1
|
Chen XM, Huang J, Pan J, Xie Y, Zeng F, Wei W, Yi D. Construction of β-Oximino Phosphorodithioates via (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl-Promoted Difunctionalization of Alkenes with tert-Butyl Nitrite, P 4S 10, and Alcohols. Org Lett 2024; 26:3883-3888. [PMID: 38683041 DOI: 10.1021/acs.orglett.4c01038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
A (2,2,6,6-tetramethylpiperidin-1-yl)oxyl-mediated difunctionalization of alkenes with tert-butyl nitrite, P4S10, and alcohols has been developed for the synthesis of β-oximino phosphorodithioates. The reaction goes through a radical pathway with the successive installation of phosphorodithioate and an oxime group. This four-component protocol offers a practical approach to constructing a variety of β-oximino phosphorodithioates in moderate to good yields with favorable functional group tolerance.
Collapse
Affiliation(s)
- Xiao-Ming Chen
- Department of Biology and Chemistry, Hunan University of Science and Engineering, Yongzhou, Hunan 425199, People's Republic of China
| | - Jian Huang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, People's Republic of China
| | - Jun Pan
- Department of Biology and Chemistry, Hunan University of Science and Engineering, Yongzhou, Hunan 425199, People's Republic of China
| | - Yi Xie
- Department of Biology and Chemistry, Hunan University of Science and Engineering, Yongzhou, Hunan 425199, People's Republic of China
| | - Fei Zeng
- Department of Biology and Chemistry, Hunan University of Science and Engineering, Yongzhou, Hunan 425199, People's Republic of China
| | - Wei Wei
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, People's Republic of China
| | - Dong Yi
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| |
Collapse
|
2
|
Hashidoko A, Kitanosono T, Yamashita Y, Kobayashi S. Water vs. Organic Solvents: Water-Controlled Divergent Reactivity of 2-Substituted Indoles. Chem Asian J 2024:e202301045. [PMID: 38217396 DOI: 10.1002/asia.202301045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/15/2024]
Abstract
Water is not a good solvent for most organic compounds, yet water can offer many benefits to some organic reactions, hence enriching organic chemistry. Herein, the unique divergent reactivity of 2-substituted indoles with ⋅NO sources is presented. The amount of water solvent was harnessed for a scalable, benign, and expedient synthesis of indolenine oximes, albeit with water's inability to dissolve the reactants. 2-Methoxyethyl nitrite, which has been tailored for reactions in water, empowered this protocol by enhancing the product selectivity. We further report on chemoselective transformations of the products that rely on their structural features. Our findings are expected to offer access to an underexplored chemical space. The platform is also applicable to oximinomalonate synthesis. Mechanistic studies revealed the important role of water in the reversal of stability between oxime and nitroso compounds, promoting the proton transfer.
Collapse
Affiliation(s)
- Airu Hashidoko
- Department of Chemistry, School of Science, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Taku Kitanosono
- Department of Chemistry, School of Science, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yasuhiro Yamashita
- Department of Chemistry, School of Science, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Shū Kobayashi
- Department of Chemistry, School of Science, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| |
Collapse
|
3
|
Fotie J, Matherne CM, Mather JB, Wroblewski JE, Johnson K, Boudreaux LG, Perez AA. The Fundamental Role of Oxime and Oxime Ether Moieties in Improving the Physicochemical and Anticancer Properties of Structurally Diverse Scaffolds. Int J Mol Sci 2023; 24:16854. [PMID: 38069175 PMCID: PMC10705934 DOI: 10.3390/ijms242316854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
The present review explores the critical role of oxime and oxime ether moieties in enhancing the physicochemical and anticancer properties of structurally diverse molecular frameworks. Specific examples are carefully selected to illustrate the distinct contributions of these functional groups to general strategies for molecular design, modulation of biological activities, computational modeling, and structure-activity relationship studies. An extensive literature search was conducted across three databases, including PubMed, Google Scholar, and Scifinder, enabling us to create one of the most comprehensive overviews of how oximes and oxime ethers impact antitumor activities within a wide range of structural frameworks. This search focused on various combinations of keywords or their synonyms, related to the anticancer activity of oximes and oxime ethers, structure-activity relationships, mechanism of action, as well as molecular dynamics and docking studies. Each article was evaluated based on its scientific merit and the depth of the study, resulting in 268 cited references and more than 336 illustrative chemical structures carefully selected to support this analysis. As many previous reviews focus on one subclass of this extensive family of compounds, this report represents one of the rare and fully comprehensive assessments of the anticancer potential of this group of molecules across diverse molecular scaffolds.
