that the overexpression of Bax and the downregulation of Bcl-2 were responsible for the apoptotic impact of CCM@CD/CS-NPs. The nanoparticles have been shown to have minimal toxicity to normal liver cells, indicating their potential as a safe and effective treatment for HepG2. These novel nanomaterials effectively suppressed tumor development and boosted the rate of apoptotic cell death.
Collapse
Affiliation(s)
- Hasan Ilhan
- Department of Chemistry,
Faculty of Science, Ordu University, Ordu 52200, Turkey
| |
Collapse
|
4
|
Bhandari SV, Kuthe P, Patil SM, Nagras O, Sarkate AP. A Review: Exploring Synthetic Schemes and Structure-activity Relationship (SAR) Studies of Mono-carbonyl Curcumin Analogues for Cytotoxicity Inhibitory Anticancer Activity. Curr Org Synth 2023; 20:821-837. [PMID: 36703591 DOI: 10.2174/1570179420666230126142238] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/09/2022] [Accepted: 11/23/2022] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Cancer is the major cause of death globally. Cancer can be treated with naturally occurring Curcumin nuclei. Curcumin has a wide range of biological actions, including anti-inflammatory and anti-cancer properties. Even though it is an effective medicinal entity, it has some limitations such as instability at physiological pH and a weak pharmacokinetic profile due to the β-diketone moiety present in it. To overcome this drawback, research was carried out on monoketone moieties in curcumin, popularly known as mono-carbonyl curcumin. OBJECTIVE The present review focuses on different synthetic schemes and Mono-carbonyl curcumin derivative's Structure-Activity Relationship (SAR) as a cytotoxic inhibitory anticancer agent. The various synthetic schemes published by researchers were compiled. METHODS Findings of different researchers working on mono-carbonyl curcumin as an anticancer have been reviewed, analyzed and the outcomes were summarized. RESULTS The combination of all of these approaches serves as a one-stop solution for mono-carbonyl curcumin synthesis. The important groups on different positions of mono-carbonyl curcumin were discovered by a SAR study focused on cytotoxicity, which could be useful in the designing of its derivatives. CONCLUSION Based on our examination of the literature, we believe that this review will help researchers design and develop powerful mono-carbonyl curcumin derivatives that can be proven essential for anticancer activity.
Collapse
Affiliation(s)
- Shashikant Vasantarao Bhandari
- Department of Pharmaceutical Chemistry, A.I.S.S.M.S College of Pharmacy, Near RTO, Kennedy Road, Pune, 411001, Maharashtra, India
| | - Pranali Kuthe
- Department of Pharmaceutical Chemistry, A.I.S.S.M.S College of Pharmacy, Near RTO, Kennedy Road, Pune, 411001, Maharashtra, India
| | - Shital Manoj Patil
- Department of Pharmaceutical Chemistry, A.I.S.S.M.S College of Pharmacy, Near RTO, Kennedy Road, Pune, 411001, Maharashtra, India
| | - Om Nagras
- Department of Pharmaceutical Chemistry, A.I.S.S.M.S College of Pharmacy, Near RTO, Kennedy Road, Pune, 411001, Maharashtra, India
| | - Aniket Pardip Sarkate
- Department of Chemical Technology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, 431004, Maharashtra, India
| |
Collapse
|
5
|
Modified Curcumins as Potential Drug Candidates for Breast Cancer: An Overview. Molecules 2022; 27:molecules27248891. [PMID: 36558022 PMCID: PMC9784715 DOI: 10.3390/molecules27248891] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
Breast cancer (BC), the most common malignancy in women, results from significant alterations in genetic and epigenetic mechanisms that alter multiple signaling pathways in growth and malignant progression, leading to limited long-term survival. Current studies with numerous drug therapies have shown that BC is a complex disease with tumor heterogeneity, rapidity, and dynamics of the tumor microenvironment that result in resistance to existing therapy. Targeting a single cell-signaling pathway is unlikely to treat or prevent BC. Curcumin (a natural yellow pigment), the principal ingredient in the spice turmeric, is well-documented for its diverse pharmacological properties including anti-cancer activity. However, its clinical application has been limited because of its low solubility, stability, and bioavailability. To overcome the limitation of curcumin, several modified curcumin conjugates and curcumin mimics were developed and studied for their anti-cancer properties. In this review, we have focused on the application of curcumin mimics and their conjugates for breast cancer.
Collapse
|
6
|
Moreira J, Saraiva L, Pinto MM, Cidade H. Bioactive Diarylpentanoids: Insights into the Biological Effects beyond Antitumor Activity and Structure-Activity Relationships. Molecules 2022; 27:6340. [PMID: 36234878 PMCID: PMC9572019 DOI: 10.3390/molecules27196340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 12/03/2022] Open
Abstract
Diarylpentanoids, a class of natural products and their synthetic analogs which are structurally related to chalcones, have gained increasing attention due to their wide array of biological activities, including antitumor, anti-infective, antioxidant, anti-inflammatory, antidiabetic, anti-hyperuricemic, and neuroprotective properties. Previously, we reviewed diarylpentanoids with promising antitumor activity. However, in view of the wide range of biological activities described for this class of compounds, the purpose of this review is to provide a more detailed overview of the synthetic bioactive diarylpentanoids that have been described over the last two decades, beyond simply their antitumor effects. A total of 745 compounds were found, highlighting the main synthetic methodologies used in their synthesis as well as the structure-activity relationship studies and structural features for all activities reported. Collectively, this review highlights the diarylpentanoid scaffold as a promising starting point for the development of new therapeutic agents.
Collapse
Affiliation(s)
- Joana Moreira
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Lucilia Saraiva
- LAQV/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Madalena M. Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Honorina Cidade
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| |
Collapse
|
7
|
Kumar V, Bala R, Dhawan S, Singh P, Karpoormath R. The Multi‐Biological Targeted Role of Dehydrozingerone and its Analogues. ChemistrySelect 2022. [DOI: 10.1002/slct.202201938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Vishal Kumar
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal (Westville Campus) Durban 4000 South Africa
| | - Renu Bala
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal (Westville Campus) Durban 4000 South Africa
| | - Sanjeev Dhawan
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal (Westville Campus) Durban 4000 South Africa
| | - Parvesh Singh
- School of Chemistry and Physics University of KwaZulu-Natal (Westville campus) Private Bag X01, Scottsville Durban South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal (Westville Campus) Durban 4000 South Africa
| |
Collapse
|
8
|
Cruz-Hernández C, García-Espinosa DA, Guadarrama P. Click synthesis of novel dendronized curcumin and analogs. Strengthening of physicochemical properties toward biological applications. Org Biomol Chem 2022; 20:2643-2650. [PMID: 35285845 DOI: 10.1039/d2ob00284a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Curcumin and its analogs, chalcones, and C5-monocarbonyl are molecules of great therapeutic potential, but their poor stability and hydrophobicity have hampered their extensive use in clinical trials. Therefore, significant efforts have been made in materials science to improve their physicochemical properties. In this study, we propose dendronization as a synthetic strategy to strengthen some physicochemical properties such as solubility and stability of curcumin and analogs, taking advantage of the click chemistry (CuAAC) to attach second-generation polyester dendrons to the unsaturated cores. The dendronization, with the subsequent formation of aromatic triazole groups as linkers, not only modified the solubility and stability of the molecular systems but also favored the diketo tautomeric form of curcumin, as demonstrated spectroscopically. This result is significant since the diketo tautomer, which preserves the antioxidant properties of curcumin, is the most biologically active form. The hydrophobic/hydrophilic balance, achieved after dendronization, allowed the solubilization of the chromophoric molecules in buffered solutions at relevant pH values (7.4 and 6.4). Furthermore, the stability of all molecules was also upgraded since UV-vis absorption spectra did not exhibit modified profiles after 7 days at physiologic pH. From photochemical stability experiments irradiating at 415 nm, the dendritic derivatives containing triazole linkers were more susceptible to being degraded. All derivatives exhibited emission properties according to the length of each conjugate fragment. Fluorescence experiments evidenced the role of dendrons in preventing emission quenching by aggregation and exhibited differentiated emission behavior depending on the linker type (triazole or ester) between the chromophoric core and the polyester dendrons.
