1
|
Munsimbwe L, Seetsi A, Namangala B, N’Da DD, Inoue N, Suganuma K. In Vitro and In Vivo Trypanocidal Efficacy of Synthesized Nitrofurantoin Analogs. Molecules 2021; 26:molecules26113372. [PMID: 34199682 PMCID: PMC8199755 DOI: 10.3390/molecules26113372] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 12/17/2022] Open
Abstract
African trypanosomes cause diseases in humans and livestock. Human African trypanosomiasis is caused by Trypanosoma brucei rhodesiense and T. b. gambiense. Animal trypanosomoses have major effects on livestock production and the economy in developing countries, with disease management depending mainly on chemotherapy. Moreover, only few drugs are available and these have adverse effects on patients, are costly, show poor accessibility, and parasites develop drug resistance to them. Therefore, novel trypanocidal drugs are urgently needed. Here, the effects of synthesized nitrofurantoin analogs were evaluated against six species/strains of animal and human trypanosomes, and the treatment efficacy of the selected compounds was assessed in vivo. Analogs 11 and 12, containing 11- and 12-carbon aliphatic chains, respectively, showed the highest trypanocidal activity (IC50 < 0.34 µM) and the lowest cytotoxicity (IC50 > 246.02 µM) in vitro. Structure-activity relationship analysis suggested that the trypanocidal activity and cytotoxicity were related to the number of carbons in the aliphatic chain and electronegativity. In vivo experiments, involving oral treatment with nitrofurantoin, showed partial efficacy, whereas the selected analogs showed no treatment efficacy. These results indicate that nitrofurantoin analogs with high hydrophilicity are required for in vivo assessment to determine if they are promising leads for developing trypanocidal drugs.
Collapse
Affiliation(s)
- Linous Munsimbwe
- Ministry of Fisheries and Livestock, Department of Veterinary Services, Mulungushi House, P.O. Box 50600, Ridgeway, Lusaka 15100, Zambia;
| | - Anna Seetsi
- Unit for Environmental Science and Management, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom 2531, South Africa;
| | - Boniface Namangala
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia;
| | - David D. N’Da
- Centre of Excellence for Pharmaceutical Sciences (PHARMACEN), North-West University, Potchefstroom 2520, South Africa;
| | - Noboru Inoue
- OIE Reference Laboratory for Surra, National Research Centre for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan;
| | - Keisuke Suganuma
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
- Correspondence: ; Tel.: +81-155-49-5697
| |
Collapse
|
2
|
Zhang Y, Hu Z, Zhang C, Liu BF, Liu X. A robust glycan labeling strategy using a new cationic hydrazide tag for MALDI-MS-based rapid and sensitive glycomics analysis. Talanta 2020; 219:121356. [PMID: 32887081 DOI: 10.1016/j.talanta.2020.121356] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 02/05/2023]
Abstract
Chemical derivatization of glycans is a common strategy to increase the analytical performance of MALDI-MS-based glycan profiling techniques. Hydrazide, one of the most popular tags, offers important advantages including allowing purification-free procedures. Several hydrazides have thus been used for glycomics combined with an on-target strategy to further simplify the analytical procedures. Usually, gentle heating and mildly acidic conditions with somewhat long reaction times are needed for these hydrazide derivatizations to reach a high reaction efficiency, which makes the current hydrazide tags not yet perfectly conducive to high-throughput analysis. To further optimize these hydrazide tags for high-throughput analysis, based on the structure of a reported hydrazide and the theoretical calculations, a new cationic hydrazide tag, 4-(hydrazinecarbonyl)-N,N,N-trimethylbenzenaminium (HTMBA), was designed, synthesized and tested in this work. HTMBA could completely derivatize glycans at room temperature in several seconds under very mildly acidic conditions (<3% acetic acid). A 19-fold enhancement in the signal intensity was obtained without interference from alkali adduct ions in the MALDI-MS detection of HTMBA-labeled maltoheptaose. To broaden the applicability of HTMBA, an HTMBA on-target derivatization (HOD) strategy was developed and fully validated with maltoheptaose and RNase B, and the method showed a good repeatability and stability. Finally, the HOD strategy was successfully applied to serum samples, 44 glycans in human serum were detected, and the O-acetylation information of sialic acid in horse serum was preserved. These results showed that the HOD strategy was suitable for the MS-based rapid analysis of all glycoforms in complex biological samples.