Collapse
Affiliation(s)
- Jean Fotie
- Department of Chemistry and Physics, Southeastern Louisiana University, SLU 10878, Hammond, LA 70402-0878, USA; (C.M.M.); (J.B.M.); (J.E.W.); (K.J.); (L.G.B.); (A.A.P.)
| | | | | | | | | | | | | |
Collapse
|
4
|
Kale E, Kale A, Bozali K, Gulgec AS, Ozdemir M, Yalcin B, Guler EM. TQ-Ox, a novel synthetic derivative of thymoquinone on ovarian cancer cells in vitro. Nat Prod Res 2023; 37:3015-3024. [PMID: 36412544 DOI: 10.1080/14786419.2022.2144298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/19/2022] [Accepted: 10/29/2022] [Indexed: 11/23/2022]
Abstract
There are many studies in the literature on thymoquinone (TQ)-related cancer cells and models, and there is no relevant study investigating the efficacy of the oxime derivative of TQ (TQ-Ox). This study synthesized TQ-Ox and examined its cytotoxic, genotoxic and apoptotic properties in ovarian cancer cells. The structure TQ-Ox was confirmed with NMR. The cytotoxicity by luminometric ATP, intracellular reactive oxygen species (iROS) by fluorometric, intracellular calcium (iCa2+) by fluorometric, mitochondrial membrane potential (MMP) by flow cytometry, glutathione (GSH) levels with GSH/GSSG-Glo assay, DNA damage by comet assay, and apoptosis by acridine orange/ethidium bromide dye were determined. Concentrations of TQ-Ox were statistically increased cytotoxicity, DNA damage, apoptosis, iROS, and iCa2+ in a concentration-dependent manner (p < 0.001). Besides, MMP and GSH levels also decreased statistically significantly (p < 0.001) with increasing concentrations. TQ-Ox would be an effective treatment option by increasing cytotoxicity, genotoxicity, and apoptosis in ovarian carcinoma.
Collapse
Affiliation(s)
- Ebru Kale
- Department of Medical Biochemistry, University of Health Sciences Turkey, Hamidiye School of Medicine, Istanbul, Turkey
| | - Ahmet Kale
- Department of Obstetrics and Gynecology, University of Health Sciences Turkey, Kartal Dr. Lutfi Kirdar Research and Training Hospital, Istanbul, Turkey
| | - Kubra Bozali
- Department of Medical Biochemistry, University of Health Sciences Turkey, Hamidiye School of Medicine, Istanbul, Turkey
| | - Ahmet Sadik Gulgec
- The International Institute of Molecular Mechanisms and Machines, Polish Academy of Sciences, Warsaw, Poland
| | - Mucahit Ozdemir
- Department of Chemistry, Marmara University, Kadikoy, Istanbul, Turkey
| | - Bahattin Yalcin
- Department of Chemistry, Marmara University, Kadikoy, Istanbul, Turkey
| | - Eray Metin Guler
- Department of Medical Biochemistry, University of Health Sciences Turkey, Hamidiye School of Medicine, Istanbul, Turkey
- Department of Medical Biochemistry, University of Health Sciences Turkey, Hamidiye Faculty of Medicine, Haydarpasa Numune Health Application and Research Center, Istanbul, Turkey
| |
Collapse
|
5
|
Wang S, Song W, Lan X, Meng X, Li N, Wei X, Jing W, Lu K, Dai Y. A density functional theory study on the mechanism of simultaneous trifluoromethylation and oximation of aryl-substituted ethylenes. JOURNAL OF CHEMICAL RESEARCH 2022. [DOI: 10.1177/17475198221104006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effects of different substituents, located at the para position of the aromatic ring and at the β-carbon atom of styrenes, on difunctionalizations involving trifluoromethylation and oxime formation are investigated, showing that the difunctionalization reaction has a good adaptability to such reactants containing a range of substituents. This is important in the actual production process. It was found that proton transfer in the final tautomerism step involving transformation of a nitroso intermediate into an oxime is the rate-limiting step. The solvent effect did not influence the rate-limiting step significantly. Compared with direct proton transfer in a vacuum, the energy barrier of the final tautomerism step decreased from 57.80 kcal mol−1 in vacuum to 12.98 kcal mol−1 in water occurring via mediated proton transfer, which declines by 77.5%. When water participates in the rate-limiting steps in organic solvents, the energy barrier also decreases significantly, which indicates that a small amount of water in the organic solvent is conducive to the reaction.