Collapse
Affiliation(s)
- Carlos Cruz-Hernández
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| | | | - Patricia Guadarrama
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| |
Collapse
|
9
|
Tay NF, Duran M, Kayagil İ, Yurttaş L, Göger G, Göger F, Demirci F, Demirayak Ş. Synthesis, antimicrobial and antioxidant activities of pyridyl substituted thiazolyl triazole derivatives. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e191026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
| | | | | | | | | | | | - Fatih Demirci
- Anadolu University, Turkey; Eastern Mediterranean University, Turkey
| | | |
Collapse
|
10
|
Girgis AS, D'Arcy P, Aboshouk DR, Bekheit MS. Synthesis and bio-properties of 4-piperidone containing compounds as curcumin mimics. RSC Adv 2022; 12:31102-31123. [DOI: 10.1039/d2ra05518j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/23/2022] [Indexed: 11/05/2022] Open
Abstract
3,5-Diyliden-4-piperidone scaffold are considered as curcumin mimic exhibiting diverse bio-properties.
Collapse
Affiliation(s)
- Adel S. Girgis
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt
| | - Padraig D'Arcy
- Department of Biomedical and Clinical Sciences, Linköping University, SE-581 83, Linköping, Sweden
| | - Dalia R. Aboshouk
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt
| | - Mohamed S. Bekheit
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
11
|
The Effects of Curcumin Nanoparticles Incorporated into Collagen-Alginate Scaffold on Wound Healing of Skin Tissue in Trauma Patients. Polymers (Basel) 2021; 13:polym13244291. [PMID: 34960842 PMCID: PMC8707913 DOI: 10.3390/polym13244291] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 12/29/2022] Open
Abstract
Wound healing is a biological process that is mainly crucial for the rehabilitation of injured tissue. The incorporation of curcumin (Cur) into a hydrogel system is used to treat skin wounds in different diseases due to its hydrophobic character. In this study, sodium alginate and collagen, which possess hydrophilic, low toxic, and biocompatible properties, were utilized. Collagen/alginate scaffolds were synthesized, and nanocurcumin was incorporated inside them; their interaction was evaluated by FTIR spectroscopy. Morphological studies investigated structures of the samples studied by FE-SEM. The release profile of curcumin was detected, and the cytotoxic test was determined on the L929 cell line using an MTT assay. Analysis of tissue wound healing was performed by H&E staining. Nanocurcumin was spherical, its average particle size was 45 nm, and the structure of COL/ALG scaffold was visible. The cell viability of samples was recorded in cells after 24 h incubation. Results of in vivo wound healing remarkably showed CUR-COL/ALG scaffold at about 90% (p < 0.001), which is better than that of COL/ALG, 80% (p < 0.001), and the control 73.4% (p < 0.01) groups at 14 days/ The results of the samples’ FTIR indicated that nanocurcumin was well-entrapped into the scaffold, which led to improving the wound-healing process. Our results revealed the potential of nanocurcumin incorporated in COL/ALG scaffolds for the wound healing of skin tissue in trauma patients.
Collapse
|
12
|
Subhedar DD, Shaikh MH, Nagargoje AA, Sarkar D, Khedkar VM, Shingate BB. [DBUH][OAc]-Catalyzed Domino Synthesis of Novel Benzimidazole Incorporated 3,5-Bis (Arylidene)-4-Piperidones as Potential Antitubercular Agents. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1995008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Dnyaneshwar D. Subhedar
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, India
| | - Mubarak H. Shaikh
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, India
- Department of Chemistry, Radhabai Kale Mahila Mahavidyalaya, Ahmednagar, Maharashtra, India
| | - Amol A. Nagargoje
- Department of Chemistry, Khopoli Municipal Council College, Khopoli, Maharashtra, India
| | - Dhiman Sarkar
- Combichem Bioresource Centre, Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
| | - Vijay M. Khedkar
- School of Pharmacy, Vishwakarma University, Pune, Maharashtra, India
| | - Bapurao B. Shingate
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, India
| |
Collapse
|
13
|
|
14
|
Xiang DB, Zhang KQ, Zeng YL, Yan QZ, Shi Z, Tuo QH, Lin LM, Xia BH, Wu P, Liao DF. Curcumin: From a controversial "panacea" to effective antineoplastic products. Medicine (Baltimore) 2020; 99:e18467. [PMID: 31914018 PMCID: PMC6959860 DOI: 10.1097/md.0000000000018467] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Curcumin, a controversial "panacea," has been broadly studied. Its bioactivities including antioxidant, anti-inflammatory, and especially antineoplastic activities have been documented. However, due to its extensive bioactivities, some scientists hold a skeptical point of view toward curcumin and described curcumin as a "deceiver" to chemists. The objective of this study was to explore curcumin's another possibility as a potential supplementary leading compound to cancer treatments. METHODS Literature searches were conducted using electronic databases. Search terms such as "curcumin," "curcumin analogues," and so on were used. The literatures were collected and summarized. In this article, reported targets of curcumin are reviewed. The limitations of a curcumin as a therapeutic anticancer product including low bioavailability and poor targeting are mentioned. Furthermore, modified curcumin analogues and antitumor mechanisms are listed and discussed in the aspects of cell death and tumor microenvironment including angiogenesis, tissue hypoxia status, and energy metabolism. RESULTS Several possible modification strategies were presented by analyzing the relationships between the antitumor activity of curcumin analogues and their structural characteristics, including the introduction of hydrophilic group, shortening of redundant hydrocarbon chain, the introduction of extra chemical group, and so on. CONCLUSIONS From our perspective, after structural modification curcumin could be more effective complementary product for cancer therapies by the enhancement of targeting abilities and the improvement of bioavailability.
