1
|
Lv S, Ma R, Tang Q, Wang X, Wang C, Zhang K, Li H, Ye W, Zhou W. Discovery of 3,4-dihydropyrimidine derivatives as novel Anti-PEDV agents targeting viral internalization through a unique calcium homeostasis disruption mechanism. Eur J Med Chem 2025; 291:117637. [PMID: 40262295 DOI: 10.1016/j.ejmech.2025.117637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/01/2025] [Accepted: 04/13/2025] [Indexed: 04/24/2025]
Abstract
Porcine epidemic diarrhea virus (PEDV) poses critical challenges to global swine production, with current vaccines showing limited efficacy against emerging strains. To address this gap, we designed 41 novel 3,4-dihydropyrimidine derivatives via systematic structure-activity relationship (SAR) optimization. Compound D39, incorporating a C-4 2'-substituted biphenyl, C-2 thione, C-6 phenyl, and C-5 isopropanol substituents, emerged as the most potent anti-PEDV agent (EC50 = 0.09 μM, SI = 358.9), outperforming remdesivir (EC50 = 3.14 μM, SI > 40.8) by 35-fold. D39 exhibited broad-spectrum anti-coronavirus activity (FIPV, IDV) at micromolar levels and demonstrated acceptable metabolic stability (T1/2 = 78.75 min, Clint = 8.8 μL/min/mg) in porcine liver microsomes. Mechanistic studies revealed the antiviral actions was achieved by blocking PEDV early internalization via intracellular Ca2+ homeostasis modulation. These findings highlight D39 as a first-in-class anti-PEDV candidate with a unique dihydropyrimidine scaffold and a calcium-targeting mechanism, offering a promising therapeutic strategy against coronaviral infections.
Collapse
Affiliation(s)
- Sai Lv
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Rumeng Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Qun Tang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Xiaoyang Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Chunmei Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Keyu Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Houkai Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wenchong Ye
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Wen Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| |
Collapse
|
2
|
Shi Y, Derasp JS, Maschmeyer T, Hein JE. Phase transfer catalysts shift the pathway to transmetalation in biphasic Suzuki-Miyaura cross-couplings. Nat Commun 2024; 15:5436. [PMID: 38937470 PMCID: PMC11211432 DOI: 10.1038/s41467-024-49681-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
The Suzuki-Miyaura coupling is a widely used C-C bond forming reaction. Numerous mechanistic studies have enabled the use of low catalyst loadings and broad functional group tolerance. However, the dominant mode of transmetalation remains controversial and likely depends on the conditions employed. Herein we detail a mechanistic study of the palladium-catalyzed Suzuki-Miyaura coupling under biphasic conditions. The use of phase transfer catalysts results in a remarkable 12-fold rate enhancement in the targeted system. A shift from an oxo-palladium based transmetalation to a boronate-based pathway lies at the root of this activity. Furthermore, a study of the impact of different water loadings reveals reducing the proportion of the aqueous phase increases the reaction rate, contrary to reaction conditions typically employed in the literature. The importance of these findings is highlighted by achieving an exceptionally broad substrate scope with benzylic electrophiles using a 10-fold reduction in catalyst loading relative to literature precedent.
Collapse
Affiliation(s)
- Yao Shi
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Joshua S Derasp
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.
| | - Tristan Maschmeyer
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Jason E Hein
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.
- Department of Chemistry, University of Bergen, Bergen, Norway.
- Acceleration Consortium, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Tran R, Brownsey DK, O'Sullivan L, Brandow CMJ, Chang ES, Zhou W, Patel KV, Gorobets E, Derksen DJ. Leveraging Pyrazolium Ylide Reactivity to Access Indolizine and 1,2-Dihydropyrimidine Derivatives. Chemistry 2024; 30:e202400421. [PMID: 38478466 DOI: 10.1002/chem.202400421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Indexed: 04/06/2024]
Abstract
N-Heterocyclic ylides are important synthetic precursors to rapidly build molecular complexity. Pyrazolium ylides have largely been unexplored, and we demonstrate their diverse utility in this report. We show that these readily accessible building blocks can be used to construct different heterocyclic skeletons by varying the coupling partner. Indolizines can be formed via an N-deletion type mechanism when reacting pyrazolium salts with electron deficient alkynes. 1,2-Dihydropyrimidines can be formed via a rearrangement mechanism when reacting pyrazolium ylides with isocyanates. These reactions enable access to valuable heteroarenes without the need for transition metal catalysis, high temperatures, or strong bases.