Collapse
Affiliation(s)
- Sen Wang
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | | | - Xiaowei Lan
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Xuan Meng
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Nan Li
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Xianfu Wei
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Wenjie Jing
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Kui Lu
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Yujie Dai
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, P.R. China
| |
Collapse
|
6
|
Ge C, Wang L, Hu F, Ding Z, Li X, Xiao D, Wang J, Li SS. HFIP-mediated three-component imidization of electron-rich arenes with in situ formed spiroindolenines for facile construction of 2-arylspiroindolenines. Org Chem Front 2022. [DOI: 10.1039/d1qo01862k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The three-component reaction of o-aminobenzaldehydes with 5-hydroxyindole and electron-rich arenes has been achieved through HFIP-mediated cascade hydride transfer/dearomative cyclization/CDC-type imidization at room temperature under air.
Collapse
Affiliation(s)
- Chunyan Ge
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Liang Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Fangzhi Hu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhanshuai Ding
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xinyao Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Deshuai Xiao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Jiayi Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Shuai-Shuai Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
7
|
Schepetkin IA, Plotnikov MB, Khlebnikov AI, Plotnikova TM, Quinn MT. Oximes: Novel Therapeutics with Anticancer and Anti-Inflammatory Potential. Biomolecules 2021; 11:biom11060777. [PMID: 34067242 PMCID: PMC8224626 DOI: 10.3390/biom11060777] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Oximes have been studied for decades because of their significant roles as acetylcholinesterase reactivators. Over the last twenty years, a large number of oximes have been reported with useful pharmaceutical properties, including compounds with antibacterial, anticancer, anti-arthritis, and anti-stroke activities. Many oximes are kinase inhibitors and have been shown to inhibit over 40 different kinases, including AMP-activated protein kinase (AMPK), phosphatidylinositol 3-kinase (PI3K), cyclin-dependent kinase (CDK), serine/threonine kinases glycogen synthase kinase 3 α/β (GSK-3α/β), Aurora A, B-Raf, Chk1, death-associated protein-kinase-related 2 (DRAK2), phosphorylase kinase (PhK), serum and glucocorticoid-regulated kinase (SGK), Janus tyrosine kinase (JAK), and multiple receptor and non-receptor tyrosine kinases. Some oximes are inhibitors of lipoxygenase 5, human neutrophil elastase, and proteinase 3. The oxime group contains two H-bond acceptors (nitrogen and oxygen atoms) and one H-bond donor (OH group), versus only one H-bond acceptor present in carbonyl groups. This feature, together with the high polarity of oxime groups, may lead to a significantly different mode of interaction with receptor binding sites compared to corresponding carbonyl compounds, despite small changes in the total size and shape of the compound. In addition, oximes can generate nitric oxide. This review is focused on oximes as kinase inhibitors with anticancer and anti-inflammatory activities. Oximes with non-kinase targets or mechanisms of anti-inflammatory activity are also discussed.
Collapse
Affiliation(s)
- Igor A. Schepetkin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA;
| | - Mark B. Plotnikov
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, 634028 Tomsk, Russia;
| | - Andrei I. Khlebnikov
- Kizhner Research Center, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia;
- Scientific Research Institute of Biological Medicine, Altai State University, 656049 Barnaul, Russia
| | - Tatiana M. Plotnikova
- Department of Pharmacology, Siberian State Medical University, 634050 Tomsk, Russia;
| | - Mark T. Quinn
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA;
- Correspondence: ; Tel.: +1-406-994-4707; Fax: +1-406-994-4303
| |
Collapse
|
8
|
Lu K, Wei X, Li Q, Li Y, Ji L, Hua E, Dai Y, Zhao X. Synthesis of α-trifluoromethyl ethanone oximes via the three-component reaction of aryl-substituted ethylenes, tert-butyl nitrite, and the Langlois reagent. Org Chem Front 2019. [DOI: 10.1039/c9qo00940j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A three-component reaction of aryl-substituted ethylenes, tert-butyl nitrite, and the Langlois reagent to synthesize a-trifluoromethyl ethanone oximes was developed.
