1
|
Huang W, Baliga C, Vázquez-Laslop N, Mankin A. Sequence diversity of apidaecin-like peptides arresting the terminating ribosome. Nucleic Acids Res 2024; 52:8967-8978. [PMID: 38953159 PMCID: PMC11347161 DOI: 10.1093/nar/gkae567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/31/2024] [Accepted: 06/22/2024] [Indexed: 07/03/2024] Open
Abstract
The Proline-rich Antimicrobial Peptide (PrAMP) apidaecin (Api) inhibits translation by binding in the ribosomal nascent peptide exit tunnel, trapping release factors RF1 or RF2, and arresting ribosomes at stop codons. To explore the extent of sequence variations of the native 18-amino acid Api that allows it to preserve its activity, we screened a library of synthetic mutant Api genes expressed in bacterial cells, resulting in nearly 350000 peptide variants with multiple substitutions. By applying orthogonal negative and positive selection strategies, we identified a number of multi-substituted Api variants capable of arresting ribosomes at stop codons. Our findings underscore the critical contribution of specific amino acid residues of the peptide for its on-target function while significantly expanding the variety of PrAMPs acting on the terminating ribosome. Additionally, some of the tested synthesized multi-substituted Api variants exhibit improved antibacterial activity compared to that of the wild type PrAMP and may constitute the starting point to develop clinically useful antimicrobials.
Collapse
Affiliation(s)
- Weiping Huang
- Department of Pharmaceutical Sciences and Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Chetana Baliga
- Department of Pharmaceutical Sciences and Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Nora Vázquez-Laslop
- Department of Pharmaceutical Sciences and Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Alexander S Mankin
- Department of Pharmaceutical Sciences and Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
2
|
Wall BJ, Sharma KK, O’Brien EA, Donovan A, VanVeller B. General Installation of (4 H)-Imidazolone cis-Amide Bioisosteres Along the Peptide Backbone. J Am Chem Soc 2024; 146:11648-11656. [PMID: 38629317 PMCID: PMC11062833 DOI: 10.1021/jacs.3c13825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Imidazolones represent an important class of heterocycles present in a wide range of pharmaceuticals, metabolites, and bioactive natural products and serve as the active chromophore in green fluorescent protein. Recently, imidazolones have received attention for their ability to act as a nonaromatic amide bond bioisotere which improves pharmacological properties. Herein, we present a tandem amidine installation and cyclization with an adjacent ester to yield (4H)-imidazolone products. Using amino acid building blocks, we can access the first examples of α-chiral imidazolones that have been previously inaccessible. Additionally, our method is amenable to on-resin installation which can be seamlessly integrated into existing solid-phase peptide synthesis protocols. Finally, we show that peptide imidazolones are potent cis-amide bond surrogates that preorganize linear peptides for head-to-tail macrocyclization. This work represents the first general approach to the backbone and side-chain insertion of imidazolone bioisosteres at various positions in linear and cyclic peptides.
Collapse
Affiliation(s)
- Brendan J. Wall
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| | | | | | - Aaron Donovan
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| | - Brett VanVeller
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
3
|
Skowron KJ, Baliga C, Johnson T, Kremiller KM, Castroverde A, Dean TT, Allen AC, Lopez-Hernandez AM, Aleksandrova EV, Klepacki D, Mankin AS, Polikanov YS, Moore TW. Structure-Activity Relationships of the Antimicrobial Peptide Natural Product Apidaecin. J Med Chem 2023; 66:11831-11842. [PMID: 37603874 PMCID: PMC10768847 DOI: 10.1021/acs.jmedchem.3c00406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
With the growing crisis of antimicrobial resistance, it is critical to continue to seek out new sources of novel antibiotics. This need has led to renewed interest in natural product antimicrobials, specifically antimicrobial peptides. Nonlytic antimicrobial peptides are highly promising due to their unique mechanisms of action. One such peptide is apidaecin (Api), which inhibits translation termination through stabilization of the quaternary complex of the ribosome-apidaecin-tRNA-release factor. Synthetic derivatives of apidaecin have been developed, but structure-guided modifications have yet to be considered. In this work, we have focused on modifying key residues in the Api sequence that are responsible for the interactions that stabilize the quaternary complex. We present one of the first examples of a highly modified Api peptide that maintains its antimicrobial activity and interaction with the translation complex. These findings establish a starting point for further structure-guided optimization of Api peptides.