Collapse
Affiliation(s)
- De-Biao Xiang
- Division of Stem Cell Regulation and Application, Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province
| | - Kai-Qiang Zhang
- Division of Stem Cell Regulation and Application, Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province
| | - Ya-Ling Zeng
- Medical School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Qing-Zi Yan
- Division of Stem Cell Regulation and Application, Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province
| | - Zhe Shi
- Division of Stem Cell Regulation and Application, Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province
| | - Qin-Hui Tuo
- Division of Stem Cell Regulation and Application, Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province
| | - Li-Mei Lin
- Division of Stem Cell Regulation and Application, Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province
| | - Bo-Hou Xia
- Division of Stem Cell Regulation and Application, Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province
| | - Ping Wu
- Division of Stem Cell Regulation and Application, Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province
| | - Duan-Fang Liao
- Division of Stem Cell Regulation and Application, Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province
| |
Collapse
|
15
|
Van de Walle T, Theppawong A, Grootaert C, De Jonghe S, Persoons L, Daelemans D, Van Hecke K, Van Camp J, D’hooghe M. Synthesis and cytotoxic evaluation of monocarbonyl curcuminoids and their pyrazoline derivatives. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-019-02516-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Curcumin analogues and their hybrid molecules as multifunctional drugs. Eur J Med Chem 2019; 182:111631. [DOI: 10.1016/j.ejmech.2019.111631] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/02/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023]
|
17
|
Insights on the synthesis of asymmetric curcumin derivatives and their biological activities. Eur J Med Chem 2019; 183:111704. [PMID: 31557608 DOI: 10.1016/j.ejmech.2019.111704] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/02/2019] [Accepted: 09/14/2019] [Indexed: 02/08/2023]
Abstract
Curcumin is a small organic molecule with pleiotropic biological activities. However, its multiple structural-pharmacokinetic challenges prevent its development into a clinical drug. Various structural modifications have been made to improve its drug profile. In this review, we focus on the methods adopted in the synthesis of asymmetric curcumin derivatives and their biological activities and forecast the future of this exciting class of compounds in the field of medicine.
Collapse
|
18
|
Murugesan K, Koroth J, Srinivasan PP, Singh A, Mukundan S, Karki SS, Choudhary B, Gupta CM. Effects of green synthesised silver nanoparticles (ST06-AgNPs) using curcumin derivative (ST06) on human cervical cancer cells (HeLa) in vitro and EAC tumor bearing mice models. Int J Nanomedicine 2019; 14:5257-5270. [PMID: 31409988 PMCID: PMC6646051 DOI: 10.2147/ijn.s202404] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022] Open
Abstract
Background In recent years, green synthesized silver nanoparticles have been increasingly investigated for their anti-cancer potential. In the present study, we aimed at the biosynthesis of silver nanoparticles (AgNPs) using a curcumin derivative, ST06. Although, the individual efficacies of silver nanoparticles or curcumin derivatives have been studied previously, the synergistic cytotoxic effects of curcumin derivative and silver nanoparticles in a single nanoparticulate formulation have not been studied earlier specifically on animal models. This makes this study novel compared to the earlier synthesized curcumin derivative or silver nanoparticles studies. The aim of the study was to synthesize ST06 coated silver nanoparticles (ST06-AgNPs) using ST06 as both reducing and coating agent. Methods The synthesized nanoparticles AgNPs and ST06-AgNPs were characterised for the particle size distribution, morphology, optical properties and surface charge by using UV-visible spectroscopy, dynamic light scattering (DLS) and transmission electron microscopy (TEM). Elemental composition and structural properties were studied by energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction spectroscopy (XRD). The presence of ST06 as capping agent was demonstrated by Fourier transform infrared spectroscopy (FTIR). Results The synthesized nanoparticles (ST06-AgNPs) were spherical and had a size distribution in the range of 50–100 nm. UV-Vis spectroscopy displayed a specific silver plasmon peak at 410 nm. The in vitro cytotoxicity effects of ST06 and ST06-AgNPs, as assessed by MTT assay, showed significant growth inhibition of human cervical cancer cell line (HeLa). In addition, studies carried out in EAC tumor-induced mouse model (Ehrlich Ascites carcinoma) using ST06-AgNPs, revealed that treatment of the animals with these nanoparticles resulted in a significant reduction in the tumor growth, compared to the control group animals. Conclusion In conclusion, green synthesized ST06-AgNPs exhibited superior anti-tumor efficacy than the free ST06 or AgNPs with no acute toxicity under both in vitro and in vivo conditions. The tumor suppression is associated with the intrinsic apoptotic pathway. Together, the results of this study suggest that ST06-AgNPs could be considered as a potential option for the treatment of solid tumors.
Collapse
Affiliation(s)
| | - Jinsha Koroth
- Institute of Bioinformatics and Applied Biotechnology (IBAB) , Bangalore, India.,Department of Pharmaceutical Chemistry, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | | | - Amrita Singh
- Water Analysis Laboratory, Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Sanjana Mukundan
- Institute of Bioinformatics and Applied Biotechnology (IBAB) , Bangalore, India
| | - Subhas S Karki
- KLE Academy of Higher Education & Research, KLE College of Pharmacy, Bangalore, KN, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology (IBAB) , Bangalore, India
| | - Chhitar M Gupta
- Institute of Bioinformatics and Applied Biotechnology (IBAB) , Bangalore, India
| |
Collapse
|
19
|
Rodrigues FC, Anil Kumar NV, Thakur G. Developments in the anticancer activity of structurally modified curcumin: An up-to-date review. Eur J Med Chem 2019; 177:76-104. [PMID: 31129455 DOI: 10.1016/j.ejmech.2019.04.058] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/14/2019] [Accepted: 04/20/2019] [Indexed: 01/10/2023]
Abstract
Curcumin is a pharmacologically active polyphenol derived from the popular spice element-Turmeric. The therapeutic activity of curcumin has been extensively investigated over the last few decades and reports suggest the role of curcumin in a large number of biological activities, particularly its prominent anticancer activity. Curcumin, being a pleiotropic molecule, is a regulator of multiple molecular targets which play crucial roles in various cell signaling pathways. It is known to suppress transformation, inhibit proliferation as well as induce apoptosis. However, despite all these benefits, the efficacy of curcumin remains limited due to its poor bioavailability, poor absorption within the systemic circulation and rapid elimination from the body. To overcome these limiting factors, researchers all around the world are working towards designing a synthetic and superior curcuminoid by making suitable structural modifications to the parent skeleton. These curcuminoids, mainly analogues and derivatives, will not only improve the physicochemical properties but also enhance the efficacy simultaneously. The present review will provide a comprehensive account of the analogues and derivatives of curcumin that have been reported since 2014 which have indicated a better anticancer activity than curcumin.
Collapse
Affiliation(s)
- Fiona C Rodrigues
- Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576 104, India
| | - N V Anil Kumar
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576 104, India
| | - Goutam Thakur
- Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576 104, India.
| |
Collapse
|
20
|
Cyriac J, Paulose J, George M, Srinivas R, Giblin D, Gross ML. Protonation of Curcumin Triggers Sequential Double Cyclization in the Gas-Phase: An Electrospray Mass Spectrometry and DFT Study. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2019; 438:107-114. [PMID: 31080356 PMCID: PMC6508607 DOI: 10.1016/j.ijms.2019.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
ESI-protonated natural curcumin (1) undergoes gas-phase cyclization and dissociates via competitive expulsions of 2-methoxy phenol and C4H4O2 (diketene or an isomer). Evidence from mechanistic mass spectrometry and from Density Functional Theory (DFT) reveals that a two-step sequential cyclization occurs for the protonated molecule prior to the unusual loss of the elements of 2-methoxy phenol. Furthermore, the presence of the methoxy group at postion-3 is essential for the second cyclization. The transformation of curcumin upon protonation in the gas phase may be predictive of its solution chemistry and explain how curcumin plays a protective role in biology.
