1
|
Gaber AA, El-Morsy AM, Sherbiny FF, Bayoumi AH, El-Gamal KM, El-Adl K, Al-Karmalawy AA, Ezz Eldin RR, Saleh MA, Abulkhair HS. Pharmacophore-linked pyrazolo[3,4-d]pyrimidines as EGFR-TK inhibitors: Synthesis, anticancer evaluation, pharmacokinetics, and in silico mechanistic studies. Arch Pharm (Weinheim) 2025; 358:e2100258. [PMID: 34467546 DOI: 10.1002/ardp.202100258] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 02/05/2023]
Abstract
Targeting the epidermal growth factor receptors (EGFRs) with small inhibitor molecules has been validated as a potential therapeutic strategy in cancer therapy. Pyrazolo[3,4-d]pyrimidine is a versatile scaffold that has been exploited for developing potential anticancer agents. On the basis of fragment-based drug discovery, considering the essential pharmacophoric features of potent EGFR tyrosine kinase (TK) inhibitors, herein, we report the design and synthesis of new hybrid molecules of the pyrazolo[3,4-d]pyrimidine scaffold linked with diverse pharmacophoric fragments with reported anticancer potential. These fragments include hydrazone, indoline-2-one, phthalimide, thiourea, oxadiazole, pyrazole, and dihydropyrazole. The synthesized molecules were evaluated for their anticancer activity against the human breast cancer cell line, MCF-7. The obtained results revealed comparable antitumor activity with that of the reference drugs doxorubicin and toceranib. Docking studies were performed along with EGFR-TK and ADMET profiling studies. The results of the docking studies showed the ability of the designed compounds to interact with key residues of the EGFR-TK through a number of covalent and noncovalent interactions. The obtained activity of compound 25 (IC50 = 2.89 µM) suggested that it may serve as a lead for further optimization and drug development.
Collapse
Affiliation(s)
- Ahmed A Gaber
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Nasr City, Egypt
| | - Ahmed M El-Morsy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Nasr City, Egypt
- Pharmaceutical Chemistry Department, College of Pharmacy, The Islamic University, Najaf, Iraq
| | - Farag F Sherbiny
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Nasr City, Egypt
- Department of Chemistry, Basic Science Center and Pharmaceutical Organic Chemistry College of Pharmaceutical Science & Drug Manufacturing, Misr University for Science and Technology (MUST), Al-Motamayez District, 6th of October City, Egypt
| | - Ashraf H Bayoumi
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Nasr City, Egypt
| | - Kamal M El-Gamal
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Nasr City, Egypt
| | - Khaled El-Adl
- Department of Medicinal Chemistry & Drug Design, Faculty of Pharmacy, Al-Azhar University, Cairo, Nasr City, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| | - Rogy R Ezz Eldin
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Marwa A Saleh
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Nasr City, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| |
Collapse
|
2
|
Huo D, Sun Z, Wang M, Yan A. Ligand and structure based hierarchical virtual screening cascade for finding novel epidermal growth factor receptor inhibitors. Chem Biol Drug Des 2024; 103:e14375. [PMID: 37849030 DOI: 10.1111/cbdd.14375] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/11/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
The epidermal growth factor receptor (EGFR) tyrosine kinase plays an important role in tumor formation and growth by mediating cell growth and other physiological processes. Therefore, EGFR is a promising target for the treatment of cancer. In this work, we combined ligand-based and structure-based virtual screening methods to identify novel EGFR inhibitors from a library of more than 103 thousand compounds. We first obtained hundreds of compounds with similar physiochemical properties through 3D molecular shape and electrostatic similarity screening with potent inhibitors AEE788 and Afatinib as queries. Next, we identified compounds with strong binding affinities to the EGFR pocket through molecular docking, which makes good use of the structure information of the receptor. After molecular scaffold analysis, our bioassay confirmed 13 compounds with EGFR inhibitory activity and three compounds had IC50 values below 1000 nM. In addition, we collected 5371 EGFR inhibitors from online databases, and clustered them into 7 groups by K-means method using their ECFP4 fingerprints as input. Each cluster had typical molecular fragments and corresponding activity characteristics, which could guide the design of EGFR inhibitors, and we concluded that the fragments from some of the hits are indicated in the highly active scaffolds.