Collapse
Affiliation(s)
- Kornelia J Skowron
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Chetana Baliga
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Tatum Johnson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Kyle M Kremiller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Alexandra Castroverde
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Trevor T Dean
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - A'Lester C Allen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Ana M Lopez-Hernandez
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Elena V Aleksandrova
- Department of Biological Sciences, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Dorota Klepacki
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Alexander S Mankin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
- Center for Biomolecular Sciences, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Yury S Polikanov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
- Department of Biological Sciences, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois 60607, United States
- Center for Biomolecular Sciences, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Terry W Moore
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
- University of Illinois Cancer Center, University of Illinois Chicago, Chicago, Illinois 60612, United States
| |
Collapse
|
4
|
Vengesai A, Kasambala M, Mutandadzi H, Mduluza-Jokonya TL, Mduluza T, Naicker T. Scoping review of the applications of peptide microarrays on the fight against human infections. PLoS One 2022; 17:e0248666. [PMID: 35077448 PMCID: PMC8789108 DOI: 10.1371/journal.pone.0248666] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 01/11/2022] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION This scoping review explores the use of peptide microarrays in the fight against infectious diseases. The research domains explored included the use of peptide microarrays in the mapping of linear B-cell and T cell epitopes, antimicrobial peptide discovery, immunosignature characterisation and disease immunodiagnostics. This review also provides a short overview of peptide microarray synthesis. METHODS Electronic databases were systematically searched to identify relevant studies. The review was conducted using the Joanna Briggs Institute methodology for scoping reviews and data charting was performed using a predefined form. The results were reported by narrative synthesis in line with the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews guidelines. RESULTS Ninety-five articles from 103 studies were included in the final data charting process. The majority (92. 0%) of the articles were published during 2010-2020 and were mostly from Europe (44.2%) and North America (34.7%). The findings were from the investigation of viral (45.6%), bacterial (32. 0%), parasitic (23.3%) and fungal (2. 0%) infections. Out of the serological studies, IgG was the most reported antibody type followed by IgM. The largest portion of the studies (77.7%) were related to mapping B-cell linear epitopes, 5.8% were on diagnostics, 5.8% reported on immunosignature characterisation and 8.7% reported on viral and bacterial cell binding assays. Two studies reported on T-cell epitope profiling. CONCLUSION The most important application of peptide microarrays was found to be B-cell epitope mapping or antibody profiling to identify diagnostic and vaccine targets. Immunosignatures identified by random peptide microarrays were found to be applied in the diagnosis of infections and interrogation of vaccine responses. The analysis of the interactions of random peptide microarrays with bacterial and viral cells using binding assays enabled the identification of antimicrobial peptides. Peptide microarray arrays were also used for T-cell linear epitope mapping which may provide more information for the design of peptide-based vaccines and for the development of diagnostic reagents.
Collapse
Affiliation(s)
- Arthur Vengesai
- Optics & Imaging, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, KwaZulu-Natal, South Africa
- Department of Biochemistry, Faculty of Medicine, Midlands State University, Gweru, Zimbabwe
| | - Maritha Kasambala
- Department of Biology, Faculty of Science and Agriculture, University of KwaZulu-Natal, KwaZulu-Natal, South Africa
| | - Hamlet Mutandadzi
- Faculty of Medicine and Health Sciences, Parirenyatwa Hospital, University of Zimbabwe, Harare, Zimbabwe
| | - Tariro L. Mduluza-Jokonya
- Optics & Imaging, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, KwaZulu-Natal, South Africa
| | - Takafira Mduluza
- Department of Biochemistry, Faculty of Medicine, Midlands State University, Gweru, Zimbabwe
| | - Thajasvarie Naicker
- Optics & Imaging, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, KwaZulu-Natal, South Africa
| |
Collapse
|
5
|
Translocation of non-lytic antimicrobial peptides and bacteria penetrating peptides across the inner membrane of the bacterial envelope. Curr Genet 2021; 68:83-90. [PMID: 34750687 PMCID: PMC8801401 DOI: 10.1007/s00294-021-01217-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 11/02/2022]
Abstract
The increase in multidrug-resistant pathogenic bacteria has become a problem worldwide. Currently there is a strong focus on the development of novel antimicrobials, including antimicrobial peptides (AMP) and antimicrobial antisense agents. While the majority of AMP have membrane activity and kill bacteria through membrane disruption, non-lytic AMP are non-membrane active, internalize and have intracellular targets. Antimicrobial antisense agents such as peptide nucleic acids (PNA) and phosphorodiamidate morpholino oligomers (PMO), show great promise as novel antibacterial agents, killing bacteria by inhibiting translation of essential target gene transcripts. However, naked PNA and PMO are unable to translocate across the cell envelope of bacteria, to reach their target in the cytosol, and are conjugated to bacteria penetrating peptides (BPP) for cytosolic delivery. Here, we discuss how non-lytic AMP and BPP-PMO/PNA conjugates translocate across the cytoplasmic membrane via receptor-mediated transport, such as the cytoplasmic membrane transporters SbmA, MdtM/YjiL, and/or YgdD, or via a less well described autonomous process.