Collapse
Affiliation(s)
- June Cyriac
- Department of Chemistry, Sacred Heart College, Thevara, Kochi, Kerala, India
| | - Justin Paulose
- Department of Chemistry, Sacred Heart College, Thevara, Kochi, Kerala, India
| | - M George
- Department of Chemistry, Sacred Heart College, Thevara, Kochi, Kerala, India
| | - R Srinivas
- National center for Mass Spectrometry, IICT, Hyderabad, India
| | - Daryl Giblin
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
| |
Collapse
|
21
|
Xu J, Zhou L, Weng Q, Xiao L, Li Q. Curcumin analogues attenuate Aβ 25-35-induced oxidative stress in PC12 cells via Keap1/Nrf2/HO-1 signaling pathways. Chem Biol Interact 2019; 305:171-179. [PMID: 30946834 DOI: 10.1016/j.cbi.2019.01.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 12/21/2018] [Accepted: 01/06/2019] [Indexed: 12/24/2022]
Abstract
Beta-amyloid (Aβ) has pivotal functions in the pathogenesis of Alzheimer's Disease (AD). In the present study, we adopted an vitro model that involved Aβ25-35-induced oxidative damage in PC12 cells. Aβ25-35 (10 μΜ) treatment for 24 h induced significant cell death and oxidative stress in PC12 cells, as evidenced by cell viability reduction, LDH release, ROS accumulation and increased production MDA. (1E,4E)-1, 5-bis(4-hydroxy-3-methoxyphenyl) penta-1, 4-dien-3-one (CB) and (1E, 4E)-1-(3, 4-dimethoxyphenyl)-5-(4-hydroxy-3, 5-dime-thoxyphenyl) Penta-1, 4-dien-3-one (FE), two Curcumin (Cur) analogues displayed neuroprotective effects against Aβ25-35-induced oxidative damage and cellular apoptosis in PC12 cells. Here, we investigated three different treatment ways of CB and FE. It was interesting that post-treatment of CB and FE (restoring way) showed similar effect to the preventive way, while attenuating way did not show any protective effect. We found that low dose CB and FE increased transcriptional factor NF-E2-related factor 2 (Nrf2)/hemo oxygenase 1 (HO-1) protein expression and decreased Kelch-like ECH-associated protein 1 (Keap1) in PC 12 cells. In addition, CB and FE promoted the translation of Nrf2 into nuclear and enhanced the activity of superoxide dismutase (SOD)/catalase, which confirmed cytoprotection against Aβ25-35-induced oxidative damage. Moreover, CB and FE could increase Bcl-2 expression level, decrease the level of Bax and Cyt-c in Aβ25-35-treated PC12 cells. Ultimately, the neuroprotective effect of CB and FE provides a pharmacological basis for its clinical use in prevention and treatment of AD.
Collapse
Affiliation(s)
- Jialin Xu
- College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang, 310014, PR China
| | - Leilei Zhou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang, 310014, PR China
| | - Qi Weng
- College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang, 310014, PR China
| | - Linxia Xiao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang, 310014, PR China
| | - Qingyong Li
- College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang, 310014, PR China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang, 310014, PR China.
| |
Collapse
|
22
|
Formation of aqueous and alcoholic adducts of curcumin during its extraction. Food Chem 2019; 276:101-109. [DOI: 10.1016/j.foodchem.2018.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/20/2018] [Accepted: 10/01/2018] [Indexed: 01/08/2023]
|
23
|
Fawzy NG, Panda SS, Fayad W, Shalaby EM, Srour AM, Girgis AS. Synthesis, human topoisomerase IIα inhibitory properties and molecular modeling studies of anti-proliferative curcumin mimics. RSC Adv 2019; 9:33761-33774. [PMID: 35528906 PMCID: PMC9073595 DOI: 10.1039/c9ra05661k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/12/2019] [Indexed: 11/21/2022] Open
Abstract
Piperidinecarboxamides (curcumin mimics) show promising anti-proliferative properties against HCT116 (colon), MCF7 (breast) and A431 (squamous skin) carcinoma cell lines with potency higher than that of 5-fluorouracil.
Collapse
Affiliation(s)
- Nehmedo G. Fawzy
- Department of Pesticide Chemistry
- National Research Centre
- Giza 12622
- Egypt
| | - Siva S. Panda
- Department of Chemistry & Physics
- Augusta University
- Augusta
- USA
| | - Walid Fayad
- Drug Bioassay-Cell Culture Laboratory
- Pharmacognosy Department
- National Research Centre
- Giza
- Egypt
| | - ElSayed M. Shalaby
- X-Ray Crystallography Lab
- Physics Division
- National Research Centre
- Giza 12622
- Egypt
| | - Aladdin M. Srour
- Department of Therapeutic Chemistry
- National Research Centre
- Giza 12622
- Egypt
| | - Adel S. Girgis
- Department of Pesticide Chemistry
- National Research Centre
- Giza 12622
- Egypt
| |
Collapse
|
24
|
Wiji Prasetyaningrum P, Bahtiar A, Hayun H. Synthesis and Cytotoxicity Evaluation of Novel Asymmetrical Mono-Carbonyl Analogs of Curcumin (AMACs) against Vero, HeLa, and MCF7 Cell Lines. Sci Pharm 2018; 86:E25. [PMID: 29880783 PMCID: PMC6027665 DOI: 10.3390/scipharm86020025] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 12/14/2022] Open
Abstract
A series of novel asymmetrical mono-carbonyl analogs of curcumin (AMACs) were synthesized and evaluated for cytotoxic activity using BSLT and MTT assay against Vero, HeLa, and MCF7 cell lines. The structures of the synthesized compounds were confirmed by FTIR, ¹H-NMR, 13C-NMR, and mass spectral data. The results of the cytotoxicity evaluation showed that the synthesized compounds exhibited moderate to very high toxic activity in BSLT (LC50 value 29.80⁻1704.23 µM); most of the compound exhibited cytotoxic activity against HeLa cell lines, which is comparable to the activity of cisplatin (IC50 value 40.65⁻95.55 µM), and most of the compound tested against MCF7 cell lines exhibited moderate to very high cytotoxic activity (IC50 value 7.86⁻35.88 µM). However, the selectivity index (SI) of the compounds was low (.
