1
|
Riazimontazer E, Heiran R, Jarrahpour A, Gholami A, Hashemi Z, Kazemi A. Molecular Docking and Antibacterial Assessment of Monocyclic
β
‐Lactams against Broad‐Spectrum and Nosocomial Multidrug‐Resistant Pathogens. ChemistrySelect 2022. [DOI: 10.1002/slct.202203373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Elham Riazimontazer
- Biotechnology Research Center Shiraz University of Medical Sciences Shiraz Iran
- Department of Medicinal Chemistry School of Pharmacy Shiraz University of Medical Sciences Shiraz Iran
- Pharmaceutical Sciences Research Center Shiraz University of Medical Science Shiraz Iran
| | - Roghayeh Heiran
- Department of Chemistry Estahban Higher Education Center Estahban 74519 44655
| | - Aliasghar Jarrahpour
- Department of Chemistry College of Sciences Shiraz University Shiraz 71946-84795 Iran
| | - Ahmad Gholami
- Biotechnology Research Center Shiraz University of Medical Sciences Shiraz Iran
- Pharmaceutical Sciences Research Center Shiraz University of Medical Science Shiraz Iran
| | - Zahra Hashemi
- Pharmaceutical Sciences Research Center Shiraz University of Medical Science Shiraz Iran
| | - Aboozar Kazemi
- Pharmaceutical Sciences Research Center Shiraz University of Medical Science Shiraz Iran
| |
Collapse
|
2
|
Sgroi S, Romeo E, Fruscia PD, Porceddu PF, Russo D, Realini N, Albanesi E, Bandiera T, Bertozzi F, Reggiani A. Inhibition of N-acylethanolamine-hydrolyzing acid amidase reduces T cell infiltration in a mouse model of multiple sclerosis. Pharmacol Res 2021; 172:105816. [PMID: 34391933 DOI: 10.1016/j.phrs.2021.105816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 11/27/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is an animal model of multiple sclerosis (MS), in which myeloid cells sustain inflammation, take part in priming, differentiation, and reactivation of myelin-specific T cells, and cause direct myelin damage. N-Acylethanolamine-hydrolyzing acid amidase (NAAA) is a proinflammatory enzyme induced by phlogosis and overexpressed in macrophages and microglia of EAE mice. Targeting these cell populations by inhibiting NAAA may be a promising pharmacological strategy to modulate the inflammatory aspect of MS and manage disease progression. To address this goal, we used ARN16186, a small molecule specifically designed and synthesized as a pharmacological tool to inhibit NAAA. We assessed whether enzyme inhibition affected the severity of neurological symptoms and modulated immune cell infiltration into the central nervous system of EAE mice. We found that preventive chronic treatment with ARN16186 was efficacious in slowing disease progression and preserving locomotor activity in EAE mice. Furthermore, NAAA inhibition reduced the number of immune cells infiltrating the spinal cord and modulated the overactivation of NF-kB and STAT3 transcription factors, leading to less expansion of Th17 cells over the course of the disease.
Collapse
Affiliation(s)
- Stefania Sgroi
- D3-Validation, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Elisa Romeo
- D3-Validation, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Paolo Di Fruscia
- D3-PharmaChemistry, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | | | - Debora Russo
- D3-PharmaChemistry, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Natalia Realini
- D3-Validation, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Ennio Albanesi
- Department of Neuroscience and Brain Technologies, Neurofacility, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Tiziano Bandiera
- D3-PharmaChemistry, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Fabio Bertozzi
- D3-PharmaChemistry, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Angelo Reggiani
- D3-Validation, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy.