Collapse
|
6
|
Armas F, Di Stasi A, Mardirossian M, Romani AA, Benincasa M, Scocchi M. Effects of Lipidation on a Proline-Rich Antibacterial Peptide. Int J Mol Sci 2021; 22:7959. [PMID: 34360723 PMCID: PMC8347091 DOI: 10.3390/ijms22157959] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 01/04/2023] Open
Abstract
The emergence of multidrug-resistant bacteria is a worldwide health problem. Antimicrobial peptides have been recognized as potential alternatives to conventional antibiotics, but still require optimization. The proline-rich antimicrobial peptide Bac7(1-16) is active against only a limited number of Gram-negative bacteria. It kills bacteria by inhibiting protein synthesis after its internalization, which is mainly supported by the bacterial transporter SbmA. In this study, we tested two different lipidated forms of Bac7(1-16) with the aim of extending its activity against those bacterial species that lack SbmA. We linked a C12-alkyl chain or an ultrashort cationic lipopeptide Lp-I to the C-terminus of Bac7(1-16). Both the lipidated Bac-C12 and Bac-Lp-I forms acquired activity at low micromolar MIC values against several Gram-positive and Gram-negative bacteria. Moreover, unlike Bac7(1-16), Bac-C12, and Bac-Lp-I did not select resistant mutants in E. coli after 14 times of exposure to sub-MIC concentrations of the respective peptide. We demonstrated that the extended spectrum of activity and absence of de novo resistance are likely related to the acquired capability of the peptides to permeabilize cell membranes. These results indicate that C-terminal lipidation of a short proline-rich peptide profoundly alters its function and mode of action and provides useful insights into the design of novel broad-spectrum antibacterial agents.
Collapse
Affiliation(s)
- Federica Armas
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.A.); (A.D.S.); (M.M.); (M.B.)
- Area Science Park, Padriciano, 34149 Trieste, Italy
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Adriana Di Stasi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.A.); (A.D.S.); (M.M.); (M.B.)
| | - Mario Mardirossian
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.A.); (A.D.S.); (M.M.); (M.B.)
- Department of Medical Sciences, University of Trieste, 34129 Trieste, Italy
| | | | - Monica Benincasa
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.A.); (A.D.S.); (M.M.); (M.B.)
| | - Marco Scocchi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.A.); (A.D.S.); (M.M.); (M.B.)
| |
Collapse
|
7
|
Assessing biofilm inhibition and immunomodulatory activity of small amounts of synthetic host defense peptides synthesized using SPOT-array technology. Nat Protoc 2021; 16:1850-1870. [PMID: 33837303 DOI: 10.1038/s41596-021-00500-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Peptides are promising drug candidates because of their diversity, biocompatibility and spectrum of activities. Here, we describe a protocol for high-throughput screening of SPOT-peptide arrays to assess the antibiofilm, antimicrobial and immunomodulatory activities of synthetic peptides. It is a Protocol Extension of our previous Nature Protocols article, which describes the synthesis of SPOT-peptide arrays and assays for screening antimicrobial activity. This latest protocol allows the simultaneous assessment of hundreds of synthetic host defense peptides to define their overall activity profiles and identify candidate sequences that are suitable for further characterization and development as anti-infectives. When coupled with the SPOT-array technology for peptide synthesis, the described procedures are rapid, inexpensive and straightforward for peptide library screening. The protocols can be implemented in most microbiology or immunology research laboratories without the need for specialists. The time to complete each step ranges between 1 and 4 h with overnight pauses, and datasets related to the antibiofilm and immunomodulatory activities of a large set of peptide sequences can be generated in a few days.
Collapse
|
8
|
Charting the sequence-activity landscape of peptide inhibitors of translation termination. Proc Natl Acad Sci U S A 2021; 118:2026465118. [PMID: 33674389 DOI: 10.1073/pnas.2026465118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Apidaecin (Api), an unmodified 18-amino-acid-long proline-rich antibacterial peptide produced by bees, has been recently described as a specific inhibitor of translation termination. It invades the nascent peptide exit tunnel of the postrelease ribosome and traps the release factors preventing their recycling. Api binds in the exit tunnel in an extended conformation that matches the placement of a nascent polypeptide and establishes multiple contacts with ribosomal RNA (rRNA) and ribosomal proteins. Which of these interactions are critical for Api's activity is unknown. We addressed this problem by analyzing the activity of all possible single-amino-acid substitutions of the Api variants synthesized in the bacterial cell. By conditionally expressing the engineered api gene, we generated Api directly in the bacterial cytosol, thereby bypassing the need for importing the peptide from the medium. The endogenously expressed Api, as well as its N-terminally truncated mutants, retained the antibacterial properties and the mechanism of action of the native peptide. Taking advantage of the Api expression system and next-generation sequencing, we mapped in one experiment all the single-amino-acid substitutions that preserve or alleviate the on-target activity of the Api mutants. Analysis of the inactivating mutations made it possible to define the pharmacophore of Api involved in critical interactions with the ribosome, transfer RNA (tRNA), and release factors. We also identified the Api segment that tolerates a variety of amino acid substitutions; alterations in this segment could be used to improve the pharmacological properties of the antibacterial peptide.