Collapse
Affiliation(s)
- Ricky Tran
- Faculty of Science, University of Calgary, 2500 University Drive NW, Calgary AB, Canada
| | - Duncan K Brownsey
- Faculty of Science, University of Calgary, 2500 University Drive NW, Calgary AB, Canada
| | - Leonie O'Sullivan
- Faculty of Science, University of Calgary, 2500 University Drive NW, Calgary AB, Canada
| | - Connor M J Brandow
- Faculty of Science, University of Calgary, 2500 University Drive NW, Calgary AB, Canada
| | - Emily S Chang
- Faculty of Science, University of Calgary, 2500 University Drive NW, Calgary AB, Canada
| | - Wen Zhou
- Faculty of Science, University of Calgary, 2500 University Drive NW, Calgary AB, Canada
| | - Ketul V Patel
- Faculty of Science, University of Calgary, 2500 University Drive NW, Calgary AB, Canada
| | - Evgueni Gorobets
- Faculty of Science, University of Calgary, 2500 University Drive NW, Calgary AB, Canada
| | - Darren J Derksen
- Faculty of Science, University of Calgary, 2500 University Drive NW, Calgary AB, Canada
| |
Collapse
|
4
|
Yang F, Liu F, Min Y, Shi L, Liu M, Wang K, Ke S, Gong Y, Yang Z. Novel Steroidal[17,16-d]pyrimidines Derived from Epiandrosterone and Androsterone: Synthesis, Characterization and Configuration-Activity Relationships. Molecules 2023; 28:molecules28062691. [PMID: 36985662 PMCID: PMC10054084 DOI: 10.3390/molecules28062691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023] Open
Abstract
Two series of novel steroidal[17,16-d]pyrimidines derived from natural epiandrosterone and androsterone were designed and synthesized, and these compounds were screened for their potential anticancer activities. The preliminary bioassay indicated that some of these prepared compounds exhibited significantly good cytotoxic activities against human gastric cancer (SGC-7901), lung cancer (A549), and hepatocellular liver carcinoma (HepG2) cell lines compared with 5-fluorouracil (5-FU), epiandrosterone, and androsterone. Especially the respective pairs from epiandrosterone and androsterone showed significantly different inhibitory activities, and the possible configuration-activity relationships have also been summarized and discussed based on kinase assay and molecular docking, which indicated that the inhibition activities of these steroidal[17,16-d]pyrimidines might obviously be affected by the configuration of the hydroxyl group in the part of the steroidal scaffold.
Collapse
Affiliation(s)
- Fei Yang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Fang Liu
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yong Min
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Liqiao Shi
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Manli Liu
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Kaimei Wang
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Shaoyong Ke
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Correspondence: (S.K.); (Y.G.); (Z.Y.)
| | - Yan Gong
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Correspondence: (S.K.); (Y.G.); (Z.Y.)
| | - Ziwen Yang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Correspondence: (S.K.); (Y.G.); (Z.Y.)
| |
Collapse
|
5
|
Mineyeva IV, Faletrov YV, Staravoitava VA, Shkumatov VM. Synthesis and In Silico Prediction of Biological Activity and Acute Toxicity of [1,3]Thiazolo[3,2-a]pyrimidines Containing Aliphatic Aldehyde Fragments. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022070028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Gawdzik B, Kowalczyk P, Koszelewski D, Brodzka A, Masternak J, Kramkowski K, Wypych A, Ostaszewski R. The Evaluation of DHPMs as Biotoxic Agents on Pathogen Bacterial Membranes. MEMBRANES 2022; 12:membranes12020238. [PMID: 35207159 PMCID: PMC8878598 DOI: 10.3390/membranes12020238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 12/04/2022]
Abstract
Herein, we present biological studies on 3,4-dihydropyrimidin-2(1H)-ones (DHPMs) obtained via Biginelli reaction catalyzed by NH4Cl under solvent-free conditions. Until now, DHPMs have not been tested for biological activity against pathogenic E. coli strains. We tested 16 newly synthesized DHPMs as antimicrobial agents on model E. coli strains (K12 and R2–R4). Preliminary cellular studies using MIC and MBC tests and digestion of Fpg after modification of bacterial DNA suggest that these compounds may have greater potential as antibacterial agents than typically used antibiotics, such as ciprofloxacin (ci), bleomycin (b) and cloxacillin (cl). The described compounds are highly specific for pathogenic E. coli strains based on the model strains used and may be engaged in the future as new substitutes for commonly used antibiotics in clinical and nosocomial infections in the pandemic era.