| |
Collapse
|
3
|
Di Fruscia P, Carbone A, Bottegoni G, Berti F, Giacomina F, Ponzano S, Pagliuca C, Fiasella A, Pizzirani D, Ortega JA, Nuzzi A, Tarozzo G, Mengatto L, Giampà R, Penna I, Russo D, Romeo E, Summa M, Bertorelli R, Armirotti A, Bertozzi SM, Reggiani A, Bandiera T, Bertozzi F. Discovery and SAR Evolution of Pyrazole Azabicyclo[3.2.1]octane Sulfonamides as a Novel Class of Non-Covalent N-Acylethanolamine-Hydrolyzing Acid Amidase (NAAA) Inhibitors for Oral Administration. J Med Chem 2021; 64:13327-13355. [PMID: 34469137 PMCID: PMC8474119 DOI: 10.1021/acs.jmedchem.1c00575] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Indexed: 12/30/2022]
Abstract
Inhibition of intracellular N-acylethanolamine-hydrolyzing acid amidase (NAAA) activity is a promising approach to manage the inflammatory response under disabling conditions. In fact, NAAA inhibition preserves endogenous palmitoylethanolamide (PEA) from degradation, thus increasing and prolonging its anti-inflammatory and analgesic efficacy at the inflamed site. In the present work, we report the identification of a potent, systemically available, novel class of NAAA inhibitors, featuring a pyrazole azabicyclo[3.2.1]octane structural core. After an initial screening campaign, a careful structure-activity relationship study led to the discovery of endo-ethoxymethyl-pyrazinyloxy-8-azabicyclo[3.2.1]octane-pyrazole sulfonamide 50 (ARN19689), which was found to inhibit human NAAA in the low nanomolar range (IC50 = 0.042 μM) with a non-covalent mechanism of action. In light of its favorable biochemical, in vitro and in vivo drug-like profile, sulfonamide 50 could be regarded as a promising pharmacological tool to be further investigated in the field of inflammatory conditions.
Collapse
Affiliation(s)
- Paolo Di Fruscia
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Anna Carbone
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
- Department
of Biological, Chemical and Pharmaceutical Sciences and Technologies
(STEBICEF), University of Palermo, 90123Palermo, Italy
| | - Giovanni Bottegoni
- Computational
and Chemical Biology, Istituto Italiano
di Tecnologia (IIT), 16163Genova, Italy
| | - Francesco Berti
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Francesca Giacomina
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Stefano Ponzano
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Chiara Pagliuca
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Annalisa Fiasella
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Daniela Pizzirani
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Jose Antonio Ortega
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Andrea Nuzzi
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Glauco Tarozzo
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Luisa Mengatto
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Roberta Giampà
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Ilaria Penna
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Debora Russo
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Elisa Romeo
- D3-Validation, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Maria Summa
- Analytical
Chemistry and Translational Pharmacology, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Rosalia Bertorelli
- Analytical
Chemistry and Translational Pharmacology, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Andrea Armirotti
- Analytical
Chemistry and Translational Pharmacology, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Sine Mandrup Bertozzi
- Analytical
Chemistry and Translational Pharmacology, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Angelo Reggiani
- D3-Validation, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Tiziano Bandiera
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Fabio Bertozzi
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| |
Collapse
|
4
|
Malamas MS, Pavlopoulos S, Alapafuja SO, Farah SI, Zvonok A, Mohammad KA, West J, Perry NT, Pelekoudas DN, Rajarshi G, Shields C, Chandrashekhar H, Wood J, Makriyannis A. Design and Structure-Activity Relationships of Isothiocyanates as Potent and Selective N-Acylethanolamine-Hydrolyzing Acid Amidase Inhibitors. J Med Chem 2021; 64:5956-5972. [PMID: 33900772 DOI: 10.1021/acs.jmedchem.1c00076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
N-Acylethanolamines are signaling lipid molecules implicated in pathophysiological conditions associated with inflammation and pain. N-Acylethanolamine acid amidase (NAAA) favorably hydrolyzes lipid palmitoylethanolamide, which plays a key role in the regulation of inflammatory and pain processes. The synthesis and structure-activity relationship studies encompassing the isothiocyanate pharmacophore have produced potent low nanomolar inhibitors for hNAAA, while exhibiting high selectivity (>100-fold) against other serine hydrolases and cysteine peptidases. We have followed a target-based structure-activity relationship approach, supported by computational methods and known cocrystals of hNAAA. We have identified systemically active inhibitors with good plasma stability (t1/2 > 2 h) and microsomal stability (t1/2 ∼ 15-30 min) as pharmacological tools to investigate the role of NAAA in inflammation, pain, and drug addiction.