Collapse
|
9
|
Li T, Wang Z, Han H, Teng D, Mao R, Hao Y, Yang N, Wang X, Wang J. Dual Antibacterial Activities and Biofilm Eradication of a Marine Peptide-N6NH 2 and Its Analogs against Multidrug-Resistant Aeromonas veronii. Int J Mol Sci 2020; 21:E9637. [PMID: 33348848 PMCID: PMC7767178 DOI: 10.3390/ijms21249637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
Aeromonas veronii is one of the main pathogens causing various diseases in humans and animals. It is currently difficult to eradicate drug-resistant A. veronii due to the biofilm formation by conventional antibiotic treatments. In this study, a marine peptide-N6NH2 and its analogs were generated by introducing Orn or replacing with D-amino acids, Val and Pro; their enzymic stability and antibacterial/antibiofilm ability against multi-drug resistant (MDR) A. veronii ACCC61732 were detected in vitro and in vivo, respectively. The results showed that DN6NH2 more rapidly killed A. veronii ACCC61732 and had higher stability in trypsin, simulated gastric/intestinal fluid, proteinase K, and mouse serum than the parent peptide-N6NH2. DN6NH2 and other analogs significantly improved the ability of N6NH2 to penetrate the outer membrane of A. veronii ACCC61732. DN6NH2, N6PNH2 and V112N6NH2 protected mice from catheter-associated biofilm infection with MDR A. veronii ACCC61732, superior to N6NH2 and CIP. DN6NH2 had more potent efficacy at a dose of 5 μmol/kg (100% survival) in a mouse peritonitis model than other analogs (50-66.67%) and CIP (83.33%), and it inhibited the bacterial translocation, downregulated pro-inflammatory cytokines, upregulated the anti-inflammatory cytokine, and ameliorated multiple-organ injuries (including the liver, spleen, lung, and kidney). These data suggest that the analogs of N6NH2 may be a candidate for novel antimicrobial and antibiofilm agents against MDR A. veronii infections.
Collapse
Affiliation(s)
- Ting Li
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.L.); (Z.W.); (H.H.); (D.T.); (R.M.); (Y.H.); (N.Y.)
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Zhenlong Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.L.); (Z.W.); (H.H.); (D.T.); (R.M.); (Y.H.); (N.Y.)
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Huihui Han
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.L.); (Z.W.); (H.H.); (D.T.); (R.M.); (Y.H.); (N.Y.)
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.L.); (Z.W.); (H.H.); (D.T.); (R.M.); (Y.H.); (N.Y.)
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.L.); (Z.W.); (H.H.); (D.T.); (R.M.); (Y.H.); (N.Y.)
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.L.); (Z.W.); (H.H.); (D.T.); (R.M.); (Y.H.); (N.Y.)
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.L.); (Z.W.); (H.H.); (D.T.); (R.M.); (Y.H.); (N.Y.)
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xiumin Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.L.); (Z.W.); (H.H.); (D.T.); (R.M.); (Y.H.); (N.Y.)
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- Chinese Herbal Medicine Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.L.); (Z.W.); (H.H.); (D.T.); (R.M.); (Y.H.); (N.Y.)
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
10
|
LHH1, a novel antimicrobial peptide with anti-cancer cell activity identified from Lactobacillus casei HZ1. AMB Express 2020; 10:204. [PMID: 33175275 PMCID: PMC7658291 DOI: 10.1186/s13568-020-01139-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/27/2020] [Indexed: 12/18/2022] Open
Abstract
Antimicrobial peptides have been attracting increasing attention for their multiple beneficial effects. In present study, a novel AMP with a molecular weight of 1875.5 Da, was identified from the genome of Lactobacillus casei HZ1. The peptide, which was named as LHH1 was comprised of 16 amino acid residues, and its α-helix content was 95.34% when dissolved in 30 mM SDS. LHH1 exhibited a broad range of antimicrobial activities against Gram-positive bacteria and fungus. It could effectively inhibit Staphylococcus aureus with a minimum inhibitory concentration of 3.5 μM and showed a low hemolytic activity. The scanning electron microscope, confocal laser scanning microscope and flow cytometry results showed that LHH1 exerted its antibacterial activity by damaging the cell membrane of Staphylococcus aureus. Meanwhile, LHH1 also exhibited anti-cancer cell activities against several cancer cells via breaking the cell membrane of MGC803, HCT116 and C666-1 cancer cells.
