1
|
Brahmachari G. Practice of green chemistry strategies in synthetic organic chemistry: a glimpse of our sincere efforts in green chemistry research. Chem Commun (Camb) 2024; 60:8153-8169. [PMID: 38978452 DOI: 10.1039/d4cc02249a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
This feature article summarises our recent contributions (2019-2023) in designing and developing a handful of promising organic transformations for accessing several diversely functionalised biologically relevant organic scaffolds, following the green chemistry principles, particularly focusing on the application of low-energy visible light, electrochemistry, ball-milling, ultrasound, and catalyst- and additive-free synthetic strategies.
Collapse
Affiliation(s)
- Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan-731 235, West Bengal, India.
| |
Collapse
|
2
|
Kesharwani S, Raj P, Paul A, Roy K, Bhanot A, Mehta A, Gopal A, Varshney U, Gopal B, Sundriyal S. Crystal structures of non-uracil ring fragments in complex with Mycobacterium tuberculosis uracil DNA glycosylase (MtUng) as a starting point for novel inhibitor design: A case study with the barbituric acid fragment. Eur J Med Chem 2023; 258:115604. [PMID: 37399710 DOI: 10.1016/j.ejmech.2023.115604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/25/2023] [Accepted: 06/25/2023] [Indexed: 07/05/2023]
Abstract
Uracil DNA glycosylase (UDG or Ung) is a key enzyme involved in uracil excision from the DNA as a repair mechanism. Designing Ung inhibitors is thus a promising strategy to treat different cancers and infectious diseases. The uracil ring and its derivatives have been shown to inhibit Mycobacterium tuberculosis Ung (MtUng), resulting from specific and strong binding with the uracil-binding pocket (UBP). To design novel MtUng inhibitors, we screened several non-uracil ring fragments hypothesised to occupy MtUng UBP due to their high similarity to the uracil structural motif. These efforts have resulted in the discovery of novel MtUng ring inhibitors. Here we report the co-crystallised poses of these fragments, confirming their binding within the UBP, thus providing a robust structural framework for the design of novel lead compounds. We selected the barbituric acid (BA) ring as a case study for further derivatisation and SAR analysis. The modelling studies predicted the BA ring of the designed analogues to interact with the MtUng UBP much like the uracil ring. The synthesised compounds were screened in vitro using radioactivity and a fluorescence-based assay. These studies led to a novel BA-based MtUng inhibitor 18a (IC50 = 300 μM) displaying ∼24-fold potency over the uracil ring.
Collapse
Affiliation(s)
- Sharyu Kesharwani
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Prateek Raj
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Anju Paul
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Koyel Roy
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Amritansh Bhanot
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Avani Mehta
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Aiswarya Gopal
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India; Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | | | - Sandeep Sundriyal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India.
| |
Collapse
|
3
|
Shi YY, Wei B, Zhou J, Yin ZL, Zhao F, Peng YJ, Yu QW, Wang XL, Chen YJ. Discovery of 5-(3,4-dihydroxybenzylidene)-1,3-dimethylpyrimidine- 2,4,6(1H,3H,5H)-trione as a novel and effective cardioprotective agent via dual anti-inflammatory and anti-oxidative activities. Eur J Med Chem 2022; 244:114848. [DOI: 10.1016/j.ejmech.2022.114848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 11/04/2022]
|
4
|
Virendra SA, Kumar A, Chawla PA, Mamidi N. Development of Heterocyclic PPAR Ligands for Potential Therapeutic Applications. Pharmaceutics 2022; 14:2139. [PMID: 36297575 PMCID: PMC9611956 DOI: 10.3390/pharmaceutics14102139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
The family of nuclear peroxisome proliferator-activated receptors (PPARα, PPARβ/δ, and PPARγ) is a set of ligand-activated transcription factors that regulate different functions in the body. Whereas activation of PPARα is known to reduce the levels of circulating triglycerides and regulate energy homeostasis, the activation of PPARγ brings about insulin sensitization and increases the metabolism of glucose. On the other hand, PPARβ when activated increases the metabolism of fatty acids. Further, these PPARs have been claimed to be utilized in various metabolic, neurological, and inflammatory diseases, neurodegenerative disorders, fertility or reproduction, pain, and obesity. A series of different heterocyclic scaffolds have been synthesized and evaluated for their ability to act as PPAR agonists. This review is a compilation of efforts on the part of medicinal chemists around the world to find novel compounds that may act as PPAR ligands along with patents in regards to PPAR ligands. The structure-activity relationship, as well as docking studies, have been documented to better understand the mechanistic investigations of various compounds, which will eventually aid in the design and development of new PPAR ligands. From the results of the structural activity relationship through the pharmacological and in silico evaluation the potency of heterocycles as PPAR ligands can be described in terms of their hydrogen bonding, hydrophobic interactions, and other interactions with PPAR.