Collapse
Affiliation(s)
- Donghui Huo
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- Dalian (Fushun) Research Institute of Petroleum and Petrochemicals, China Petroleum & Chemical Corporation (SINOPEC), Dalian, China
| | - Zhiqi Sun
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Maolin Wang
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen, Guangdong, China
| | - Aixia Yan
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
3
|
Kushwaha AK, Maury SK, Kamal A, Singh HK, Pandey S, Singh S. Visible-light-absorbing C-N cross-coupling for the synthesis of hydrazones involving C(sp 2)-H/C(sp 3)-H functionalization. Chem Commun (Camb) 2023; 59:4075-4078. [PMID: 36938640 DOI: 10.1039/d2cc07001d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
An efficient C-N cross-coupling approach for the synthesis of hydrazones was developed through C(sp2)-H and C(sp3)-H functionalization of indole and methylarene under visible light irradiation using photocatalyst eosin Y, ethanol:water as a green solvent and atmospheric air as an oxidant. With the aid of eosin Y, the C-H bonds of indole and methylarenes were activated followed by coupling with arylhydrazines. The procedure was applied to a wide variety of substrates with good functional group compatibility, offering a creative way to make hydrazones from inexpensive and easily accessible raw materials. The absence of metals, low cost, environmental friendliness, green solvent, non-toxicity, ease of handling, and utilization of renewable energy sources like visible light are some of this method's primary advantages.
Collapse
Affiliation(s)
- Ambuj Kumar Kushwaha
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi - 221 005, UP, India.
| | - Suresh Kumar Maury
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi - 221 005, UP, India.
| | - Arsala Kamal
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi - 221 005, UP, India.
| | - Himanshu Kumar Singh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi - 221 005, UP, India.
| | - Shikha Pandey
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi - 221 005, UP, India.
| | - Sundaram Singh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi - 221 005, UP, India.
| |
Collapse
|
4
|
Building 2D classification models and 3D CoMSIA models on small-molecule inhibitors of both wild-type and T790M/L858R double-mutant EGFR. Mol Divers 2021; 26:1715-1730. [PMID: 34636023 DOI: 10.1007/s11030-021-10300-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
Epidermal growth factor receptor (EGFR) has received widespread attention because it is an important target for anticancer drug design. Mutations in the EGFR, especially the T790M/L858R double mutation, have made cancer treatment more difficult. We herein built the structure-activity relationship models of small-molecule inhibitors on wild-type and T790M/L858R double-mutant EGFR with a whole dataset of 379 compounds. For 2D classification models, we used ECFP4 fingerprints to build support vector machine and random forest models and used SMILES to build self-attention recurrent neural network models. Each of all six models resulted in an accuracy of above 0.87 and the Matthews correlation coefficient value of above 0.76 on the test set, respectively. We concluded that inhibitors containing anilinoquinoline and methoxy or fluoro phenyl are highly active against wild EGFR. Substructures such as anilinopyrimidine, acrylamide, amino phenyl, methoxy phenyl, and thienopyrimidinyl amide appeared more in highly active inhibitors against double-mutant EGFR. We also used self-organizing map to cluster the inhibitors into six subsets based on ECFP4 fingerprints and analyzed the activity characteristics of different scaffolds in each subset. Among them, three datasets, which are based on pteridin, anilinopyrimidine, and anilinoquinoline scaffold, were selected to build 3D comparative molecular similarity analysis models individually. Models with the leave-one-out coefficient of determination (q2) above 0.65 were selected, and five descriptor types (steric, electrostatic, hydrophobic, donor, and acceptor) were used to study the effects of side chains of inhibitors on the activity against wild-type and mutant-type EGFR.
Collapse
|
5
|
Filho EV, Pinheiro EM, Pinheiro S, Greco SJ. Aminopyrimidines: Recent synthetic procedures and anticancer activities. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
6
|
Patel H, Ahmad I, Jadhav H, Pawara R, Lokwani D, Surana S. Investigating the Impact of Different Acrylamide (Electrophilic Warhead) on Osimertinib’s Pharmacological Spectrum by Molecular Mechanic and Quantum Mechanic Approach. Comb Chem High Throughput Screen 2020; 25:149-166. [DOI: 10.2174/1386207323666201204125524] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/14/2020] [Accepted: 10/24/2020] [Indexed: 11/22/2022]
Abstract
Background:
Lung cancer has become the prominent cause of the cancer-related deaths globally. More than 80
% of all lung cancers have been diagnosed with Non- Small Cell Lung Cancer (NSCLC). The USFDA approved osimertinib
to treat patients with metastatic T790M EGFR NSCLC on a regular basis in March 2017. Recently, C797S mutation to
osimertinib has been reported, which indicates the need for structural modification to overcome the problem of mutation.
Objective:
In this bioinformatics study, we have evaluated the impact of various acrylamide as an electrophilic warhead on
the activity and selectivity of osimertinib.