Collapse
|
11
|
Mardirossian M, Sola R, Beckert B, Valencic E, Collis DWP, Borišek J, Armas F, Di Stasi A, Buchmann J, Syroegin EA, Polikanov YS, Magistrato A, Hilpert K, Wilson DN, Scocchi M. Peptide Inhibitors of Bacterial Protein Synthesis with Broad Spectrum and SbmA-Independent Bactericidal Activity against Clinical Pathogens. J Med Chem 2020; 63:9590-9602. [PMID: 32787108 DOI: 10.1021/acs.jmedchem.0c00665] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proline-rich antimicrobial peptides (PrAMPs) are promising lead compounds for developing new antimicrobials; however, their narrow spectrum of action is limiting. PrAMPs kill bacteria binding to their ribosomes and inhibiting protein synthesis. In this study, 133 derivatives of the PrAMP Bac7(1-16) were synthesized to identify the crucial residues for ribosome inactivation and antimicrobial activity. Then, five new Bac7(1-16) derivatives were conceived and characterized by antibacterial and membrane permeabilization assays, X-ray crystallography, and molecular dynamics simulations. Some derivatives displayed broad spectrum activity, encompassing Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Staphylococcus aureus. Two peptides out of five acquired a weak membrane-perturbing activity while maintaining the ability to inhibit protein synthesis. These derivatives became independent of the SbmA transporter, commonly used by native PrAMPs, suggesting that they obtained a novel route to enter bacterial cells. PrAMP-derived compounds could become new-generation antimicrobials to combat antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Mario Mardirossian
- Department of Medical Sciences, University of Trieste, 34125 Trieste, Italy
| | - Riccardo Sola
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Bertrand Beckert
- Institut für Biochemie und Molekularbiologie, University of Hamburg, 20146 Hamburg, Germany
| | - Erica Valencic
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 30137 Trieste, Italy
| | | | | | - Federica Armas
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Adriana Di Stasi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Jan Buchmann
- Institut für Biochemie und Molekularbiologie, University of Hamburg, 20146 Hamburg, Germany.,Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Egor A Syroegin
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Yury S Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, United States.,Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | | | - Kai Hilpert
- Institute of Infection and Immunology, St. George's, University of London, SW 17 0RE London, U.K
| | - Daniel N Wilson
- Institut für Biochemie und Molekularbiologie, University of Hamburg, 20146 Hamburg, Germany
| | - Marco Scocchi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
12
|
Analogues of a Cyclic Antimicrobial Peptide with a Flexible Linker Show Promising Activity against Pseudomonas aeruginosa and Staphylococcus aureus. Antibiotics (Basel) 2020; 9:antibiotics9070366. [PMID: 32629881 PMCID: PMC7399811 DOI: 10.3390/antibiotics9070366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023] Open
Abstract
The emergence of multi-drug resistant bacteria is becoming a major health concern. New strategies to combat especially Gram-negative pathogens are urgently needed. Antimicrobial peptides (AMPs) found in all multicellular organisms act as a first line of defense in immunity. In recent years, AMPs have attracted increasing attention as potential antibiotics. Naturally occurring antimicrobial cyclic lipopeptides include colistin and daptomycin, both of which contain a flexible linker. We previously reported a cyclic AMP BSI-9 cyclo(Lys-Nal-Lys-Lys-Bip-O2Oc-Nal-Lys-Asn) containing a flexible linker, with a broad spectrum of activity against bacterial strains and low hemolytic activity. In this study, improvement of the antimicrobial activity of BSI-9, against the European Committee on Antimicrobial Susceptibility Testing (EUCAST) strains of S. aureus, E. coli, A. baumannii, and P. aeruginosa was examined. This led to synthesis of eighteen peptide analogues of BSI-9, produced in four individual stages, with a different focus in each stage; cyclization point, hydrophobicity, cationic side-chain length, and combinations of the last two. Specifically the modified compound 11, exhibited improved activity against Staphylococcus aureus and Pseudomonas aeruginosa with MIC of 4 µg/mL and 8 µg/mL, respectively, compared to the original BSI-9, which had an MIC of 16–32 µg/mL.
Collapse
|
13
|
Li W, Wade JD, Reynolds E, O'Brien-Simpson NM. Chemical Modification of Cellulose Membranes for SPOT Synthesis. Aust J Chem 2020. [DOI: 10.1071/ch19335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Since the development of solid-phase peptide synthesis in the 1960s, many laboratories have modified the technology for the production of peptide arrays to facilitate the discovery of novel peptide mimetics and therapeutics. One of these, known as SPOT synthesis, enables parallel peptide synthesis on cellulose paper sheets and has several advantages over other peptide arrays methods. Today, the SPOT technique remains one of the most frequently used methods for synthesis and screening of peptides on arrays. Although polypropylene and glass can be used for the preparation of peptide arrays, the most commonly used material for SPOT membranes is cellulose. Critical to the success of the SPOT synthesis is the ability to modify a cellulose membrane to make it more suitable for solid-phase peptide synthesis of peptides and their analogues. In this review, we highlight the current range of chemical modifications of cellulose that have been developed to enable SPOT synthesis and further enhance its impact on peptide drug discovery. This will contribute to further chemical modifications and applications of SPOT synthesis for peptide arrays and peptide therapeutic screening.