Collapse
Affiliation(s)
- Yifang Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Zhaoyu Hu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Chun Zhang
- Technology National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| | - Bi-Feng Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Xin Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
3
|
Lukin AY, Vedekhina TS, Chudinov MV. 5-Nitrofuran-2-yl Thiohydrazones as Double Antibacterial Agents Synthesis and In Vitro Evaluation. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180816666190221162055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Applying of "double-drug" strategy to 5-nitrofuran derivatives has been
proposed.
Methods:
A small library of 5-Nitrofuran-2-yl Thiohydrazones was developed, and initial screening demonstrated
good activity against bacteria and fungi of ESKAPE panel.
Results and Conclusion:
The synthesis of the desired thiohydrazones was carried out via condensation
of 5-nitrofuran-2-carbaldehyde with thiohydrazides of substituted oxamic acids.
Collapse
Affiliation(s)
- Alexey Yurjevich Lukin
- Biotechnology and Industrial Pharmacy Department, Lomonosov Institute of Fine Chemical Tehnologies, MIREARussian Technological University, Vernadskogo Pr. 78, 119454, Moscow, Russian Federation
| | - Tatiana Sergeevna Vedekhina
- Biotechnology and Industrial Pharmacy Department, Lomonosov Institute of Fine Chemical Tehnologies, MIREARussian Technological University, Vernadskogo Pr. 78, 119454, Moscow, Russian Federation
| | - Mikhail Vassiljevich Chudinov
- Biotechnology and Industrial Pharmacy Department, Lomonosov Institute of Fine Chemical Tehnologies, MIREARussian Technological University, Vernadskogo Pr. 78, 119454, Moscow, Russian Federation
| |
Collapse
|
4
|
Maciel Diogo G, Andrade JS, Sales Junior PA, Maria Fonseca Murta S, Dos Santos VMR, Taylor JG. Trypanocidal Activity of Flavanone Derivatives. Molecules 2020; 25:E397. [PMID: 31963596 PMCID: PMC7024391 DOI: 10.3390/molecules25020397] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/18/2019] [Accepted: 12/27/2019] [Indexed: 11/16/2022] Open
Abstract
Chagas disease, also known as American trypanosomiasis, is classified as a neglected disease by the World Health Organization. For clinical treatment, only two drugs have been on the market, Benznidazole and Nifurtimox, both of which are recommended for use in the acute phase but present low cure rates in the chronic phase. Furthermore, strong side effects may result in discontinuation of this treatment. Faced with this situation, we report the synthesis and trypanocidal activity of 3-benzoyl-flavanones. Novel 3-benzoyl-flavanone derivatives were prepared in satisfactory yields in the 3-step synthetic procedure. According to recommended guidelines, the whole cell-based screening methodology was utilized that allowed for the simultaneous use of both parasite forms responsible for human infection. The majority of the tested compounds displayed promising anti-Trypanosoma cruzi activity and the most potent flavanone bearing a nitrofuran moiety was more potent than the reference drug, Benznidazole.
Collapse
Affiliation(s)
- Gabriela Maciel Diogo
- Chemistry Department, ICEB, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (G.M.D.); (J.S.A.); (V.M.R.D.S.)
| | - Josimara Souza Andrade
- Chemistry Department, ICEB, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (G.M.D.); (J.S.A.); (V.M.R.D.S.)
| | | | | | - Viviane Martins Rebello Dos Santos
- Chemistry Department, ICEB, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (G.M.D.); (J.S.A.); (V.M.R.D.S.)
| | - Jason Guy Taylor
- Chemistry Department, ICEB, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (G.M.D.); (J.S.A.); (V.M.R.D.S.)
| |
Collapse
|
5
|
Paranaiba LF, Guarneri AA, Torrecilhas AC, Melo MN, Soares RP. Extracellular vesicles isolated from Trypanosoma cruzi affect early parasite migration in the gut of Rhodnius prolixus but not in Triatoma infestans. Mem Inst Oswaldo Cruz 2019; 114:e190217. [PMID: 31851215 PMCID: PMC6908325 DOI: 10.1590/0074-02760190217] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/22/2019] [Indexed: 11/26/2022] Open
Abstract
The protozoan Trypanosoma cruzi has the ability to spontaneously secrete extracellular vesicles (EVs). In this paper, T. cruzi EVs derived from epimastigote forms were evaluated during interaction with triatomine bugs Rhodnius prolixus and Triatoma infestans. T. cruzi EVs were purified and artificially offered to the insects prior to infection with epimastigote forms. No effect of EVs was detected in the parasite counts in the guts of both vectors after 49-50 days. On the other hand, pre-feeding with EVs delayed parasite migration to rectum only in the gut in R. prolixus after 21-22 days. Those data suggest a possible role of T. cruzi EVs during the earlier events of infection in the invertebrate host.