Collapse
Affiliation(s)
| | - Anton Bahtiar
- Faculty of Pharmacy, Universitas Indonesia, Depok 16424, West Java, Indonesia.
| | - Hayun Hayun
- Faculty of Pharmacy, Universitas Indonesia, Depok 16424, West Java, Indonesia.
| |
Collapse
|
25
|
Alisi IO, Uzairu A, Abechi SE, Idris SO. Evaluation of the antioxidant properties of curcumin derivatives by genetic function algorithm. J Adv Res 2018; 12:47-54. [PMID: 30050693 PMCID: PMC6057485 DOI: 10.1016/j.jare.2018.03.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/24/2018] [Accepted: 03/07/2018] [Indexed: 11/05/2022] Open
Abstract
The prevalence of degenerative diseases in recent time has triggered extensive research on their control. This condition could be prevented if the body has an efficient antioxidant mechanism to scavenge the free radicals which are their main causes. Curcumin and its derivatives are widely employed as antioxidants. The free radical scavenging activities of curcumin and its derivatives have been explored in this research by the application of quantitative structure activity relationship (QSAR). The entire data set was optimized at the density functional theory (DFT) level using the Becke's three-parameter Lee-Yang-Parr hybrid functional (B3LYP) in combination with the 6-311G∗ basis set. The training set was subjected to QSAR studies by genetic function algorithm (GFA). Five predictive QSAR models were developed and statistically subjected to both internal and external validations. Also the applicability domain of the developed model was accessed by the leverage approach. Furthermore, the variation inflation factor, (VIF), mean effect (MF) and the degree of contribution (DC) of each descriptor in the resulting model were calculated. The developed models met all the standard requirements for acceptability upon validation with highly impressive results (R=0.965,R2=0.931,Q2(RCV2)=0.887,Rpred2=0.844,cRp2=0.842s=0.226,rmsep=0.362). Based on the results of this research, the most crucial descriptor that influence the free radical scavenge of the curcumins is the nsssN (count of atom-type E-state: >N-) descriptor with DC and MF values of 12.980 and 0.965 respectively.
Collapse
Affiliation(s)
| | - Adamu Uzairu
- Department of Chemistry, Ahmadu Bello University Zaria, Kaduna State, Nigeria
| | | | - Sulaiman Ola Idris
- Department of Chemistry, Ahmadu Bello University Zaria, Kaduna State, Nigeria
| |
Collapse
|
26
|
Leong SW, Abas F, Lam KW, Yusoff K. In vitro and in silico evaluations of diarylpentanoid series as α-glucosidase inhibitor. Bioorg Med Chem Lett 2018; 28:302-309. [DOI: 10.1016/j.bmcl.2017.12.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/07/2017] [Accepted: 12/21/2017] [Indexed: 12/30/2022]
|
27
|
Synthesis and evaluation of new phenolic derivatives as antimicrobial and antioxidant agents. MONATSHEFTE FUR CHEMIE 2018. [DOI: 10.1007/s00706-017-1983-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Bhuvaneswari K, Sivaguru P, Lalitha A. Synthesis, Biological Evaluation and Molecular Docking of Novel Curcumin Derivatives as Bcl-2 Inhibitors Targeting Human Breast Cancer MCF-7 Cells. ChemistrySelect 2017. [DOI: 10.1002/slct.201702406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Paramasivam Sivaguru
- Department of Chemistry; Northeast Normal University; Changchun, jilin 130024 China
| | - Appaswami Lalitha
- Department of chemistry; Periyar University; Salem- 636107, Tamil Nadu India
| |
Collapse
|
29
|
Kangarlou S, Ramezanpour S, Balalaie S, Roudbar Mohammadi S, Haririan I. Curcumin-loaded nanoliposomes linked to homing peptides for integrin targeting and neuropilin-1-mediated internalization. PHARMACEUTICAL BIOLOGY 2017; 55:277-285. [PMID: 27937055 PMCID: PMC6130459 DOI: 10.1080/13880209.2016.1261301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/17/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
CONTEXT Curcumin, a naturally occurring polyphenol, has been extensively studied for its broad-spectrum anticancer effects. The potential benefits are, however, limited due to its poor water solubility and rapid degradation which result in low bioavailability on administration. OBJECTIVES This study encapsulates curcumin in nanoliposomes including an integrin-homing peptide combined with a C end R neuropilin-1 targeting motif for targeted delivery and receptor-mediated internalization, respectively. MATERIALS AND METHODS The linear GHHNGR (Glycine-Histidine-Histidine-Asparagine-Glycine-Arginine) was synthesized through F-moc chemistry on 2-chlorotrityl chloride resin and conjugated to oleic acid. The lipoyl-peptide units were then co-assembled with lecithin and 0-75 mole % Tween-80 into liposomes. Curcumin was passively entrapped using a film hydration technique and its degradation profile was examined within seven consecutive days. The cytotoxic effects of the curcumin-loaded liposomes were studied on MCF-7 and MDA-MB-468, during 24 h exposure in MTT assay. RESULTS The maximum curcumin entrapment (15.5% W/W) and minimum degradation (< 23%) were obtained in a pH switch loading method from 5.7 to 8, in nanoliposomes (< 50 nm) containing oleyl-peptide, lecithin and Tween-80 (1:1:0.75 mole ratio). The oleyl-peptide did not prove any haemolytic activity (< 1.5%) up to 10-fold of its experimental concentration. The curcumin-loaded liposomes displayed significant reduction in the viabilities of MCF-7 (IC50 3.8 μM) and MDA-MB-468 (IC50 5.4 μM). DISCUSSION AND CONCLUSION This study indicated potential advantages of the peptide-conjugated liposomes in drug transport to the cancer cells. This feature might be an outcome of probable interactions between the targeted nanoliposomes with the integrin and neuropilin-1 receptors.
Collapse
Affiliation(s)
- Sogol Kangarlou
- Department of Pharmaceutical Biomaterials School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sorour Ramezanpour
- Peptide Chemistry Research Center, K.N. Toosi University of Technology, Tehran, Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Center, K.N. Toosi University of Technology, Tehran, Iran
| | - Shahla Roudbar Mohammadi
- Department of Medical Mycology School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Medical Biomaterials Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Zeng Z, Shen ZL, Zhai S, Xu JL, Liang H, Shen Q, Li QY. Transport of curcumin derivatives in Caco-2 cell monolayers. Eur J Pharm Biopharm 2017; 117:123-131. [DOI: 10.1016/j.ejpb.2017.04.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 03/11/2017] [Accepted: 04/06/2017] [Indexed: 01/18/2023]
|
31
|
Almond-Thynne J, White AJP, Polyzos A, Rzepa HS, Parsons PJ, Barrett AGM. Synthesis and Reactions of Benzannulated Spiroaminals: Tetrahydrospirobiquinolines. ACS OMEGA 2017; 2:3241-3249. [PMID: 30023690 PMCID: PMC6044889 DOI: 10.1021/acsomega.7b00482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 05/19/2017] [Indexed: 06/08/2023]
Abstract
An efficient two-step synthesis of symmetrical and unsymmetrical tetrahydrospirobiquinolines from o-azidobenzaldehydes is reported. A novel series of tetrahydrospirobiquinolines was prepared by sequential double-aldol condensation with acetone, cyclopentanone, and cyclohexanone to form the corresponding o,o'-diazido-dibenzylidene-acetone, -cyclopentanone, and -cyclohexanone derivatives, respectively, and hydrogenation-spirocyclization. The spirodiamines were further derivatized by electrophilic aromatic bromination, Suzuki coupling, and N-alkylation, all of which proceeded with preservation of the spirocyclic core.