Collapse
Affiliation(s)
| | - Spiro Pavlopoulos
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Shakiru O Alapafuja
- MAK Scientific LLC, 151 South Bedford Street, Burlington, Massachusetts 01803, United States
| | - Shrouq I Farah
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Alexander Zvonok
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Khadijah A Mohammad
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Jay West
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Nicholas Thomas Perry
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Dimitrios N Pelekoudas
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Girija Rajarshi
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Christina Shields
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Honrao Chandrashekhar
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Jodi Wood
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
5
|
Grabrijan K, Strašek N, Gobec S. Monocyclic beta-lactams for therapeutic uses: a patent overview (2010-2020). Expert Opin Ther Pat 2021; 31:247-266. [PMID: 33327805 DOI: 10.1080/13543776.2021.1865919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Monocyclic beta-lactams are four-membered cyclic amides with various structural modifications of the nucleus that determine their chemical reactivity and target specificity. Their historical use is based on their antibacterial activity, but they have recently appeared in other areas as well. AREAS COVERED This review summarizes the relevant patent development on monocyclic beta-lactams in various therapeutic areas over the last 10 years. The majority of patents describe compounds with antibacterial activity, while there are some recent patents describing the neuroprotective, anti-inflammatory, anti-cancer, anticoagulant and antihyperlipidemic effects of 2-azetidinones. EXPERT OPINION Monocyclic beta-lactams can be considered safe and nontoxic drugs, as they have been used in the clinic for almost half of the century. Recently, monocyclic beta-lactams have been increasingly recognized for their non-antibiotic activity, which has led to some promising new clinical candidates in the field of neurodegenerative diseases and coagulation therapy. With regard to their antibacterial activity, there is still room for improvement of their activity and broadening of their spectrum of action, especially in Gram-positive bacteria and on drug-insensitive penicillin-binding proteins, and in increasing their beta-lactamase stability.
Collapse
Affiliation(s)
| | - Nika Strašek
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
6
|
Scalvini L, Ghidini A, Lodola A, Callegari D, Rivara S, Piomelli D, Mor M. N-Acylethanolamine Acid Amidase (NAAA): Mechanism of Palmitoylethanolamide Hydrolysis Revealed by Mechanistic Simulations. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Laura Scalvini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle scienze 27/A, I-43124 Parma, Italy
| | - Andrea Ghidini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle scienze 27/A, I-43124 Parma, Italy
| | - Alessio Lodola
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle scienze 27/A, I-43124 Parma, Italy
| | - Donatella Callegari
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle scienze 27/A, I-43124 Parma, Italy
| | - Silvia Rivara
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle scienze 27/A, I-43124 Parma, Italy
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697-4625, United States
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-4625, United States
- Department of Biological Chemistry and Molecular Biology, University of California, Irvine, California 92697-4625, United States
| | - Marco Mor
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle scienze 27/A, I-43124 Parma, Italy
| |
Collapse
|
7
|
Fu DJ, Zhang YF, Chang AQ, Li J. β-Lactams as promising anticancer agents: Molecular hybrids, structure activity relationships and potential targets. Eur J Med Chem 2020; 201:112510. [PMID: 32592915 DOI: 10.1016/j.ejmech.2020.112510] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 01/17/2023]
Abstract
β-Lactam, commonly referred as azetidin-2-one, is a multifunctional building block for synthesizing β-amino ketones, γ-amino alcohols, and other compounds. Besides its well known antibiotic activity, this ring system exhibits a wide range of activities, attracting the attention of researchers. However, the structurally diverse β-lactam analogues as anticancer agents and their different molecular targets are poorly discussed. The purpose of this review is 3-fold: (1) to explore the molecular hybridization approach to design β-lactams hybrids as anticancer agents; (2) the structure activity relationship of the most active anticancer β-lactams and (3) to summarize their antitumor mechanisms.