Collapse
Affiliation(s)
- Kui Lu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry
- College of Biotechnology
- Tianjin University of Science & Technology
- Tianjin
- China
| | - Xianfu Wei
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry
- College of Biotechnology
- Tianjin University of Science & Technology
- Tianjin
- China
| | - Quan Li
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry
- College of Biotechnology
- Tianjin University of Science & Technology
- Tianjin
- China
| | - Yuxuan Li
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry
- College of Biotechnology
- Tianjin University of Science & Technology
- Tianjin
- China
| | - Liangshuo Ji
- College of Chemistry
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- Key laboratory of Inorganic-organic Hybrid Functional Material Chemistry
- Ministry of Education
- Tianjin Normal University
| | - Erbing Hua
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry
- College of Biotechnology
- Tianjin University of Science & Technology
- Tianjin
- China
| | - Yujie Dai
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry
- College of Biotechnology
- Tianjin University of Science & Technology
- Tianjin
- China
| | - Xia Zhao
- College of Chemistry
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- Key laboratory of Inorganic-organic Hybrid Functional Material Chemistry
- Ministry of Education
- Tianjin Normal University
| |
Collapse
|
9
|
Huang RZ, Jin L, Wang CG, Xu XJ, Du Y, Liao N, Ji M, Liao ZX, Wang HS. A pentacyclic triterpene derivative possessing polyhydroxyl ring A suppresses growth of HeLa cells by reactive oxygen species-dependent NF-κB pathway. Eur J Pharmacol 2018; 838:157-169. [PMID: 30153443 DOI: 10.1016/j.ejphar.2018.08.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 08/21/2018] [Accepted: 08/24/2018] [Indexed: 12/21/2022]
Abstract
Pentacyclic triterpene derivatives possessing polyhydroxyl ring A exhibit many important pharmacological activities. (1β, 2α, 3β, 19β, 23)-1,2,3,19,23-pentahydroxyolean-12-en-28-oic acid (5), a new bioactive phytochemical with tetra-hydroxyl ring A isolated from Euphorbia sieboldiana in our laboratory, showed potential inhibition effects against several cancer cells previously. This study was performed to investigate the underlying mechanisms of action for its antitumor activity. The results showed that compound 5 inhibited dose-/time-dependently cell growth with low toxicity to normal cells and induced apoptosis in cervical cancer cells. Also, compound 5 inhibited the growth and proliferation of HeLa cells and resulted in G1 phase arrest. Furthermore, exposure of cells to compound 5 caused inactivation of the TNF-α-TAK1-IKK-NF-κB axis and inhibition of TNF-α-stimulated NF-κB activity, followed by down-regulation of NF-κB target genes involved in cell apoptosis (Bcl-2) and in the cell cycle and growth (Cyclin D, c-Myc). Additionally, compound 5 significantly suppressed the migration of HeLa cells. In addition, exposure of HeLa cells to compound 5 decreased the activity of NF-κB through the generation of reactive oxygen species (ROS). Collectively, these results suggested that compound 5 exerted potent anticancer effects on HeLa cells in vitro through targeting the ROS-dependent NF-κB signaling cascade and this compound may be a promising anticancer agent for cancer treatment.
Collapse
Affiliation(s)
- Ri-Zhen Huang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Le Jin
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Chun-Gu Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, PR China
| | - Xiao-Jing Xu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Ying Du
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Na Liao
- Department of Pharmacy, College of Medicine, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Min Ji
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhi-Xin Liao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| | - Heng-Shan Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, PR China.