Collapse
Affiliation(s)
| | - Andrew J. P. White
- Department
of Chemistry, Imperial College London, London SW7 2AZ, England
| | - Anastasios Polyzos
- CSIRO
Manufacturing, Clayton, Victoria 3169, Australia
- School
of Chemistry, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Henry S. Rzepa
- Department
of Chemistry, Imperial College London, London SW7 2AZ, England
| | - Philip J. Parsons
- Department
of Chemistry, Imperial College London, London SW7 2AZ, England
| | | |
Collapse
|
32
|
Asymmetric 1,5-diarylpenta-1,4-dien-3-ones: Antiproliferative activity in prostate epithelial cell models and pharmacokinetic studies. Eur J Med Chem 2017; 137:263-279. [PMID: 28601720 DOI: 10.1016/j.ejmech.2017.05.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/18/2017] [Accepted: 05/31/2017] [Indexed: 11/20/2022]
Abstract
To further engineer dienones with optimal combinations of potency and bioavailability, thirty-four asymmetric 1,5-diarylpenta-1,4-dien-3-ones (25-58) have been designed and synthesized for the evaluation of their in vitro anti-proliferative activity in three human prostate cancer cell lines and one non-neoplastic prostate epithelial cell line. All these asymmetric dienones are sufficiently more potent than curcumin and their corresponding symmetric counterparts. The optimal dienone 58, with IC50 values in the range of 0.03-0.12 μM, is 636-, 219-, and 454-fold more potent than curcumin in three prostate cancer cell models. Dienones 28 and 49 emerged as the most promising asymmetric dienones that warrant further preclinical studies. The two lead compounds demonstrated substantially improved potency in cell models and superior bioavailability in rats, while exhibiting no acute toxicity in the animals at the dose of 10 mg/kg. Dienones 28 and 46 can induce PC-3 cell cycle regulation at the G0/G1 phase. However, dienone 28 induces PC-3 cell death in a different way from 46 even though they share the same scaffold, indicating that terminal heteroaromatic rings are critical to the action of mechanism for each specific dienone.
Collapse
|
33
|
Huang Q, Chen J, Liu C, Wang C, Shen C, Chen Y, Li Q. Curcumin and its two analogues improve oxidative stability of fish oil under long-term storage. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201600105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Qiaoxian Huang
- College of Pharmaceutical Science; Zhejiang University of Technology; Hangzhou P. R. China
| | - Jian Chen
- College of Pharmaceutical Science; Zhejiang University of Technology; Hangzhou P. R. China
| | - Chunjiang Liu
- College of Pharmaceutical Science; Zhejiang University of Technology; Hangzhou P. R. China
| | - Cheng Wang
- College of Pharmaceutical Science; Zhejiang University of Technology; Hangzhou P. R. China
| | - Chenghui Shen
- College of Pharmaceutical Science; Zhejiang University of Technology; Hangzhou P. R. China
| | - Yiyi Chen
- College of Pharmaceutical Science; Zhejiang University of Technology; Hangzhou P. R. China
| | - Qingyong Li
- College of Pharmaceutical Science; Zhejiang University of Technology; Hangzhou P. R. China
| |
Collapse
|
34
|
Zheng QT, Yang ZH, Yu LY, Ren YY, Huang QX, Liu Q, Ma XY, Chen ZK, Wang ZB, Zheng X. Synthesis and antioxidant activity of curcumin analogs. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2017; 19:489-503. [PMID: 27690628 DOI: 10.1080/10286020.2016.1235562] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 09/08/2016] [Indexed: 06/06/2023]
Abstract
Numerous biological activities including antioxidant, antitumor, anti-inflammation, and antivirus of the natural product curcumin were reported. However, the clinical application of it was significantly limited by its instability, poor solubility, less body absorbing, and low bioavailability. This review focuses on the structure modification and antioxidant activity evaluation of curcumin. To study the structure-activity relationship (SAR), five series of curcumin analogs were synthesized and their antioxidant activity were evaluated in vitro. The results showed that electron-donating groups, especially the phenolic hydroxyl group are an essential component to improve the antioxidant activity.
Collapse
Affiliation(s)
- Qu-Tong Zheng
- a Institute of Pharmacy & Pharmacology , University of South China , Hengyang 421001 , China
- b Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , Hengyang 421001 , China
| | - Ze-Hua Yang
- a Institute of Pharmacy & Pharmacology , University of South China , Hengyang 421001 , China
- b Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , Hengyang 421001 , China
| | - Liu-Ying Yu
- a Institute of Pharmacy & Pharmacology , University of South China , Hengyang 421001 , China
- b Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , Hengyang 421001 , China
| | - Yu-Yan Ren
- a Institute of Pharmacy & Pharmacology , University of South China , Hengyang 421001 , China
- b Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , Hengyang 421001 , China
| | - Qiu-Xia Huang
- a Institute of Pharmacy & Pharmacology , University of South China , Hengyang 421001 , China
- b Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , Hengyang 421001 , China
| | - Qiu Liu
- a Institute of Pharmacy & Pharmacology , University of South China , Hengyang 421001 , China
- b Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , Hengyang 421001 , China
- c Research Interest Group of Pharmacy , University of South China , Hengyang 421001 , China
| | - Xiang-Yu Ma
- a Institute of Pharmacy & Pharmacology , University of South China , Hengyang 421001 , China
- b Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , Hengyang 421001 , China
| | - Zi-Kang Chen
- a Institute of Pharmacy & Pharmacology , University of South China , Hengyang 421001 , China
- b Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , Hengyang 421001 , China
- c Research Interest Group of Pharmacy , University of South China , Hengyang 421001 , China
| | - Zong-Bao Wang
- a Institute of Pharmacy & Pharmacology , University of South China , Hengyang 421001 , China
- b Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , Hengyang 421001 , China
| | - Xing Zheng
- a Institute of Pharmacy & Pharmacology , University of South China , Hengyang 421001 , China
- b Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , Hengyang 421001 , China
| |
Collapse
|
35
|
Wang ZS, Chen LZ, Zhou HP, Liu XH, Chen FH. Diarylpentadienone derivatives (curcumin analogues): Synthesis and anti-inflammatory activity. Bioorg Med Chem Lett 2017; 27:1803-1807. [PMID: 28284806 DOI: 10.1016/j.bmcl.2017.02.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/13/2017] [Accepted: 02/22/2017] [Indexed: 10/20/2022]
Abstract
A series of new (2E,4E)-1-(substitutedphenyl)-5-(substitutedphenyl)penta-2,4-dien-1-one derivatives were designed and synthesized. Compounds 3i, 3k were determined by X-ray. All of the compounds have been screened for their anti-inflammatory activity characterized by evaluating their inhibition against LPS-induced IL-6 and TNF-α release in cell RAW 264.7 stimulated with LPS. Compound 3i showed the highest anti-inflammatory activity on decreasing IL-6 and TNF-α. The further study showed that title compound 3i inhibited expression of proteins p-p65, iNOS, COX-2 LPS-induced. Immunofluorescence also revealed compound 3i could lightly reduce activation p65 in nuclei. These results indicate that compound 3i anti-inflammatory role may partly due to its inhibitory effect on the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Zhi Sen Wang
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Liu Zeng Chen
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Hai Pin Zhou
- School of Material Science Chemical Engineering, ChuZhou University, ChuZhou 239000, PR China
| | - Xin Hua Liu
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China; School of Material Science Chemical Engineering, ChuZhou University, ChuZhou 239000, PR China.