Collapse
Affiliation(s)
- Sharma Arvind Virendra
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Ankur Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Pooja A. Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Narsimha Mamidi
- Department of Chemistry and Nanotechnology, School of Engineering and Sciences, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Nuevo Leon, Mexico
| |
Collapse
|
5
|
Kumar A, Wahan SK, Virendra SA, Chawla PA. Recent Advances on the Role of Nitrogen‐Based Heterocyclic Scaffolds in Targeting HIV through Reverse Transcriptase Inhibition. ChemistrySelect 2022. [DOI: 10.1002/slct.202202637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ankur Kumar
- Department of Pharmaceutical Chemistry ISF College of Pharmacy GT Road Ghal Kalan Moga 142001 India
| | - Simranpreet K. Wahan
- Department of Pharmaceutical Chemistry ISF College of Pharmacy GT Road Ghal Kalan Moga 142001 India
| | - Sharma Arvind Virendra
- Department of Pharmaceutical Chemistry ISF College of Pharmacy GT Road Ghal Kalan Moga 142001 India
| | - Pooja A. Chawla
- Department of Pharmaceutical Chemistry ISF College of Pharmacy GT Road Ghal Kalan Moga 142001 India
| |
Collapse
|
6
|
Mal S, Dwivedi AR, Kumar V, Kumar N, Kumar B, Kumar V. Role of Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) in Different Disease States: Recent Updates. Curr Med Chem 2021; 28:3193-3215. [PMID: 32674727 DOI: 10.2174/0929867327666200716113136] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/12/2020] [Accepted: 06/21/2020] [Indexed: 11/22/2022]
Abstract
Peroxisome proliferator-activated receptor (PPAR), a ligand dependant transcription factor, is a member of the nuclear receptor superfamily. PPAR exists in three isoforms i.e. PPAR alpha (PPARα), PPAR beta (PPARβ), and PPAR gamma (PPARγ). These are multi-functional transcription factors and help in regulating inflammation, type 2 diabetes, lipid concentration in the body, metastasis, and tumor growth or angiogenesis. Activation of PPARγ causes inhibition of growth of cultured human breast, gastric, lung, prostate, and other cancer cells. PPARγ is mainly involved in fatty acid storage, glucose metabolism, and homeostasis and adipogenesis regulation. A large number of natural and synthetic ligands bind to PPARγ and modulate its activity. Ligands such as thiazolidinedione, troglitazone, rosiglitazone, pioglitazone effectively bind to PPARγ; however, most of these were found to display severe side effects such as hepatotoxicity, weight gain, cardiovascular complications and bladder tumor. Now the focus is shifted towards the development of dual-acting or pan PPAR ligands. The current review article describes the functions and role of PPARγ in various disease states. In addition, recently reported PPARγ ligands and pan PPAR ligands were discussed in detail. It is envisaged that the present review article may help in the development of potent PPAR ligands with no or minimal side effects.
Collapse
Affiliation(s)
- Suvadeep Mal
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Ashish Ranjan Dwivedi
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Vijay Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Naveen Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Vinod Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151001, Punjab, India
| |
Collapse
|
7
|
Angajala G, Aruna V, Subashini R. Visible light induced nano copper catalyzed one pot synthesis of novel quinoline bejeweled thiobarbiturates as potential hypoglycemic agents. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Gangadhara Angajala
- Department of Chemistry Kalasalingam Academy of Research and Education Krishnankoil Tamilnadu India
| | - Valmiki Aruna
- Department of Chemistry Kalasalingam Academy of Research and Education Krishnankoil Tamilnadu India
| | - Radhakrishnan Subashini
- Department of Chemistry Arignar Anna Government Arts College for women Walajapet, Vellore Tamilnadu India
| |
Collapse
|
8
|
Ramle AQ, Tiekink ERT, Fei CC, Julkapli NM, Basirun WJ. Supramolecular assembly and spectroscopic characterization of indolenine–barbituric acid zwitterions. NEW J CHEM 2021. [DOI: 10.1039/d0nj04357e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The intermolecular hydrogen bonding of barbiturates assists in the supramolecular aggregation and a hypsochromic shift is shown in protic solvents.