Result:
Osimertinib analouge 48, 50, 60, 61, 67, 75, 80, 86, 89, 92, 93, 116 and 124 were the most active and selective
compounds against T790M EGFR mutants compared to Osimertinib.
Conclusion:
These compounds also showed less inclination towards WT-EGFR.
Collapse
Affiliation(s)
- Harun Patel
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Harsha Jadhav
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Rahul Pawara
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Deepak Lokwani
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Sanjay Surana
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| |
Collapse
|
7
|
Patel HM, Shaikh M, Ahmad I, Lokwani D, Surana SJ. BREED based de novo hybridization approach: generating novel T790M/C797S-EGFR tyrosine kinase inhibitors to overcome the problem of mutation and resistance in non small cell lung cancer (NSCLC). J Biomol Struct Dyn 2020; 39:2838-2856. [PMID: 32276580 DOI: 10.1080/07391102.2020.1754918] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Third generation EGFR inhibitor osimertinib was approved as the first-line treatment for EGFR T790M mutation-positive Non-Small Cell Lung Cancer (NSCLC) patients in 2017. However, EGFR tertiary Cys797 to Ser797 (C797S) point mutation emanate rapidly after treatment of osimertinib, which is undruggable mutation to the all existing drugs. In this work, we have reported the novel T790M/C797S-EGFR Tyrosine Kinase inhibitors using BREED based de novo hybridization approach. BREED generates novel inhibitors from structures of known ligands bound to a common target. Among the generated hybridised breed compounds, the top best scorer breed molecules were breed 436, breed 530, breed 450, breed 562 and breed 313. Molecular Dynamics simulation of breed 436 for 10 ns further suggested that docked compound was stable into the pocket of the T790M/C797S-EGFR Tyrosine Kinase. In silico pharmacokinetic predictions of the breed hybridised compounds were within the defined range described for human use.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Harun M Patel
- Division of Bioinformatics, Department of Pharmaceutical Chemistry, R.C. Patel Institute of Pharmaceutical Education and Research, Maharashtra, India
| | - Matin Shaikh
- Division of Bioinformatics, Department of Pharmaceutical Chemistry, R.C. Patel Institute of Pharmaceutical Education and Research, Maharashtra, India
| | - Iqrar Ahmad
- Division of Bioinformatics, Department of Pharmaceutical Chemistry, R.C. Patel Institute of Pharmaceutical Education and Research, Maharashtra, India
| | - Deepak Lokwani
- Division of Bioinformatics, Department of Pharmaceutical Chemistry, R.C. Patel Institute of Pharmaceutical Education and Research, Maharashtra, India
| | - Sanjay J Surana
- Division of Bioinformatics, Department of Pharmaceutical Chemistry, R.C. Patel Institute of Pharmaceutical Education and Research, Maharashtra, India
| |
Collapse
|
8
|
Patel H, Ansari A, Pawara R, Ansari I, Jadhav H, Surana S. Design and synthesis of novel 2,4-disubstituted aminopyrimidines: reversible non-covalent T790M EGFR inhibitors. J Recept Signal Transduct Res 2019; 38:393-412. [DOI: 10.1080/10799893.2018.1557207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Harun Patel
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Azim Ansari
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Rahul Pawara
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Iqrar Ansari
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Harsha Jadhav
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Sanjay Surana
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| |
Collapse
|
9
|
Abstract
Abstract
C11H10N4O2, monoclinic P21/c (no. 14), a = 6.6161(7) Å, b = 24.064(2) Å, c = 7.1768(9) Å, β = 115.463(15)°, Z = 4, V = 1031.6(2) Å3, R
gt(F) = 0.0412, wR
ref(F
2) = 0.0953, T = 173(2) K.