| | - Fei Hu Chen
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China.
| |
Collapse
|
36
|
Design, structure activity relationship, cytotoxicity and evaluation of antioxidant activity of curcumin derivatives/analogues. Eur J Med Chem 2016; 121:510-516. [DOI: 10.1016/j.ejmech.2016.05.037] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 01/14/2023]
|
37
|
Sathe G, Pinto SM, Syed N, Nanjappa V, Solanki HS, Renuse S, Chavan S, Khan AA, Patil AH, Nirujogi RS, Nair B, Mathur PP, Prasad TSK, Gowda H, Chatterjee A. Phosphotyrosine profiling of curcumin-induced signaling. Clin Proteomics 2016; 13:13. [PMID: 27307780 PMCID: PMC4908701 DOI: 10.1186/s12014-016-9114-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 05/04/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Curcumin, derived from the rhizome Curcuma longa, is a natural anti-cancer agent and has been shown to inhibit proliferation and survival of tumor cells. Although the anti-cancer effects of curcumin are well established, detailed understanding of the signaling pathways altered by curcumin is still lacking. In this study, we carried out SILAC-based quantitative proteomic analysis of a HNSCC cell line (CAL 27) to investigate tyrosine signaling in response to curcumin. RESULTS Using high resolution Orbitrap Fusion Tribrid Fourier transform mass spectrometer, we identified 627 phosphotyrosine sites mapping to 359 proteins. We observed alterations in the level of phosphorylation of 304 sites corresponding to 197 proteins upon curcumin treatment. We report here for the first time, curcumin-induced alterations in the phosphorylation of several kinases including TNK2, FRK, AXL, MAPK12 and phosphatases such as PTPN6, PTPRK, and INPPL1 among others. Pathway analysis revealed that the proteins differentially phosphorylated in response to curcumin are known to be involved in focal adhesion kinase signaling and actin cytoskeleton reorganization. CONCLUSIONS The study indicates that curcumin may regulate cellular processes such as proliferation and migration through perturbation of the focal adhesion kinase pathway. This is the first quantitative phosphoproteomics-based study demonstrating the signaling events that are altered in response to curcumin. Considering the importance of curcumin as an anti-cancer agent, this study will significantly improve the current knowledge of curcumin-mediated signaling in cancer.
Collapse
Affiliation(s)
- Gajanan Sathe
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,Manipal University, Madhav Nagar, Manipal, 576104 India
| | - Sneha M Pinto
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, 575018 India
| | - Nazia Syed
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, 605014 India
| | - Vishalakshi Nanjappa
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,Amrita School of Biotechnology, Amrita University, Kollam, 690525 India
| | - Hitendra S Solanki
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,School of Biotechnology, KIIT University, Bhubaneswar, 751024 India
| | - Santosh Renuse
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,Amrita School of Biotechnology, Amrita University, Kollam, 690525 India
| | - Sandip Chavan
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,Manipal University, Madhav Nagar, Manipal, 576104 India
| | - Aafaque Ahmad Khan
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,School of Biotechnology, KIIT University, Bhubaneswar, 751024 India
| | - Arun H Patil
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,School of Biotechnology, KIIT University, Bhubaneswar, 751024 India
| | - Raja Sekhar Nirujogi
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,Centre of Excellence in Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, 605014 India
| | - Bipin Nair
- Amrita School of Biotechnology, Amrita University, Kollam, 690525 India
| | | | - T S Keshava Prasad
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, 575018 India.,NIMHANS-IOB Proteomics and Bioinformatics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, 560029 India
| | - Harsha Gowda
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, 575018 India
| | - Aditi Chatterjee
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, 575018 India
| |
Collapse
|
38
|
Singh H, Kumar M, Nepali K, Gupta MK, Saxena AK, Sharma S, Bedi PMS. Triazole tethered C5-curcuminoid-coumarin based molecular hybrids as novel antitubulin agents: Design, synthesis, biological investigation and docking studies. Eur J Med Chem 2016; 116:102-115. [PMID: 27060762 DOI: 10.1016/j.ejmech.2016.03.050] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 11/15/2022]
Abstract
Keeping in view the confines allied with presently accessible antitumor agents and success of C5-curcuminoid based bifunctional hybrids as novel antitubulin agnets, molecular hybrids of C5-curcuminoid and coumarin tethered by triazole ring have been synthesized and investigated for in-vitro cytotoxicity against THP-1, COLO-205, HCT-116 and PC-3 human tumor cell lines. The results revealed that the compounds A-2 to A-9, B-2, B-3, B-7 showed significant cytotoxic potential against THP-1, COLO-205 and HCT-116 cell lines, while the PC-3 cell line among these was found to be almost resistant. Structure activity relationship revealed that the nature of Ring X and the length of carbon-bridge (n) connecting triazole ring with coumarin moiety considerably influence the activity. Methoxy substituted phenyl ring as Ring X and two carbon-bridges were found to be the ideal structural features. The most potent compounds (A-2, A-3 and A-7) were further tested for tubulin polymerization inhibition. Compound A-2 was found to significantly inhibit the tubulin polymerization (IC50 = 0.82 μM in THP-1 tumor cells). The significant cytotoxicity and tubulin polymerization inhibition by A-2 was further rationalized by docking studies where it was docked at the curcumin binding site of tubulin.
Collapse
Affiliation(s)
- Harbinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Mandeep Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Kunal Nepali
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Manish K Gupta
- Lloyd Institute of Management and Technology, Greater Noida, UP, India
| | - Ajit K Saxena
- Indian Institute of Integrative Medicine, Jammu, India
| | - Sahil Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India.
| | - Preet Mohinder S Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| |
Collapse
|
39
|
Liu GY, Sun YZ, Zhou N, Du XM, Yang J, Guo SJ. 3,3'-OH curcumin causes apoptosis in HepG2 cells through ROS-mediated pathway. Eur J Med Chem 2016; 112:157-163. [PMID: 26894841 DOI: 10.1016/j.ejmech.2016.02.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 01/14/2023]
Abstract
In this paper, we synthesized a series of curcumin analogs and evaluated their cytotoxicity against HepG2 cells. The results exhibited that the hydroxyl group at 3,3'-position play an essential role in enhancing their anti-proliferation activity. More importantly, 3,3'-hydroxy curcumin (1b) caused apoptosis in HepG2 cells with the ROS generation, which may be mainly composed of hydroxyl radicals (HO) and H2O2. The more cytotoxic activity and ROS-generating ability of 1b may be due to the more stable in (RPMI)-1640 medium and more massive uptake than curcumin. Then the generation of ROS can disrupt the intracellular redox balance, induce lipid peroxidation, cause the collapse of the mitochondrial membrane potential and ultimately lead to apoptosis. The results not only suggest that 3,3'-hydroxy curcumin (1b) may cause HepG2 cells apoptosis through ROS-mediated pathway, but also offer an important information for design of curcumin analog.