Collapse
Affiliation(s)
- Barbara Gawdzik
- Institute of Chemistry, Jan Kochanowski University, Uniwersytecka 7, 25-406 Kielce, Poland;
- Correspondence: (B.G.); (P.K.)
| | - Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
- Correspondence: (B.G.); (P.K.)
| | - Dominik Koszelewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (D.K.); (A.B.); (R.O.)
| | - Anna Brodzka
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (D.K.); (A.B.); (R.O.)
| | - Joanna Masternak
- Institute of Chemistry, Jan Kochanowski University, Uniwersytecka 7, 25-406 Kielce, Poland;
| | - Karol Kramkowski
- Department of Physical Chemistry, Medical University of Bialystok, Kilińskiego 1 Str., 15-089 Białystok, Poland;
| | - Aleksandra Wypych
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, ul. Wileńska 4, 87-100 Toruń, Poland;
| | - Ryszard Ostaszewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (D.K.); (A.B.); (R.O.)
| |
Collapse
|
7
|
Al-Zaydi KM, Al-Boqami M, Elnagdi NMH. Green Synthesis of Dihydropyrimidines and Pyridines Utilizing Biginelli Reaction. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1998151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Khadijah M. Al-Zaydi
- Chemistry Department, Faculty of Sciences, University of Jeddah, Jeddah, Saudi Arabia
- Department of Chemistry, Faculty of Sciences-AL Faisaliah, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Modi Al-Boqami
- Chemistry Department, Faculty of Sciences, University of Jeddah, Jeddah, Saudi Arabia
- Department of Chemistry, Faculty of Sciences-AL Faisaliah, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noha M. H. Elnagdi
- Faculty of Pharmacy, Organic Chemistry Department, Modern University for Technology and Information, Cairo, Egypt
| |
Collapse
|
8
|
Razavian Mofrad R, Kabirifard H, Tajbakhsh M, Firouzzadeh Pasha G. Amine‐functionalized nano‐NaY zeolite for the synthesis of
N
‐acetyl pyrazoles and dihydropyrimidines. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Hassan Kabirifard
- Department of Chemistry Islamic Azad University, Tehran North Branch Tehran Iran
| | - Mahmood Tajbakhsh
- Department of Organic Chemistry, Faculty of Chemistry University of Mazandaran Babolsar Iran
| | | |
Collapse
|
9
|
Botta L, Cesarini S, Zippilli C, Bizzarri BM, Fanelli A, Saladino R. Multicomponent reactions in the synthesis of antiviral compounds. Curr Med Chem 2021; 29:2013-2050. [PMID: 34620058 DOI: 10.2174/0929867328666211007121837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/16/2021] [Accepted: 08/18/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Multicomponent reactions are one-pot processes for the synthesis of highly functionalized hetero-cyclic and hetero-acyclic compounds, often endowed with biological activity. OBJECTIVE Multicomponent reactions are considered green processes with high atom economy. In addition, they present advantages compared to the classic synthetic methods such as high efficiency and low wastes production. METHOD In these reactions two or more reagents are combined together in the same flask to yield a product containing almost all the atoms of the starting materials. RESULTS The scope of this review is to present an overview of the application of multicomponent reactions in the synthesis of compounds endowed with antiviral activity. The syntheses are classified depending on the viral target. CONCLUSION Multicomponent reactions can be applied to all the stages of the drug discovery and development process making them very useful in the search for new agents active against emerging (viral) pathogens.