Collapse
Affiliation(s)
- Larissa F Paranaiba
- Universidade Federal de Minas Gerais, Departamento de Parasitologia, Belo Horizonte, MG, Brasil
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Belo Horizonte, MG, Brasil
| | | | - Ana C Torrecilhas
- Universidade Federal de São Paulo, Departamento de Ciências Farmacêuticas, Diadema, SP, Brasil
| | - Maria N Melo
- Universidade Federal de Minas Gerais, Departamento de Parasitologia, Belo Horizonte, MG, Brasil
| | - Rodrigo P Soares
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Belo Horizonte, MG, Brasil
| |
Collapse
|
6
|
Condensation and substitution products obtained in reactions of isomeric bromo-nitrofuraldehydes with ferrocenylamine: Electrochemistry and anti-parasitic evaluation. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.120946] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
7
|
Toward a repositioning of the antibacterial drug nifuroxazide for cancer treatment. Drug Discov Today 2019; 24:1930-1936. [DOI: 10.1016/j.drudis.2019.06.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/22/2019] [Accepted: 06/24/2019] [Indexed: 02/07/2023]
|
8
|
Structural studies and investigation on the antifungal activity of silver(I) complexes with 5-nitrofuran-derived hydrazones. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.06.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Chen D, Jiang H, Guo D, Yasen W, Ao J, Su Y, Pan D, Jin X, Zhu X. Anti-biofouling therapeutic nanoparticles with removable shell and highly efficient internalization by cancer cells. Biomater Sci 2019; 7:336-346. [PMID: 30474655 DOI: 10.1039/c8bm00788h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cationic gelatin nanoparticles ((+)nGNPs) were prepared by in situ polymerization upon the surfaces of monodispersed gelatin nanoparticles (GNPs) using N-(3-Aminopropyl)methacrylamide (APm) as monomer, which were then decorated with doxorubicin terminated poly(2-methylacryloyloxyethyl phosphorylcholine) (DOX-pMPC) via EDC/NHS conjugation to obtain core-shell nanoparticles ((+)nGNPs@DOX-pMPC) for cancer therapy. The non-fouling pMPC shell could effectively shield the positively charged surface of inner nanoparticle and prevent non-specific protein adsorption, thus endowing the materials with potential for long-acting cancer treatment. Furthermore, the acyl hydrazone bond connecting DOX and pMPC chain could be easily hydrolyzed in the weakly acidic tumor microenvironment. After decladding of the pMPC shell, electropositive (+)nGNPs carrying the drugs can be effectively internalized by cancer cells to induce apoptosis, avoiding undesirable hindrance caused by the superhydrophilic outer layer. On combining the above properties, this drug delivery system can be a promising candidate for long-acting, low-toxicity and high-efficiency cancer therapy.
Collapse
Affiliation(s)
- Dong Chen
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Palace-Berl F, Pasqualoto KFM, Zingales B, Moraes CB, Bury M, Franco CH, da Silva Neto AL, Murayama JS, Nunes SL, Silva MN, Tavares LC. Investigating the structure-activity relationships of N'-[(5-nitrofuran-2-yl) methylene] substituted hydrazides against Trypanosoma cruzi to design novel active compounds. Eur J Med Chem 2017; 144:29-40. [PMID: 29247858 DOI: 10.1016/j.ejmech.2017.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/29/2017] [Accepted: 12/02/2017] [Indexed: 10/18/2022]
Abstract
Chagas disease, caused by the protozoan Trypanosoma cruzi, is a neglected chronic tropical infection endemic in Latin America. New and effective treatments are urgently needed because the two available drugs - benznidazole (BZD) and nifurtimox (NFX) - have limited curative power in the chronic phase of the disease. We have previously reported the design and synthesis of N'-[(5-nitrofuran-2-yl) methylene] substituted hydrazides that showed high trypanocidal activity against axenic epimastigote forms of three T. cruzi strains. Here we show that these compounds are also active against a BZD- and NFX-resistant strain. Herein, multivariate approaches (hierarchical cluster analysis and principal component analysis) were applied to a set of thirty-six formerly characterized compounds. Based on the findings from exploratory data analysis, novel compounds were designed and synthesized. These compounds showed two-to three-fold higher trypanocidal activity against epimastigote forms than the previous set and were 25-30-fold more active than BZD. Their activity was also evaluated against intracellular amastigotes by high content screening (HCS). The most active compounds (BSF-38 to BSF-40) showed a selective index (SI') greater than 200, in contrast to the SI' values of reference drugs (NFX, 16.45; BZD, > 3), and a 70-fold greater activity than BZD. These findings indicate that nitrofuran compounds designed based on the activity against epimastigote forms show promising trypanocidal activity against intracellular amastigotes, which correspond to the predominant parasite stage in the chronic phase of Chagas disease.