Collapse
Affiliation(s)
- Guo-Yun Liu
- School of Pharmacy, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong 252000, China
| | - Yong-Zheng Sun
- School of Pharmacy, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong 252000, China
| | - Na Zhou
- School of Pharmacy, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong 252000, China
| | - Xiu-Mei Du
- School of Pharmacy, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong 252000, China
| | - Jie Yang
- School of Pharmacy, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong 252000, China.
| | - Shang-Jing Guo
- School of Pharmacy, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong 252000, China
| |
Collapse
|
40
|
Ndong Ntoutoume GMA, Granet R, Mbakidi JP, Brégier F, Léger DY, Fidanzi-Dugas C, Lequart V, Joly N, Liagre B, Chaleix V, Sol V. Development of curcumin-cyclodextrin/cellulose nanocrystals complexes: New anticancer drug delivery systems. Bioorg Med Chem Lett 2015; 26:941-945. [PMID: 26739777 DOI: 10.1016/j.bmcl.2015.12.060] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 12/22/2022]
Abstract
The synthesis of curcumin-cyclodextrin/cellulose nanocrystals (CNCx) nano complexes was performed. CNCx were functionalized by ionic association with cationic β-cyclodextrin (CD) and CD/CNCx complexes were used to encapsulate curcumin. Preliminary in vitro results showed that the resulting curcumin-CD/CNCx complexes exerted antiproliferative effect on colorectal and prostatic cancer cell lines, with IC50s lower than that of curcumin alone.
Collapse
Affiliation(s)
| | - Robert Granet
- Université de Limoges, Laboratoire de Chimie des Substances Naturelles, EA 1069, F-87000 Limoges, France
| | - Jean Pierre Mbakidi
- Université de Limoges, Laboratoire de Chimie des Substances Naturelles, EA 1069, F-87000 Limoges, France
| | - Frédérique Brégier
- Université de Limoges, Laboratoire de Chimie des Substances Naturelles, EA 1069, F-87000 Limoges, France
| | - David Y Léger
- Université de Limoges, Laboratoire de Chimie des Substances Naturelles, EA 1069, F-87000 Limoges, France
| | - Chloë Fidanzi-Dugas
- Université de Limoges, Laboratoire de Chimie des Substances Naturelles, EA 1069, F-87000 Limoges, France
| | - Vincent Lequart
- Université d'Artois, IUT de Béthune, 1230 rue de l'Université, 62408 Béthune Cedex, France
| | - Nicolas Joly
- Université d'Artois, IUT de Béthune, 1230 rue de l'Université, 62408 Béthune Cedex, France
| | - Bertrand Liagre
- Université de Limoges, Laboratoire de Chimie des Substances Naturelles, EA 1069, F-87000 Limoges, France
| | - Vincent Chaleix
- Université de Limoges, Laboratoire de Chimie des Substances Naturelles, EA 1069, F-87000 Limoges, France
| | - Vincent Sol
- Université de Limoges, Laboratoire de Chimie des Substances Naturelles, EA 1069, F-87000 Limoges, France.
| |
Collapse
|
41
|
Synthesis and Biological Evaluation of Curcumin Derivatives with Water-Soluble Groups as Potential Antitumor Agents: An in Vitro Investigation Using Tumor Cell Lines. Molecules 2015; 20:21501-14. [PMID: 26633344 PMCID: PMC6332428 DOI: 10.3390/molecules201219772] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 11/24/2015] [Accepted: 11/26/2015] [Indexed: 12/23/2022] Open
Abstract
Three series of curcumin derivatives including phosphorylated, etherified, and esterified products of curcumin were synthesized, and their anti-tumor activities were assessed against human breast cancer MCF-7, hepatocellular carcinoma Hep-G2, and human cervical carcinoma HeLa cells. Compared with curcumin, compounds 3, 8, and 9 exhibited stronger antitumor cell line growth activities against HeLa cells. Compound 12 also showed higher antitumor cell line growth activities on MCF-7 cells than curcumin. Among them, 4-((1E,6E)-7-(4-Hydroxy-3-methoxyphenyl)-3,5-dioxohepta-1,6-dienyl)-2-methoxyphenyl dihydrogen phosphate(3) showed the strongest activity with an half maximal inhibitory concentration (IC50) of 6.78 µM against HeLa cells compared with curcumin with an IC50 of 17.67 µM. Stabilities of representatives of the three series were tested in rabbit plasma in vitro, and compounds 3 and 4 slowly released curcumin in plasma. The effect of compound 3 on HeLa cell apoptosis was determined by examining morphological changes by DAPI (4′,6-diamidino-2-phenylindole) staining as well as Annexin V-FITC/ Propidium Iodide (PI) double staining and flow cytometry. The results showed that 3 induced cellular apoptosis in a dose-dependent manner. Together our findings show that 3 merits further investigation as a new potential antitumor drug candidate.
Collapse
|
42
|
Sharma S, Gupta MK, Saxena AK, Bedi PMS. Triazole linked mono carbonyl curcumin-isatin bifunctional hybrids as novel anti tubulin agents: Design, synthesis, biological evaluation and molecular modeling studies. Bioorg Med Chem 2015; 23:7165-80. [PMID: 26515041 DOI: 10.1016/j.bmc.2015.10.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/06/2015] [Accepted: 10/11/2015] [Indexed: 12/13/2022]
Abstract
Keeping in view the limitations associated with currently available anticancer drugs, molecular hybrids of mono carbonyl curcumin and isatin tethered by triazole ring have been synthesized and evaluated for in vitro cytotoxicity against THP-1, COLO-205, HCT-116, A549, HeLa, CAKI-I, PC-3, MiaPaca-2 human cancer cell lines. The results revealed that the compounds SA-1 to SA-9, SB-2, SB-3, SB-4, SB-7 and SC-2 showed a good range of IC50 values against THP-1, COLO-205, HCT-116 and PC-3 cell lines, while the other four cell lines among these were found to be almost resistant. Structure activity relationship revealed that the nature of Ring X and substitution at position R influences the activity. Methoxy substituted phenyl ring as Ring X and H as R were found to be the ideal structural features. The most potent compounds (SA-2, SA-3, SA-4, SA-7) were further tested for tubulin inhibition. Compound SA-2 was found to significantly inhibit the tubulin polymerization (IC50=1.2 μM against HCT-116). Compound SA-2, moreover, lead to the disruption of microtubules as confirmed by immunofluorescence technique. The significant cytotoxicity and tubulin inhibition by SA-2 was streamlined by molecular modeling studies where it was docked at the curcumin binding site of tubulin.
Collapse
Affiliation(s)
- Sahil Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Manish K Gupta
- Lloyd Institute of Management and Technology, Greater Noida, UP, India
| | - Ajit K Saxena
- Indian Institute of Integrative Medicine, Jammu, India
| | - Preet Mohinder S Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| |
Collapse
|