Collapse
Affiliation(s)
- Lorenzo Botta
- Department Biological and Ecological Sciences, University of Tuscia, Viterbo. Italy
| | - Silvia Cesarini
- Department Biological and Ecological Sciences, University of Tuscia, Viterbo. Italy
| | - Claudio Zippilli
- Department Biological and Ecological Sciences, University of Tuscia, Viterbo. Italy
| | | | - Angelica Fanelli
- Department Biological and Ecological Sciences, University of Tuscia, Viterbo. Italy
| | - Raffaele Saladino
- Department Biological and Ecological Sciences, University of Tuscia, Viterbo. Italy
| |
Collapse
|
10
|
Dudhe AC, Dudhe R, Porwal O, Katole G. An Overview of Synthesis and Biological Activity of Dihydropyrimidine Derivatives. Mini Rev Med Chem 2021; 22:701-728. [PMID: 34544334 DOI: 10.2174/1389557521666210920120457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/12/2021] [Accepted: 08/04/2021] [Indexed: 11/22/2022]
Abstract
Dihydropyrimidine derivatives are most important scaffolds due to structure similarities with natural products it is a hetrocyclic compound. The chemistry of Dihydropyrimidine is a blossoming field. Various reaction schemes for the preparation of Dihydropyrimidines and produce different biological effect and offer vast scope in the field of medicinal chemistry. This article goal to analysis the work reported the recent chemistry and pharmacological activities of dihydropyrimidine derivatives.
Collapse
Affiliation(s)
- Anshu Chaudhary Dudhe
- School of Pharmacy, G H Raisoni University, Saikheda, Saunsar, Chhindwara, M.P. 480337. India
| | - Rupesh Dudhe
- School of Pharmacy, G H Raisoni University, Saikheda, Saunsar, Chhindwara, M.P. 480337. India
| | - Omji Porwal
- Department of Pharmacy, Tishk International University, Pharmacy Faculty, Erbil, KRG. Iraq
| | - Gayatri Katole
- School of Pharmacy, G H Raisoni University, Saikheda, Saunsar, Chhindwara, M.P. 480337. India
| |
Collapse
|
11
|
Phan TNH, Lee J, Shin H, Sohn JH. Oxidative Dehydrosulfurative Carbon-Oxygen Cross-Coupling of 3,4-Dihydropyrimidine-2-thiones with Aryl Alcohols. J Org Chem 2021; 86:5423-5430. [PMID: 33764055 DOI: 10.1021/acs.joc.1c00273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A Pd-catalyzed/Cu-mediated oxidative dehydrosulfurative carbon-oxygen cross-coupling reaction of 3,4-dihydropyrimidin-1H-2-thiones (DHPMs) with aryl alcohols is described. Due to the ready availability of diverse DHPMs and aryl alcohols, the reaction method offers facile access to biologically and pharmacologically valuable 2-aryloxypyrimidine derivatives with rapid diversification.
Collapse
Affiliation(s)
- Trong Nguyen Huu Phan
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jihong Lee
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyunik Shin
- Yonsung Fine Chemicals R&D Center, Suwon 16675, Republic of Korea
| | - Jeong-Hun Sohn
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
12
|
Joksimović N, Janković N, Davidović G, Bugarčić Z. 2,4-Diketo esters: Crucial intermediates for drug discovery. Bioorg Chem 2020; 105:104343. [PMID: 33086180 DOI: 10.1016/j.bioorg.2020.104343] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/26/2020] [Accepted: 10/01/2020] [Indexed: 12/20/2022]
Abstract
Convenient structures such as 2,4-diketo esters have been widely used as an effective pattern in medicinal chemistry and pharmacology for drug discovery. 2,4-Diketonate is a common scaffold that can be found in many biologically active and naturally occurring compounds. Also, many 2,4-diketo ester derivatives have been prepared due to their suitable synthesis. These synthetic drugs and natural products have shown numerous interesting biological properties with clinical potential as a cure for the broad specter of diseases. This review aims to highlight the important evidence of 2,4-diketo esters as a privileged scaffold in medicinal chemistry and pharmacology. Herein, numerous aspects of 2,4-diketo esters will be summarized, including synthesis and isolation of their derivatives, development of novel synthetic methodologies, the evaluation of their biological properties as well as the mechanisms of action of the diketo ester derivates. This paperwork is expected to be a comprehensive, trustworthy, and critical review of the 2,4-diketo ester intermediate to the chemistry community.