Collapse
Affiliation(s)
| | - Edward R. T. Tiekink
- Research Centre for Crystalline Materials
- School of Science and Technology
- Sunway University
- Selangor Darul Ehsan
- Malaysia
| | - Chee Chin Fei
- Nanotechnology and Catalysis Research Centre
- University of Malaya
- Malaysia
| | | | | |
Collapse
|
9
|
Shafiq N, Arshad U, Zarren G, Parveen S, Javed I, Ashraf A. A Comprehensive Review: Bio-Potential of Barbituric Acid and its Analogues. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824666200110094457] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In our present work, we emphasized on the potential of barbituric acid (1) derivatives
as drugs like anti-bacterial, hypnotic, sedative, anti-microbial and antifungal
agents. As naturally occurring, barbituric acid (1) is inactive but in the derivative form, it
has a large number of medicinal uses and nowadays, it has a great demand in the pharmaceutical
industry. Barbituric acid has a wide range of applications in the synthesis of a diverse
class of compounds like heterocyclic, carbocyclic, synthetic alkaloids, and due to its
broad-spectrum applications, barbituric acid acquired the position of building blocks in
synthetic chemistry. Through the history of humanity, a number of bioactive agents have
been applied to cure the disease related to hypnotics and sedatives, while the exact efficacy
of these agents was found to be limited. Till now, review articles on barbituric acid
only express their specific aspect but in present review article, all aspects are discussed in detail to provide a
platform to readers and researchers so that they could obtain all information and background knowledge from a
single point.
Collapse
Affiliation(s)
- Nusrat Shafiq
- Department of Chemistry, Government College Women University, Faisalabad-38000, Pakistan
| | - Uzma Arshad
- Department of Chemistry, Government College Women University, Faisalabad-38000, Pakistan
| | - Gul Zarren
- Department of Chemistry, Government College Women University, Faisalabad-38000, Pakistan
| | - Shagufta Parveen
- Department of Chemistry, Government College Women University, Faisalabad-38000, Pakistan
| | - Irum Javed
- Department of Biochemistry, Sardar Bahadur Khan Women’s University, Quetta, Pakistan
| | - Aisha Ashraf
- Department of Chemistry, Government College Women University, Faisalabad-38000, Pakistan
| |
Collapse
|
10
|
Haggam RA, Assy MG, Mohamed EK, Mohamed AS. Synthesis of Pyrano[2,3‐
d
]pyrimidine‐2,4‐diones and Pyridino[2,3‐
d
]pyrimidine‐2,4,6,8‐tetraones: Evaluation Antitumor Activity. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3830] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Reda A. Haggam
- Department of Chemistry, Faculty of ScienceIslamic University in Almadinah Almonawara Almadinah Almonawara Saudi Arabia
- Department of Chemistry, Faculty of ScienceZagazig University Zagazig 44511 Egypt
| | - Mohamed G. Assy
- Department of Chemistry, Faculty of ScienceZagazig University Zagazig 44511 Egypt
| | - Enaiat K. Mohamed
- Department of Chemistry, Faculty of ScienceZagazig University Zagazig 44511 Egypt
| | | |
Collapse
|
11
|
Type II diabetes mellitus and obesity: Common links, existing therapeutics and future developments. J Biosci 2019. [DOI: 10.1007/s12038-019-9962-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
12
|
Brahmachari G, Nurjamal K. Ultrasound-assisted and trisodium citrate dihydrate-catalyzed green protocol for efficient and one-pot synthesis of substituted chromeno[3′,4′:5,6]pyrano[2,3-d]pyrimidines at ambient conditions. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.06.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
M. Elsharif A. Synthesis of New Pyrimidinone Derivatives and Their Respective Biological Activity Assessment. ACTA ACUST UNITED AC 2019. [DOI: 10.13005/ojc/350221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Barbituric acid is converted into a pyrimidinone-incorporated pyrazolyl moiety (1), which is a key starting material. 1 can be converted into pyrimidine dione, isoxazole, pyrimidopyrimidine, and pyranopyrimidine by reacting with hydrazine hydrate and/or phenyl hydrazine, hydroxyl amine, urea, thiourea, guanidine, ethyl acetoacetate and ethyl cyanoacetate. Acylation of 1 gave an important key intermediate (7), which was condensed to form chalcone, which then underwent cycloaddition into cyclohexenes (8-13). Some newly synthesized compounds were screened as anti-diabetic agents and exhibited significant activity. These freshly manufactured compounds were characterized using different methods. These compounds showed significant activity as anti-diabetic agents, especially compound 4b, with IC50= 13.54 μg/ml, which is very close to that of the standard acarbose (IC50= 12.87 µg/ml). Additionally, these compounds showed cytotoxic inhibition activity against the colon carcinoma (HCT116), hepatocellular carcinoma (HEPG2), and breast carcinoma (MCF7) cells; compounds 11, 4b, and 10 showed the best activity, with IC50 = 19.3, 2.6, and 5 μg/ml, respectively.