Collapse
|
14
|
Mardirossian M, Sola R, Beckert B, Collis DWP, Di Stasi A, Armas F, Hilpert K, Wilson DN, Scocchi M. Proline-Rich Peptides with Improved Antimicrobial Activity against E. coli, K. pneumoniae, and A. baumannii. ChemMedChem 2019; 14:2025-2033. [PMID: 31692278 PMCID: PMC6973051 DOI: 10.1002/cmdc.201900465] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/16/2019] [Indexed: 01/08/2023]
Abstract
Proline-rich antimicrobial peptides (PrAMPs) are promising agents to combat multi-drug resistant pathogens due to a high antimicrobial activity, yet low cytotoxicity. A library of derivatives of the PrAMP Bac5(1-17) was synthesized and screened to identify which residues are relevant for its activity. In this way, we discovered that two central motifs -PIRXP- cannot be modified, while residues at N- and C- termini tolerated some variations. We found five Bac5(1-17) derivatives bearing 1-5 substitutions, with an increased number of arginine and/or tryptophan residues, exhibiting improved antimicrobial activity and broader spectrum of activity while retaining low cytotoxicity toward eukaryotic cells. Transcription/translation and bacterial membrane permeabilization assays showed that these new derivatives still retained the ability to strongly inhibit bacterial protein synthesis, but also acquired permeabilizing activity to different degrees. These new Bac5(1-17) derivatives therefore show a dual mode of action which could hinder the selection of bacterial resistance against these molecules.
Collapse
Affiliation(s)
| | - Riccardo Sola
- Department of Life SciencesUniversity of Trieste34128TriesteItaly
| | - Bertrand Beckert
- Institute for Biochemistry and Molecular BiologyUniversity of Hamburg20146HamburgGermany
| | | | - Adriana Di Stasi
- Department of Life SciencesUniversity of Trieste34128TriesteItaly
| | - Federica Armas
- Department of Life SciencesUniversity of Trieste34128TriesteItaly
| | - Kai Hilpert
- St GeorgesUniversity of LondonLondonSW17 0REUK
| | - Daniel N. Wilson
- Institute for Biochemistry and Molecular BiologyUniversity of Hamburg20146HamburgGermany
| | - Marco Scocchi
- Department of Life SciencesUniversity of Trieste34128TriesteItaly
| |
Collapse
|
15
|
Mardirossian M, Sola R, Degasperi M, Scocchi M. Search for Shorter Portions of the Proline‐Rich Antimicrobial Peptide Fragment Bac5(1–25) That Retain Antimicrobial Activity by Blocking Protein Synthesis. ChemMedChem 2019; 14:343-348. [DOI: 10.1002/cmdc.201800734] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/03/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Mario Mardirossian
- Department of Life SciencesUniversity of Trieste Via Licio Giorgieri 5 34127 Trieste Italy
| | - Riccardo Sola
- Department of Life SciencesUniversity of Trieste Via Licio Giorgieri 5 34127 Trieste Italy
| | - Margherita Degasperi
- Department of Life SciencesUniversity of Trieste Via Licio Giorgieri 5 34127 Trieste Italy
| | - Marco Scocchi
- Department of Life SciencesUniversity of Trieste Via Licio Giorgieri 5 34127 Trieste Italy
| |
Collapse
|
16
|
A novel synthetic peptide inspired on Lys49 phospholipase A 2 from Crotalus oreganus abyssus snake venom active against multidrug-resistant clinical isolates. Eur J Med Chem 2018; 149:248-256. [PMID: 29501945 DOI: 10.1016/j.ejmech.2018.02.055] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/26/2018] [Accepted: 02/16/2018] [Indexed: 11/23/2022]
Abstract
Currently, the evolving and complex mechanisms of bacterial resistance to conventional antibiotics are increasing, while alternative medicines are drying up, which urges the need to discover novel agents able to kill antibiotic-resistant bacteria. Lys49 phospholipase A2s (PLA2s) from snake venoms are multifunctional toxins able to induce a huge variety of therapeutic effects and consequently serve as templates for new drug leads. Hence, the present study was aimed at the synthesis of oligopeptides mimicking regions of the antibacterial Lys49 PLA2 toxin (CoaTx-II), recently isolated from Crotalus oreganus abyssus snake venom, to identify small peptides able to reproduce the therapeutic action of the toxin. Five peptides, representing major regions of interest within CoaTx-II, were synthesized and screened for their antibacterial properties. The 13-mer peptide pC-CoaTxII, corresponding to residues 115-129 of CoaTx-II, was able to reproduce the promising bactericidal effect of the toxin against multi-resistant clinical isolates. Peptide pC-CoaTxII is mainly composed by positively charged and hydrophobic amino acids, a typical trait in most antimicrobial peptides, and presented no defined secondary structure in aqueous environment. The physicochemical properties of pC-CoaTxII are favorable towards a strong interaction with anionic lipid membranes as those in bacteria. Additional in silico studies suggest formation of a water channel across the membrane upon peptide insertion, eventually leading to bacterial cell disruption and death. Overall, our findings confirm the valuable potential of snake venom toxins towards design and synthesis of novel antimicrobials, thus representing key insights towards development of alternative efficient antimicrobials to fight bacterial resistance to current antibiotics.