Collapse
Affiliation(s)
- Dong-Jun Fu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Yun-Feng Zhang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - An-Qi Chang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.
| |
Collapse
|
8
|
Oeschger R, Su B, Yu I, Ehinger C, Romero E, He S, Hartwig J. Diverse functionalization of strong alkyl C-H bonds by undirected borylation. Science 2020; 368:736-741. [PMID: 32409470 DOI: 10.1126/science.aba6146] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/05/2020] [Indexed: 12/21/2022]
Abstract
The selective functionalization of strong, typically inert carbon-hydrogen (C-H) bonds in organic molecules is changing synthetic chemistry. However, the undirected functionalization of primary C-H bonds without competing functionalization of secondary C-H bonds is rare. The borylation of alkyl C-H bonds has occurred previously with this selectivity, but slow rates required the substrate to be the solvent or in large excess. We report an iridium catalyst ligated by 2-methylphenanthroline with activity that enables, with the substrate as limiting reagent, undirected borylation of primary C-H bonds and, when primary C-H bonds are absent or blocked, borylation of strong secondary C-H bonds. Reactions at the resulting carbon-boron bond show how these borylations can lead to the installation of a wide range of carbon-carbon and carbon-heteroatom bonds at previously inaccessible positions of organic molecules.
Collapse
Affiliation(s)
- Raphael Oeschger
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Bo Su
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Isaac Yu
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Christian Ehinger
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Erik Romero
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sam He
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - John Hartwig
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
9
|
Piomelli D, Scalvini L, Fotio Y, Lodola A, Spadoni G, Tarzia G, Mor M. N-Acylethanolamine Acid Amidase (NAAA): Structure, Function, and Inhibition. J Med Chem 2020; 63:7475-7490. [PMID: 32191459 DOI: 10.1021/acs.jmedchem.0c00191] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
N-Acylethanolamine acid amidase (NAAA) is an N-terminal cysteine hydrolase primarily found in the endosomal-lysosomal compartment of innate and adaptive immune cells. NAAA catalyzes the hydrolytic deactivation of palmitoylethanolamide (PEA), a lipid-derived peroxisome proliferator-activated receptor-α (PPAR-α) agonist that exerts profound anti-inflammatory effects in animal models. Emerging evidence points to NAAA-regulated PEA signaling at PPAR-α as a critical control point for the induction and the resolution of inflammation and to NAAA itself as a target for anti-inflammatory medicines. The present Perspective discusses three key aspects of this hypothesis: the role of NAAA in controlling the signaling activity of PEA; the structural bases for NAAA function and inhibition by covalent and noncovalent agents; and finally, the potential value of NAAA-targeting drugs in the treatment of human inflammatory disorders.
Collapse
Affiliation(s)
- Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697-4625, United States.,Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-4625, United States.,Department of Biological Chemistry and Molecular Biology, University of California, Irvine, California 92697-4625, United States
| | - Laura Scalvini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I- 43124 Parma, Italy
| | - Yannick Fotio
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697-4625, United States
| | - Alessio Lodola
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I- 43124 Parma, Italy
| | - Gilberto Spadoni
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Piazza Rinascimento 6, I-61029 Urbino, Italy
| | - Giorgio Tarzia
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Piazza Rinascimento 6, I-61029 Urbino, Italy
| | - Marco Mor
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I- 43124 Parma, Italy
| |
Collapse
|
10
|
Dražić T, Kopf S, Corridan J, Leuthold MM, Bertoša B, Klein CD. Peptide-β-lactam Inhibitors of Dengue and West Nile Virus NS2B-NS3 Protease Display Two Distinct Binding Modes. J Med Chem 2019; 63:140-156. [DOI: 10.1021/acs.jmedchem.9b00759] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tonko Dražić
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Sara Kopf
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - James Corridan