Collapse
Affiliation(s)
- Asma M. Elsharif
- College of Science, Department of Chemistry, Imam Abdulrahman Bin Faisal University, Dammam 31113, Saudi Arabia
| |
Collapse
|
14
|
Rahmatabadi SS, Sadeghian I, Ghasemi Y, Sakhteman A, Hemmati S. Identification and characterization of a sterically robust phenylalanine ammonia-lyase among 481 natural isoforms through association of in silico and in vitro studies. Enzyme Microb Technol 2018; 122:36-54. [PMID: 30638507 DOI: 10.1016/j.enzmictec.2018.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 11/14/2018] [Accepted: 12/09/2018] [Indexed: 10/27/2022]
Abstract
The enzyme phenylalanine ammonia lyase (PAL) is of special importance for the treatment of phenylketonuria patients. The aim of this study was to find a stable recombinant PAL with suitable kinetic properties among all natural PAL producing species using in silico and experimental approaches. To find such a stable PAL among 481 natural isoforms, 48,000 of 3-D models were predicted using the Modeller 9.10 program and evaluated by Ramachandran plot. Correlation analysis between Ramachandran plot and the energy of different thermodynamic components indicated that this plot could be an appropriate tool to predict protein stability. Hence, PAL6 from Lotus japonicus (LjPAL6) was selected as a stable isoform. Molecular dynamic (MD) simulation for 50 ns and docking has been conducted for LjPAL6-phenylalanine complex. The best PAL-phenylalanine frame was selected by re-docking with l-phenylalanine (L-Phe) and root-mean-square deviation (RMSD) value. MD simulation showed that the complex has a good stability, depicted by the low RMSD value, binding free energy and hydrogen bindings. Docking results showed that LjPAL6 has a high affinity toward l-Phe according to the low level of binding free energy. By overexpressing Ljpal6 in E. coli BL21, a total of 33.5 mg/l of protein was obtained, which has been increased to 83.7 mg/l via the optimization of LjPAL6 production using response surface methodology. The optimal pH and temperature were 8.5 and 50 °C, respectively. LjPAL6 showed a specific activity of 42 nkat/mg protein, with Km, Kcat and Kcat/Km values of 0.483 mM, 7 S-1 and 14.5 S-1 mM-1 for l-phe, respectively. In conclusion, finding models with the most reasonable stereo-chemical quality and lowest numbers of steric clashes would result in easier folding. Hence, in silico analyses of bulk data from natural origin will lead one to find an optimal model for in vitro studies and drug design.