Collapse
Affiliation(s)
- Nenad Joksimović
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| | - Nenad Janković
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Sciences, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Goran Davidović
- University of Kragujevac, Faculty of Medical Sciences, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Zorica Bugarčić
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| |
Collapse
|
13
|
Kumar S, Deep A, Narasimhan B. A Review on Synthesis, Anticancer and Antiviral Potentials of Pyrimidine Derivatives. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/1573407214666180124160405] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background:
Pyrimidine is the six membered heterocyclic aromatic compound similar to
benzene and pyridine containing two nitrogen atoms at 1st and 3rd positions. Pyrimidine is present
throughout nature in various forms and is the building blocks of numerous natural compounds from
antibiotics to vitamins and liposacharides. The most commonly recognized pyrimidines are the bases of
RNA and DNA, the most abundant being cytosine, thymine or uracil.
Results:
Pyrimidine is a core structure in a wide variety of compounds that exhibits significant biological
activity and also plays an important role in the drug discovery process. Various synthetic aspects
indicated that pyrimidine derivatives are easy to synthesize and has diverse biological and chemical
applications. The present review article aims to review the work reported on synthesis, anticancer and
antiviral potentials of pyrimidine derivatives during new millennium.
Conclusion:
It may be concluded that the fused pyrimidine derivatives enhanced the anticancer potential
against different human cancer cell lines and antiviral potential against different human immunodeficiency
virus (HIV), herpes simplex virus (HSV-1) etc, which created interest among the medicinal
chemists in the pyrimidine skeleton in medicinal chemistry. Thus, a tremendous scope for research is
present in this direction for investigating pyrimidine derivatives as lead molecules.
Collapse
Affiliation(s)
- Sanjiv Kumar
- Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak-124001, India
| | - Aakash Deep
- Faculty of Pharmaceutical Sciences, Ch. Bansi Lal University, Bhiwani-127021, India
| | | |
Collapse
|
14
|
Meng FJ, Shi L, Feng GS, Sun L, Zhou YG. Enantioselective Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones through Organocatalytic Transfer Hydrogenation of 2-Hydroxypyrimidines. J Org Chem 2019; 84:4435-4442. [DOI: 10.1021/acs.joc.8b03128] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fan-Jie Meng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Lei Shi
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Guang-Shou Feng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Lei Sun
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Yong-Gui Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| |
Collapse
|
15
|
Kong R, Han SB, Wei JY, Peng XC, Xie ZB, Gong SS, Sun Q. Highly Efficient Synthesis of Substituted 3,4-Dihydropyrimidin-2-(1 H)-ones (DHPMs) Catalyzed by Hf(OTf)₄: Mechanistic Insights into Reaction Pathways under Metal Lewis Acid Catalysis and Solvent-Free Conditions. Molecules 2019; 24:E364. [PMID: 30669606 PMCID: PMC6359175 DOI: 10.3390/molecules24020364] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 12/02/2022] Open
Abstract
In our studies on the catalytic activity of Group IVB transition metal Lewis acids, Hf(OTf)₄ was identified as a highly potent catalyst for "one-pot, three-component" Biginelli reaction. More importantly, it was found that solvent-free conditions, in contrast to solvent-based conditions, could dramatically promote the Hf(OTf)₄-catalyzed formation of 3,4-dihydro-pyrimidin-2-(1H)-ones. To provide a mechanistic explanation, we closely examined the catalytic effects of Hf(OTf)₄ on all three potential reaction pathways in both "sequential bimolecular condensations" and "one-pot, three-component" manners. The experimental results showed that the synergistic effects of solvent-free conditions and Hf(OTf)₄ catalysis not only drastically accelerate Biginelli reaction by enhancing the imine route and activating the enamine route but also avoid the formation of Knoevenagel adduct, which may lead to an undesired byproduct. In addition, ¹H-MMR tracing of the H-D exchange reaction of methyl acetoacetate in MeOH-d₄ indicated that Hf(IV) cation may significantly accelerate ketone-enol tautomerization and activate the β-ketone moiety, thereby contributing to the overall reaction rate.