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Mila M. Leuthold
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Branimir Bertoša
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10 000 Zagreb, Croatia
| | - Christian D. Klein
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| |
Collapse
|
11
|
Zhou P, Xiang L, Zhao D, Ren J, Qiu Y, Li Y. Synthesis, biological evaluation, and structure activity relationship (SAR) study of pyrrolidine amide derivatives as N-acylethanolamine acid amidase (NAAA) inhibitors. MEDCHEMCOMM 2018; 10:252-262. [PMID: 30931090 DOI: 10.1039/c8md00432c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/14/2018] [Indexed: 01/15/2023]
Abstract
N-Acylethanolamine acid amidase (NAAA) is one of the key enzymes involved in the degradation of fatty acid ethanolamides (FAEs), especially for palmitoylethanolamide (PEA). Pharmacological blockage of NAAA restores PEA levels, providing therapeutic benefits in the management of inflammation and pain. In the current work, we showed the structure-activity relationship (SAR) studies for pyrrolidine amide derivatives as NAAA inhibitors. A series of aromatic replacements or substituents for the terminal phenyl group of pyrrolidine amides were examined. SAR data showed that small lipophilic 3-phenyl substituents were preferable for optimal potency. The conformationally flexible linkers increased the inhibitory potency of pyrrolidine amide derivatives but reduced their selectivity toward fatty acid amide hydrolase (FAAH). The conformationally restricted linkers did not enhance the inhibitor potency toward NAAA but improved the selectivity over FAAH. Several low micromolar potent NAAA inhibitors were developed, including 4g bearing a rigid 4-phenylcinnamoyl group. Dialysis and kinetic analysis suggested that 4g inhibited NAAA via a competitive and reversible mechanism. Furthermore, 4g showed high anti-inflammatory activities in lipopolysaccharide (LPS) induced acute lung injury (ALI) model, and this effect was blocked by pre-treatment with the PPAR-α antagonist MK886. We anticipate that 4g (E93) will enable a new agent to treat inflammation and related diseases.
Collapse
Affiliation(s)
- Pan Zhou
- Eye Institute of Xiamen University , Xiamen , Fujian 361102 , China.,Medical College , Xiamen University , Xiamen , Fujian 361102 , China
| | - Lei Xiang
- Medical College , Xiamen University , Xiamen , Fujian 361102 , China
| | - Dongsheng Zhao
- Department of Pharmacy , Quanzhou Medical College , China . Tel: Quanzhou 362100
| | - Jie Ren
- Eye Institute of Xiamen University , Xiamen , Fujian 361102 , China.,Medical College , Xiamen University , Xiamen , Fujian 361102 , China
| | - Yan Qiu
- Eye Institute of Xiamen University , Xiamen , Fujian 361102 , China.,Medical College , Xiamen University , Xiamen , Fujian 361102 , China
| | - Yuhang Li
- Xiamen Institute of Rare-earth Materials , Haixi Institutes , Chinese Academy of Sciences , Fujian 361005 , China.,CAS Key Laboratory of Design and Assembly of Functional Nanostructures , and Fujian Provincial Key Laboratory of Nanomaterials , Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , China .
| |
Collapse
|
12
|
Molecular mechanism of activation of the immunoregulatory amidase NAAA. Proc Natl Acad Sci U S A 2018; 115:E10032-E10040. [PMID: 30301806 DOI: 10.1073/pnas.1811759115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Palmitoylethanolamide is a bioactive lipid that strongly alleviates pain and inflammation in animal models and in humans. Its signaling activity is terminated through degradation by N-acylethanolamine acid amidase (NAAA), a cysteine hydrolase expressed at high levels in immune cells. Pharmacological inhibitors of NAAA activity exert profound analgesic and antiinflammatory effects in rodent models, pointing to this protein as a potential target for therapeutic drug discovery. To facilitate these efforts and to better understand the molecular mechanism of action of NAAA, we determined crystal structures of this enzyme in various activation states and in complex with several ligands, including both a covalent and a reversible inhibitor. Self-proteolysis exposes the otherwise buried active site of NAAA to allow catalysis. Formation of a stable substrate- or inhibitor-binding site appears to be conformationally coupled to the interaction of a pair of hydrophobic helices in the enzyme with lipid membranes, resulting in the creation of a linear hydrophobic cavity near the active site that accommodates the ligand's acyl chain.