Collapse
Affiliation(s)
- Seyyed Soheil Rahmatabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Issa Sadeghian
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirhossein Sakhteman
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
15
|
Riyaphan J, Jhong CH, Lin SR, Chang CH, Tsai MJ, Lee DN, Sung PJ, Leong MK, Weng CF. Hypoglycemic Efficacy of Docking Selected Natural Compounds against α-Glucosidase and α-Amylase. Molecules 2018; 23:E2260. [PMID: 30189596 PMCID: PMC6225388 DOI: 10.3390/molecules23092260] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 11/16/2022] Open
Abstract
The inhibition of α-glucosidase and α-amylase is a clinical strategy for the treatment of type II diabetes, and herbal medicines have been reported to credibly alleviate hyperglycemia. Our previous study has reported some constituents from plant or herbal sources targeted to α-glucosidase and α-amylase via molecular docking and enzymatic measurement, but the hypoglycemic potencies in cell system and mice have not been validated yet. This study was aimed to elucidate the hypoglycemic efficacy of docking selected compounds in cell assay and oral glucose and starch tolerance tests of mice. All test compounds showed the inhibition of α-glucosidase activity in Caco-2 cells. The decrease of blood sugar levels of test compounds in 30 min and 60 min of mice after OGTT and OSTT, respectively and the decreased glucose levels of test compounds were significantly varied in acarbose. Taken altogether, in vitro and in vivo experiments suggest that selected natural compounds (curcumin, antroquinonol, HCD, docosanol, tetracosanol, rutin, and actinodaphnine) via molecular docking were confirmed as potential candidates of α-glucosidase and α-amylase inhibitors for treating diabetes.
Collapse
Affiliation(s)
- Jirawat Riyaphan
- Department of Life Science and Institute of Biotechnology, National Dong-Hwa University, Hualien 97401, Taiwan.
| | - Chien-Hung Jhong
- Department of Life Science and Institute of Biotechnology, National Dong-Hwa University, Hualien 97401, Taiwan.
| | - Shian-Ren Lin
- Department of Life Science and Institute of Biotechnology, National Dong-Hwa University, Hualien 97401, Taiwan.
| | - Chia-Hsiang Chang
- Department of Life Science and Institute of Biotechnology, National Dong-Hwa University, Hualien 97401, Taiwan.
| | - May-Jwan Tsai
- Neural Regeneration Laboratory, Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
| | - Der-Nan Lee
- Department of Biotechnology and Animal Science, National Ilan University, Ilan 26047, Taiwan.
| | - Ping-Jyun Sung
- National Museum of Marine Biology and Aquarium, Pingtung 94450, Taiwan.
- Graduate Institute of Marine Biotechnology, National Dong Hwa University, Pingtung 94450, Taiwan.
| | - Max K Leong
- Department of Life Science and Institute of Biotechnology, National Dong-Hwa University, Hualien 97401, Taiwan.
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan.
| | - Ching-Feng Weng
- Department of Life Science and Institute of Biotechnology, National Dong-Hwa University, Hualien 97401, Taiwan.
| |
Collapse
|
16
|
Synthesis, docking, in vitro
and in vivo
antidiabetic activity of pyrazole-based 2,4-thiazolidinedione derivatives as PPAR-γ modulators. Arch Pharm (Weinheim) 2018; 351:e1700223. [DOI: 10.1002/ardp.201700223] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 11/07/2022]
|
17
|
Structural Basis for the Enhanced Anti-Diabetic Efficacy of Lobeglitazone on PPARγ. Sci Rep 2018; 8:31. [PMID: 29311579 PMCID: PMC5758645 DOI: 10.1038/s41598-017-18274-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/04/2017] [Indexed: 01/11/2023] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a member of the nuclear receptor superfamily. It functions as a ligand-activated transcription factor and plays important roles in the regulation of adipocyte differentiation, insulin resistance, and inflammation. Here, we report the crystal structures of PPARγ in complex with lobeglitazone, a novel PPARγ agonist, and with rosiglitazone for comparison. The thiazolidinedione (TZD) moiety of lobeglitazone occupies the canonical ligand-binding pocket near the activation function-2 (AF-2) helix (i.e., helix H12) in ligand-binding domain as the TZD moiety of rosiglitazone does. However, the elongated p-methoxyphenol moiety of lobeglitazone interacts with the hydrophobic pocket near the alternate binding site of PPARγ. The extended interaction of lobeglitazone with the hydrophobic pocket enhances its binding affinity and could affect the cyclin-dependent kinase 5 (Cdk5)-mediated phosphorylation of PPARγ at Ser245 (in PPARγ1 numbering; Ser273 in PPARγ2 numbering). Lobeglitazone inhibited the phosphorylation of PPARγ at Ser245 in a dose-dependent manner and exhibited a better inhibitory effect on Ser245 phosphorylation than rosiglitazone did. Our study provides new structural insights into the PPARγ regulation by TZD drugs and could be useful for the discovery of new PPARγ ligands as an anti-diabetic drug, minimizing known side effects.