| |
Collapse
|
10
|
Discovery of 18β-glycyrrhetinic acid conjugated aminobenzothiazole derivatives as Hsp90-Cdc37 interaction disruptors that inhibit cell migration and reverse drug resistance. Bioorg Med Chem 2018; 26:1759-1775. [DOI: 10.1016/j.bmc.2018.02.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/09/2018] [Accepted: 02/15/2018] [Indexed: 11/23/2022]
|
11
|
Peng X, Xu X, Chen S, Tian Z, Liu L, Liu Q. Cu(I)-catalyzed one-pot reactions of isatins, indoles, and amines toward unsymmetrically substituted 2-carbonylarylureas. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.02.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Deng Z, Peng X, Huang P, Jiang L, Ye D, Liu L. A multifunctionalized strategy of indoles to C2-quaternary indolin-3-ones via a TEMPO/Pd-catalyzed cascade process. Org Biomol Chem 2018; 15:442-448. [PMID: 27924331 DOI: 10.1039/c6ob02285e] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A method for combinative oxidative homo dimerization and cyanomethylation of free indole derivatives catalysed by TEMPO and Pd(OAc)2 was demonstrated for the first time. This new methodology is both atom and step efficient and is applicable to a broad scope of substrates, allowing the synthesis of a range of synthetically valuable 2-(2-(1H-indol-3-yl)-3-oxoindolin-2-yl)acetonitriles in moderate to excellent yields.
Collapse
Affiliation(s)
- Zhongfu Deng
- Department of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, PR China.
| | - Xiangjun Peng
- School of Pharmaceutical Science, Gannan Medical University, Ganzhou, Jiangxi 341000, P. R. China
| | - Panpan Huang
- Department of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, PR China.
| | - Lili Jiang
- Department of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, PR China.
| | - Dongnai Ye
- Department of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, PR China.
| | - Liangxian Liu
- Department of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, PR China.
| |
Collapse
|
13
|
Jiang L, Peng X, Huang P, Chen Z, Liu L. TEMPO-catalyzed oxidative dimerization and cyanation of indoles for the synthesis of 2-(1H-indol-3-yl)-3-oxoindoline-2-carbonitriles. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.01.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Khlebnicova TS, Piven YA, Baranovsky AV, Lakhvich FA, Shishkina SV, Zicāne D, Tetere Z, Rāviņa I, Kumpiņš V, Rijkure I, Mieriņa I, Peipiņš U, Turks M. Synthesis of novel lupane triterpenoid-indazolone hybrids with oxime ester linkage. Steroids 2017; 117:77-89. [PMID: 27500691 DOI: 10.1016/j.steroids.2016.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/29/2016] [Accepted: 08/02/2016] [Indexed: 01/11/2023]
Abstract
An efficient protocol for the synthesis of novel lupane triterpenoid-indazolone hybrids with oxime ester linkage has been developed from naturally accessible precursor betulin. For the first time a series of betulonic acid-indazolone hybrids have been synthesized via an acylation of corresponding 6,7-dihydro-1H-indazol-4(5H)-one oximes with betulonic acid chloride. Diastereoselective reduction of the obtained betulonic acid conjugates with NaBH4 resulted in a formation of betulinic acid-indazolone hybrids in excellent yields. The configuration of the key compounds has been fully established by X-ray and 2D NMR analysis.
Collapse
Affiliation(s)
- Tatyana S Khlebnicova
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Acad. Kuprevicha Str. 5/2, 220141 Minsk, Belarus
| | - Yuri A Piven
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Acad. Kuprevicha Str. 5/2, 220141 Minsk, Belarus
| | - Alexander V Baranovsky
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Acad. Kuprevicha Str. 5/2, 220141 Minsk, Belarus
| | - Fedor A Lakhvich
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Acad. Kuprevicha Str. 5/2, 220141 Minsk, Belarus
| | - Svetlana V Shishkina
- Institute for Single Crystals, National Academy of Sciences of Ukraine, pr. Lenina 60, Kharkiv 61001, Ukraine
| | - Daina Zicāne
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, Riga LV-1048, Latvia
| | - Zenta Tetere
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, Riga LV-1048, Latvia
| | - Irisa Rāviņa
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, Riga LV-1048, Latvia
| | - Viktors Kumpiņš
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, Riga LV-1048, Latvia
| | - Inese Rijkure
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, Riga LV-1048, Latvia
| | - Inese Mieriņa
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, Riga LV-1048, Latvia
| | - Uldis Peipiņš
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, Riga LV-1048, Latvia
| | - Māris Turks
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, Riga LV-1048, Latvia.
| |
Collapse
|