Collapse
|
10
|
Li Y, Luo X, Guo Q, Nie Y, Wang T, Zhang C, Huang Z, Wang X, Liu Y, Chen Y, Zheng J, Yang S, Fan Y, Xiang R. Discovery of N1-(4-((7-Cyclopentyl-6-(dimethylcarbamoyl)-7H-pyrrolo[2,3-d]pyrimidin-2-yl)amino)phenyl)-N8-hydroxyoctanediamide as a Novel Inhibitor Targeting Cyclin-dependent Kinase 4/9 (CDK4/9) and Histone Deacetlyase1 (HDAC1) against Malignant Cancer. J Med Chem 2018. [PMID: 29518312 DOI: 10.1021/acs.jmedchem.8b00209] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yongtao Li
- Department of Medicinal Chemistry, School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xiaohe Luo
- Department of Medicinal Chemistry, School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Qingxiang Guo
- Department of Medicinal Chemistry, School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Yongwei Nie
- Department of Medicinal Chemistry, School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Tianqi Wang
- Department of Medicinal Chemistry, School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Chao Zhang
- Department of Medicinal Chemistry, School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Zhi Huang
- Department of Medicinal Chemistry, School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xin Wang
- Department of Medicinal Chemistry, School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Yanhua Liu
- Department of Medicinal Chemistry, School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Yanan Chen
- Department of Medicinal Chemistry, School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Jianyu Zheng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Shengyong Yang
- Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yan Fan
- Department of Medicinal Chemistry, School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, 94 Weijin Road, Tianjin 300071, China
- 2011 Project Collaborative Innovation Center for Biotherapy of Ministry of Education, 94 Weijin Road, Tianjin 300071, China
| | - Rong Xiang
- Department of Medicinal Chemistry, School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, 94 Weijin Road, Tianjin 300071, China
- 2011 Project Collaborative Innovation Center for Biotherapy of Ministry of Education, 94 Weijin Road, Tianjin 300071, China
| |
Collapse
|
11
|
Design, synthesis and cytotoxicity evaluation of pyrazolyl pyrazoline and pyrazolyl aminopyrimidine derivatives as potential anticancer agents. Med Chem Res 2017. [DOI: 10.1007/s00044-017-2082-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Qin MZ, Wang L, Yan S, Ma JJ, Tian Y, Zhao YF, Gong P. Identification of hydrazone moiety-bearing aminopyrimidines as potent antitumor agents with selective inhibition of gefitinib-resistant H1975 cancer cells. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2016.11.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Zhang M, Shang ZR, Li XT, Zhang JN, Wang Y, Li K, Li YY, Zhang ZH. Simple and efficient approach for synthesis of hydrazones from carbonyl compounds and hydrazides catalyzed by meglumine. SYNTHETIC COMMUN 2016. [DOI: 10.1080/00397911.2016.1258476] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Mo Zhang
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, China
| | - Ze-Ren Shang
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, China
| | - Xiao-Tang Li
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, China
| | - Jia-Nan Zhang
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, China
| | - Yong Wang
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, China
| | - Kang Li
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, China
| | - Yang-Yang Li
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, China
| | - Zhan-Hui Zhang
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
14
|
Strategies to overcome acquired resistances conferred by mutations in the kinase domain of EGFR. Future Med Chem 2016; 8:853-78. [DOI: 10.4155/fmc-2016-0019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Deregulation of EGFR is involved in the development of many cancers. The inhibition of EGFR kinase activity has been clinically validated as a promising approach for the treatment of non-small-cell lung cancer (NSCLC). However, all NSCLC patients who initially benefited from first-generation EGFR inhibitors eventually develop drug resistance. A point mutation at the gatekeeper position, T790M in EGFR kinase domain accounts for more than 50% of acquired resistance. Therefore, second- and third-generation EGFR inhibitors have been developed to overcome the resistance conferred by the gatekeeper mutation. This review has highlighted recent advances in overcoming acquired resistance for the development of each generation of EGFR inhibitors along with their potential issues, and urgent quest for the development of new generation of EGFR inhibitors.
Collapse
|
15
|
Elsayed NMY, Abou El Ella DA, Serya RAT, Tolba MF, Shalaby R, Abouzid KAM. Design, synthesis and biological evaluation of indazole–pyrimidine based derivatives as anticancer agents with anti-angiogenic and antiproliferative activities. MEDCHEMCOMM 2016. [DOI: 10.1039/c5md00602c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three series of novel indazole–pyrimidine based compounds were designed, synthesized and biologically evaluated as VEGFR-2 kinase inhibitors.
Collapse
Affiliation(s)
- Nevine M. Y. Elsayed
- Pharmaceutical Chemistry Department
- Faculty of Pharmacy
- Ain Shams University
- Abbassia
- Egypt
| | - Dalal A. Abou El Ella
- Pharmaceutical Chemistry Department
- Faculty of Pharmacy
- Ain Shams University
- Abbassia
- Egypt
| | - Rabah A. T. Serya
- Pharmaceutical Chemistry Department
- Faculty of Pharmacy
- Ain Shams University
- Abbassia
- Egypt
| | - Mai F. Tolba
- Pharmacology and Toxicology Department
- Faculty of Pharmacy
- Ain Shams University
- Abbassia
- Egypt
| | - Raed Shalaby
- Pharmaceutical Chemistry Department
- Faculty of Pharmacy
- Ain Shams University
- Abbassia
- Egypt
| | - Khaled A. M. Abouzid
- Pharmaceutical Chemistry Department
- Faculty of Pharmacy
- Ain Shams University
- Abbassia
- Egypt
| |
Collapse
|