Collapse
Affiliation(s)
- Rui Kong
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, 605 Fenglin Avenue, Nanchang 330013, Jiangxi, China.
| | - Shuai-Bo Han
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, 605 Fenglin Avenue, Nanchang 330013, Jiangxi, China.
| | - Jing-Ying Wei
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, 605 Fenglin Avenue, Nanchang 330013, Jiangxi, China.
| | - Xiao-Chong Peng
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, 605 Fenglin Avenue, Nanchang 330013, Jiangxi, China.
| | - Zhen-Biao Xie
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, 605 Fenglin Avenue, Nanchang 330013, Jiangxi, China.
| | - Shan-Shan Gong
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, 605 Fenglin Avenue, Nanchang 330013, Jiangxi, China.
| | - Qi Sun
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, 605 Fenglin Avenue, Nanchang 330013, Jiangxi, China.
| |
Collapse
|
16
|
Ridka O, Matiychuk V, Sobechko I, Tyshchenko N, Novyk M, Sergeev V, Goshko L. Thermodynamic properties of methyl 4-(4-methoxyphenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate in organic solutions. FRENCH-UKRAINIAN JOURNAL OF CHEMISTRY 2019. [DOI: 10.17721/fujcv7i2p1-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The enthalpy and the entropy of dissolution of methyl 4-(4-methoxyphenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate in 2-propanol, ethyl acetate, acetonitrile, 2-propanone and benzene were determined from the temperature dependence of its solubility.The enthalpies and the entropies of mixing at 298 K were calculated taking into account the enthalpy of melting of the compound, determined via differential thermal analysis.The influence of the solvent on the solubility of the compound and on the corresponding enthalpy and entropy of mixing values was shown.
Collapse
Affiliation(s)
- O. Ridka
- aLviv Polytechnic National University
| | | | | | - N. Tyshchenko
- сFrantsevich Institute for Problems of Materials Science NASU
| | - M. Novyk
- aLviv Polytechnic National University
| | | | - L. Goshko
- aLviv Polytechnic National University
| |
Collapse
|
17
|
Kumar S, Narasimhan B. Therapeutic potential of heterocyclic pyrimidine scaffolds. Chem Cent J 2018; 12:38. [PMID: 29619583 PMCID: PMC5884769 DOI: 10.1186/s13065-018-0406-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/21/2018] [Indexed: 01/31/2023] Open
Abstract
Heterocyclic compounds offer a high degree of structural diversity and have proven to be broadly and economically useful as therapeutic agents. Comprehensive research on diverse therapeutic potentials of heterocycles compounds has confirmed their immense significance in the pathophysiology of diseases. Heterocyclic pyrimidine nucleus, which is an essential base component of the genetic material of deoxyribonucleic acid, demonstrated various biological activities. The present review article aims to review the work reported on therapeutic potentials of pyrimidine scaffolds which are valuable for medical applications during new generation.
Collapse
Affiliation(s)
- Sanjiv Kumar
- Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | | |
Collapse
|
18
|
Faridoon, Mnkandhla D, Isaacs M, Hoppe HC, Kaye PT. Synthesis and evaluation of substituted 4-arylimino-3-hydroxybutanoic acids as potential HIV-1 integrase inhibitors. Bioorg Med Chem Lett 2018; 28:1067-1070. [DOI: 10.1016/j.bmcl.2018.02.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/29/2018] [Accepted: 02/10/2018] [Indexed: 01/26/2023]
|
19
|
Recent developments in the synthesis and applications of dihydropyrimidin-2(1H)-ones and thiones. Mol Divers 2018; 22:405-446. [PMID: 29349521 DOI: 10.1007/s11030-017-9806-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 12/18/2017] [Indexed: 10/18/2022]
Abstract
Dihydropyrimidin-2(1H)-ones/thiones (DHPMs) are important heterocyclic compounds owing to their excellent biological activities and have been widely utilized in pharmaceutical applications. Recently, numerous DHPM derivatives have been prepared. This review covers the synthesis of DHPMs and improved procedures for the preparation of DHPMs from 1995 to 2016.
Collapse
|
20
|
Zhao F, Jia X, Li P, Zhao J, Huang J, Li H, Li L. FeCl₃∙6H₂O/TMSBr-Catalyzed Rapid Synthesis of Dihydropyrimidinones and Dihydropyrimidinethiones under Microwave Irradiation. Molecules 2017; 22:molecules22091503. [PMID: 28892005 PMCID: PMC6151402 DOI: 10.3390/molecules22091503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/07/2017] [Accepted: 09/07/2017] [Indexed: 11/16/2022] Open
Abstract
An efficient and practical protocol has been developed to synthesize dihydropyrimidinones and dihydropyrimidinethiones through FeCl3∙6H2O/TMSBr-catalyzed three-component cyclocondensation under microwave irradiation. This approach features high yields, broad substrate scope, short reaction time, mild reaction conditions, operational simplicity and easy work-up, thus affording a versatile method for the synthesis of dihydropyrimidinones and dihydropyrimidinethiones.