Collapse
|
17
|
López-Pérez PM, Grimsey E, Bourne L, Mikut R, Hilpert K. Screening and Optimizing Antimicrobial Peptides by Using SPOT-Synthesis. Front Chem 2017; 5:25. [PMID: 28447030 PMCID: PMC5388751 DOI: 10.3389/fchem.2017.00025] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/29/2017] [Indexed: 11/14/2022] Open
Abstract
Peptide arrays on cellulose are a powerful tool to investigate peptide interactions with a number of different molecules, for examples antibodies, receptors or enzymes. Such peptide arrays can also be used to study interactions with whole cells. In this review, we focus on the interaction of small antimicrobial peptides with bacteria. Antimicrobial peptides (AMPs) can kill multidrug-resistant (MDR) human pathogenic bacteria and therefore could be next generation antibiotics targeting MDR bacteria. We describe the screen and the result of different optimization strategies of peptides cleaved from the membrane. In addition, screening of antibacterial activity of peptides that are tethered to the surface is discussed. Surface-active peptides can be used to protect surfaces from bacterial infections, for example implants.
Collapse
Affiliation(s)
| | - Elizabeth Grimsey
- Institute for Infection and Immunity, St. George's University of LondonLondon, UK
| | - Luc Bourne
- Institute for Infection and Immunity, St. George's University of LondonLondon, UK
| | - Ralf Mikut
- Karlsruhe Institute of Technology (KIT), Institute for Applied Computer Science (IAI)Eggenstein-Leopoldshafen, Germany
| | - Kai Hilpert
- TiKa Diagnostics LtdLondon, UK
- Institute for Infection and Immunity, St. George's University of LondonLondon, UK
| |
Collapse
|
18
|
The Mechanism of Killing by the Proline-Rich Peptide Bac7(1-35) against Clinical Strains of Pseudomonas aeruginosa Differs from That against Other Gram-Negative Bacteria. Antimicrob Agents Chemother 2017; 61:AAC.01660-16. [PMID: 28137800 DOI: 10.1128/aac.01660-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 01/15/2017] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa infections represent a serious threat to worldwide health. Proline-rich antimicrobial peptides (PR-AMPs), a particular group of peptide antibiotics, have demonstrated in vitro activity against P. aeruginosa strains. Here we show that the mammalian PR-AMP Bac7(1-35) is active against some multidrug-resistant cystic fibrosis isolates of P. aeruginosa By confocal microscopy and cytometric analyses, we investigated the mechanism of killing against P. aeruginosa strain PAO1 and three selected isolates, and we observed that the peptide inactivated the target cells by disrupting their cellular membranes. This effect is deeply different from that previously described for PR-AMPs in Escherichia coli and Salmonella enterica serovar Typhimurium, where these peptides act intracellularly after having been internalized by means of the transporter SbmA without membranolytic effects. The heterologous expression of SbmA in PAO1 cells enhanced the internalization of Bac7(1-35) into the cytoplasm, making the bacteria more susceptible to the peptide but at the same time more resistant to the membrane lysis, similarly to what occurs in E. coli The results evidenced a new mechanism of action for PR-AMPs and indicate that Bac7 has multiple and variable modes of action that depend on the characteristics of the different target species and the possibility to be internalized by bacterial transporters. This feature broadens the spectrum of activity of the peptide and makes the development of peptide-resistant bacteria a more difficult process.