Collapse
|
18
|
Study of new interactions of glitazone’s stereoisomers and the endogenous ligand 15d-PGJ2 on six different PPAR gamma proteins. Biochem Pharmacol 2017; 142:168-193. [DOI: 10.1016/j.bcp.2017.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/12/2017] [Indexed: 12/30/2022]
|
19
|
Zhou H, Wang C, Ye J, Chen H, Tao R. Design, virtual screening, molecular docking and molecular dynamics studies of novel urushiol derivatives as potential HDAC2 selective inhibitors. Gene 2017; 637:63-71. [PMID: 28939339 DOI: 10.1016/j.gene.2017.09.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/18/2017] [Accepted: 09/19/2017] [Indexed: 12/26/2022]
Abstract
Three series of novel urushiol derivatives were designed by introducing a hydroxamic acid moiety into the tail of an alkyl side chain and substituents with differing electronic properties or steric bulk onto the benzene ring and alkyl side chain. The binding affinity toward HDAC2 of the compounds was screened by Glide docking. The best scoring compounds were processed further with molecular docking, MD simulations and binding free energy studies to analyze the binding modes and mechanisms. Six compounds, 21, 23, 10, 19, 9 and 30, gave Glide scores of -7.9 to -8.5, which revealed that introducing F, Cl, triazole, benzamido, formamido, hydroxyl or nitro substituents onto the benzene ring could increase binding affinity significantly. Molecular docking studies revealed that zinc ion coordination, hydrogen bonding and hydrophobic interactions contributed to the high calculated binding affinities of these compounds toward HDAC2 and that His145, His146, Gly154, Glu103, His183, Asp104, Tyr308 and Phe155 contributed favorably to the binding. MD simulations and binding free energy studies showed that all complexes possessed good stability as characterized by low RMSDs; low RMSFs of residues, moderate hydrogen bonding and zinc ion coordination; and low values of binding free energies. van der Waals and electrostatic interactions provided major contributions to the stability of these complexes. These results show the promising potential of urushiol derivatives as potent HDAC2 binding lead compounds.
Collapse
Affiliation(s)
- Hao Zhou
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu 210042, China; Key Lab of Biomass Energy and Material, Nanjing 210042, Jiangsu, China.
| | - Chengzhang Wang
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu 210042, China; Key Lab of Biomass Energy and Material, Nanjing 210042, Jiangsu, China.
| | - Jianzhong Ye
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu 210042, China
| | - Hongxia Chen
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu 210042, China
| | - Ran Tao
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu 210042, China
| |
Collapse
|
20
|
Zhang J, Liu X, Xie XB, Cheng XC, Wang RL. Multitargeted bioactive ligands for PPARs discovered in the last decade. Chem Biol Drug Des 2016; 88:635-663. [PMID: 27317624 DOI: 10.1111/cbdd.12806] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/20/2016] [Indexed: 12/13/2022]
Abstract
Type 2 diabetes took insulin resistance as the main clinical manifestation. PPARs have been reported to be the therapeutic targets of metabolic disorders, such as obesity, hypertension, diabetes, and cardiovascular disease. Previously, PPARγ agonist rosiglitazone was restricted in clinic due to cardiomyocytes infarction, weight gain, and other serious side-effects, which were mainly due to the single and selective PPARγ agonism. In recent years, multitarget-directed PPAR agonists with synergistic reaction as well as fewer side-effect have been the hot topic in designing promising agents. In this review, we updated and generalized the development of PPARγ partial agonists, PPARγ antagonists, PPARα/γ dual agonists, PPARδ partial agonists, PPARδ antagonists, PPARα/δ dual agonists, PPARγ/δ dual agonists, and PPARα/γ/δ pan-agonists published in recent decade. Most of these molecules were modified from known structures or came from high-throughput screening. Among these molecules, some were expected to be promising drugs against metabolic disorders, while others seemed to provide new insight for designing novel PPAR agents.
Collapse
Affiliation(s)
- Jun Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Xin Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Xian-Bin Xie
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Xian-Chao Cheng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China.
| | - Run-Ling Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| |
Collapse
|