Collapse
Affiliation(s)
- Fei Zhao
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, 168 Hua Guan Road, Chengdu 610052, China.
| | - Xiuwen Jia
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, 168 Hua Guan Road, Chengdu 610052, China.
| | - Pinyi Li
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, 168 Hua Guan Road, Chengdu 610052, China.
| | - Jingwei Zhao
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, 168 Hua Guan Road, Chengdu 610052, China.
| | - Jun Huang
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, 168 Hua Guan Road, Chengdu 610052, China.
| | - Honglian Li
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, 168 Hua Guan Road, Chengdu 610052, China.
| | - Lin Li
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, 168 Hua Guan Road, Chengdu 610052, China.
| |
Collapse
|
21
|
Lesniewska-Kowiel MA, Muszalska I. Strategies in the designing of prodrugs, taking into account the antiviral and anticancer compounds. Eur J Med Chem 2017; 129:53-71. [DOI: 10.1016/j.ejmech.2017.02.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/13/2017] [Accepted: 02/05/2017] [Indexed: 12/22/2022]
|
22
|
Velthuisen EJ, Johns BA, Temelkoff DP, Brown KW, Danehower SC. The design of 8-hydroxyquinoline tetracyclic lactams as HIV-1 integrase strand transfer inhibitors. Eur J Med Chem 2016; 117:99-112. [PMID: 27092410 DOI: 10.1016/j.ejmech.2016.03.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 11/26/2022]
Abstract
A novel series of HIV-1 integrase strand transfer inhibitors were designed using the venerable two-metal binding pharmacophore model and incorporating structural elements from two different literature scaffolds. This manuscript describes a number of 8-hydroxyquinoline tetracyclic lactams with exceptional antiviral activity against HIV-1 and little loss of potency against the IN signature resistance mutations Q148K and G140S/Q148H.
Collapse
Affiliation(s)
- Emile J Velthuisen
- GlaxoSmithKline Research & Development, Infectious Diseases Therapeutic Area Unit, Five Moore Drive, Research Triangle Park, NC 27709, United States.
| | - Brian A Johns
- GlaxoSmithKline Research & Development, Infectious Diseases Therapeutic Area Unit, Five Moore Drive, Research Triangle Park, NC 27709, United States
| | - David P Temelkoff
- GlaxoSmithKline Research & Development, Infectious Diseases Therapeutic Area Unit, Five Moore Drive, Research Triangle Park, NC 27709, United States
| | - Kevin W Brown
- GlaxoSmithKline Research & Development, Infectious Diseases Therapeutic Area Unit, Five Moore Drive, Research Triangle Park, NC 27709, United States
| | - Susan C Danehower
- GlaxoSmithKline Research & Development, Infectious Diseases Therapeutic Area Unit, Five Moore Drive, Research Triangle Park, NC 27709, United States
| |
Collapse
|
23
|
Hajimahdi Z, Zarghi A. Progress in HIV-1 Integrase Inhibitors: A Review of their Chemical Structure Diversity. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2016; 15:595-628. [PMID: 28243261 PMCID: PMC5316242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
HIV-1 integrase (IN) enzyme, one of the three main enzymes of HIV-1, catalyzed the insertion of the viral DNA into the genome of host cells. Because of the lack of its homologue in human cells and its essential role in HIV-1 replication, IN inhibition represents an attractive therapeutic target for HIV-1 treatment. Since identification of IN as a promising therapeutic target, a major progress has been made, which has facilitated and led to the approval of three drugs. This review focused on the structural features of the most important IN inhibitors and categorized them structurally in 10 scaffolds. We also briefly discussed the structural and functional properties of HIV-1 IN and binding modes of IN inhibitors. The SAR analysis of the known IN inhibitors provides some useful clues to the possible future discovery of novel IN inhibitors.
Collapse
|