Collapse
Affiliation(s)
- Fanny Palace-Berl
- Department of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, SP, Brazil.
| | | | - Bianca Zingales
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP, Brazil
| | - Carolina Borsoi Moraes
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, Brazil
| | - Mariana Bury
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP, Brazil
| | - Caio Haddad Franco
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, Brazil
| | - Adelson Lopes da Silva Neto
- Department of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, SP, Brazil
| | - João Sussumu Murayama
- Department of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, SP, Brazil
| | - Solange Lessa Nunes
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP, Brazil
| | - Marcelo Nunes Silva
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP, Brazil
| | - Leoberto Costa Tavares
- Department of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, SP, Brazil
| |
Collapse
|
11
|
Huang PC, Fang H, Xiong JJ, Wu FY. Ultrasensitive turn-on fluorescence detection of Cu 2+ based on p-dimethylaminobenzamide derivative and the application to cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 173:264-269. [PMID: 27673495 DOI: 10.1016/j.saa.2016.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/07/2016] [Accepted: 09/11/2016] [Indexed: 06/06/2023]
Abstract
A new p-dimethylaminobenzamide derivative based compound BDIH has been synthesized. Cu2+ turned on the fluorescence of compound BDIH with a 1:2 binding stoichiometry. The fluorescent color of compound BDIH shows an evident change from colorless to bright blue upon the addition of Cu2+, which could be visibly detected by the naked eye under UV light at 365nm. More importantly, the detection limit was found to be 0.64nM which is far lower than the maximal allowed concentration of the WHO limit (31.5μM) for drinking water. This selective "turn-on" fluorescence sensor was used to identify Cu2+ in living cells using confocal fluorescence microscopy, indicating that compound BDIH has a potential application for selective detection of Cu2+ in organism.
Collapse
Affiliation(s)
- Peng-Cheng Huang
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Hao Fang
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Jing-Jing Xiong
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Fang-Ying Wu
- College of Chemistry, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
12
|
Salerno A, Celentano AM, López J, Lara V, Gaozza C, Balcazar DE, Carrillo C, Frank FM, Blanco MM. Novel 2-arylazoimidazole derivatives as inhibitors of Trypanosoma cruzi proliferation: Synthesis and evaluation of their biological activity. Eur J Med Chem 2017; 125:327-334. [DOI: 10.1016/j.ejmech.2016.09.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 12/11/2022]
|
13
|
Popiołek Ł, Biernasiuk A. Design, synthesis, and in vitro antimicrobial activity of hydrazide-hydrazones of 2-substituted acetic acid. Chem Biol Drug Des 2016; 88:873-883. [PMID: 27422854 DOI: 10.1111/cbdd.12820] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/06/2016] [Accepted: 07/09/2016] [Indexed: 11/29/2022]
Abstract
In this study, 30 hydrazide-hydrazones of phenylacetic (3-10) and hydroxyacetic acid (11-32) were synthesized by the condensation reaction of appropriate 2-substituted acetic acid hydrazide with different aromatic aldehydes. The obtained compounds were characterized by spectral data and evaluated in vitro for their potential antimicrobial activities against a panel of reference strains of micro-organisms, including Gram-positive bacteria, Gram-negative bacteria, and fungi belonging to the Candida spp. The results from our antimicrobial assays indicated that among synthesized compounds 3-32, especially compounds 6, 14, and 26 showed high bactericidal activity (MIC = 0.488-7.81 μg/ml) against reference Gram-positive bacteria, and in some cases, their activity was even better than that of commonly used antibiotics, such as cefuroxime or ampicillin.
Collapse
Affiliation(s)
- Łukasz Popiołek
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland.
| | - Anna Biernasiuk
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| |
Collapse
|