Collapse
|
19
|
Schmidt R, Krizsan A, Volke D, Knappe D, Hoffmann R. Identification of New Resistance Mechanisms in Escherichia coli against Apidaecin 1b Using Quantitative Gel- and LC–MS-Based Proteomics. J Proteome Res 2016; 15:2607-17. [DOI: 10.1021/acs.jproteome.6b00169] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rico Schmidt
- Institute
of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, 04103 Leipzig, Germany
- Center
for Biotechnology and Biomedicine (BBZ), Universität Leipzig, 04103 Leipzig, Germany
| | - Andor Krizsan
- Institute
of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, 04103 Leipzig, Germany
- Center
for Biotechnology and Biomedicine (BBZ), Universität Leipzig, 04103 Leipzig, Germany
| | - Daniela Volke
- Institute
of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, 04103 Leipzig, Germany
- Center
for Biotechnology and Biomedicine (BBZ), Universität Leipzig, 04103 Leipzig, Germany
| | - Daniel Knappe
- Institute
of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, 04103 Leipzig, Germany
- Center
for Biotechnology and Biomedicine (BBZ), Universität Leipzig, 04103 Leipzig, Germany
| | - Ralf Hoffmann
- Institute
of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, 04103 Leipzig, Germany
- Center
for Biotechnology and Biomedicine (BBZ), Universität Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
20
|
Bluhm MEC, Schneider VAF, Schäfer I, Piantavigna S, Goldbach T, Knappe D, Seibel P, Martin LL, Veldhuizen EJA, Hoffmann R. N-Terminal Ile-Orn- and Trp-Orn-Motif Repeats Enhance Membrane Interaction and Increase the Antimicrobial Activity of Apidaecins against Pseudomonas aeruginosa. Front Cell Dev Biol 2016; 4:39. [PMID: 27243004 PMCID: PMC4861708 DOI: 10.3389/fcell.2016.00039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/21/2016] [Indexed: 11/23/2022] Open
Abstract
The Gram-negative bacterium Pseudomonas aeruginosa is a life-threatening nosocomial pathogen due to its generally low susceptibility toward antibiotics. Furthermore, many strains have acquired resistance mechanisms requiring new antimicrobials with novel mechanisms to enhance treatment options. Proline-rich antimicrobial peptides, such as the apidaecin analog Api137, are highly efficient against various Enterobacteriaceae infections in mice, but less active against P. aeruginosa in vitro. Here, we extended our recent work by optimizing lead peptides Api755 (gu-OIORPVYOPRPRPPHPRL-OH; gu = N,N,N′,N′-tetramethylguanidino, O = L-ornithine) and Api760 (gu-OWORPVYOPRPRPPHPRL-OH) by incorporation of Ile-Orn- and Trp-Orn-motifs, respectively. Api795 (gu-O(IO)2RPVYOPRPRPPHPRL-OH) and Api794 (gu-O(WO)3RPVYOPRPRPPHPRL-OH) were highly active against P. aeruginosa with minimal inhibitory concentrations of 8–16 and 8–32 μg/mL against Escherichia coli and Klebsiella pneumoniae. Assessed using a quartz crystal microbalance, these peptides inserted into a membrane layer and the surface activity increased gradually from Api137, over Api795, to Api794. This mode of action was confirmed by transmission electron microscopy indicating some membrane damage only at the high peptide concentrations. Api794 and Api795 were highly stable against serum proteases (half-life times >5 h) and non-hemolytic to human erythrocytes at peptide concentrations of 0.6 g/L. At this concentration, Api795 reduced the cell viability of HeLa cells only slightly, whereas the IC50 of Api794 was 0.23 ± 0.09 g/L. Confocal fluorescence microscopy revealed no colocalization of 5(6)-carboxyfluorescein-labeled Api794 or Api795 with the mitochondria, excluding interactions with the mitochondrial membrane. Interestingly, Api795 was localized in endosomes, whereas Api794 was present in endosomes and the cytosol. This was verified using flow cytometry showing a 50% higher uptake of Api794 in HeLa cells compared with Api795. The uptake was reduced for both peptides by 50 and 80%, respectively, after inhibiting endocytotic uptake with dynasore. In summary, Api794 and Api795 were highly active against P. aeruginosa in vitro. Both peptides passed across the bacterial membrane efficiently, most likely then disturbing the ribosome assembly, and resulting in further intracellular damage. Api795 with its IOIO-motif, which was particularly active and only slightly toxic in vitro, appears to represent a promising third generation lead compound for the development of novel antibiotics against P. aeruginosa.
Collapse
Affiliation(s)
- Martina E C Bluhm
- Faculty of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Universität LeipzigLeipzig, Germany; Center for Biotechnology and Biomedicine, Universität LeipzigLeipzig, Germany
| | - Viktoria A F Schneider
- Division of Molecular Host Defence, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University Utrecht, Netherlands
| | - Ingo Schäfer
- Center for Biotechnology and Biomedicine, Universität LeipzigLeipzig, Germany; Molecular Cell Therapy, Faculty of Medicine, Universität LeipzigLeipzig, Germany
| | | | - Tina Goldbach
- Faculty of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Universität LeipzigLeipzig, Germany; Center for Biotechnology and Biomedicine, Universität LeipzigLeipzig, Germany
| | - Daniel Knappe
- Faculty of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Universität LeipzigLeipzig, Germany; Center for Biotechnology and Biomedicine, Universität LeipzigLeipzig, Germany
| | - Peter Seibel
- Center for Biotechnology and Biomedicine, Universität LeipzigLeipzig, Germany; Molecular Cell Therapy, Faculty of Medicine, Universität LeipzigLeipzig, Germany
| | | | - Edwin J A Veldhuizen
- Division of Molecular Host Defence, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University Utrecht, Netherlands
| | - Ralf Hoffmann
- Faculty of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Universität LeipzigLeipzig, Germany; Center for Biotechnology and Biomedicine, Universität LeipzigLeipzig, Germany
| |
Collapse
|