Collapse
|
13
|
Bottemanne P, Muccioli GG, Alhouayek M. N-acylethanolamine hydrolyzing acid amidase inhibition: tools and potential therapeutic opportunities. Drug Discov Today 2018; 23:1520-1529. [PMID: 29567427 DOI: 10.1016/j.drudis.2018.03.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/06/2018] [Accepted: 03/15/2018] [Indexed: 01/12/2023]
Abstract
N-acylethanolamines (NAEs) (e.g., N-palmitoylethanolamine, N-arachidonoylethanolamine, N-oleoylethanolamine) are bioactive lipids involved in many physiological processes including pain, inflammation, anxiety, cognition and food intake. Two enzymes are responsible for the hydrolysis of NAEs and therefore regulate their endogenous levels and effects: fatty acid amide hydrolase (FAAH) and N-acylethanolamine-hydrolyzing acid amidase (NAAA). As discussed here, extensive biochemical characterization of NAAA was carried out over the years that contributed to a better understanding of NAAA enzymology. An increasing number of studies describe the synthesis and pharmacological characterization of NAAA inhibitors. Recent medicinal chemistry efforts have led to the development of potent and stable inhibitors that enable studying the effects of NAAA inhibition in preclinical disease models, notably in the context of pain and inflammation.
Collapse
Affiliation(s)
- Pauline Bottemanne
- BPBL Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Av. E. Mounier 72, B1.72.01, B-1200 Bruxelles, Belgium
| | - Giulio G Muccioli
- BPBL Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Av. E. Mounier 72, B1.72.01, B-1200 Bruxelles, Belgium
| | - Mireille Alhouayek
- BPBL Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Av. E. Mounier 72, B1.72.01, B-1200 Bruxelles, Belgium.
| |
Collapse
|
14
|
Meanwell NA. Fluorine and Fluorinated Motifs in the Design and Application of Bioisosteres for Drug Design. J Med Chem 2018; 61:5822-5880. [PMID: 29400967 DOI: 10.1021/acs.jmedchem.7b01788] [Citation(s) in RCA: 1545] [Impact Index Per Article: 220.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The electronic properties and relatively small size of fluorine endow it with considerable versatility as a bioisostere and it has found application as a substitute for lone pairs of electrons, the hydrogen atom, and the methyl group while also acting as a functional mimetic of the carbonyl, carbinol, and nitrile moieties. In this context, fluorine substitution can influence the potency, conformation, metabolism, membrane permeability, and P-gp recognition of a molecule and temper inhibition of the hERG channel by basic amines. However, as a consequence of the unique properties of fluorine, it features prominently in the design of higher order structural metaphors that are more esoteric in their conception and which reflect a more sophisticated molecular construction that broadens biological mimesis. In this Perspective, applications of fluorine in the construction of bioisosteric elements designed to enhance the in vitro and in vivo properties of a molecule are summarized.
Collapse
Affiliation(s)
- Nicholas A Meanwell
- Discovery Chemistry and Molecular Technologies Bristol-Myers Squibb Research and Development P.O. Box 4000, Princeton , New Jersey 08543-4000 , United States
| |
Collapse
|
15
|
Li Y, Chen Q, Yang L, Li Y, Zhang Y, Qiu Y, Ren J, Lu C. Identification of highly potent N -acylethanolamine acid amidase (NAAA) inhibitors: Optimization of the terminal phenyl moiety of oxazolidone derivatives. Eur J Med Chem 2017; 139:214-221. [DOI: 10.1016/j.ejmech.2017.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/24/2017] [Accepted: 08/02/2017] [Indexed: 12/30/2022]
|
16
|
Petracca R, Ponzano S, Bertozzi S, Sasso O, Piomelli D, Bandiera T, Bertozzi F. Progress in the development of β-lactams as N-Acylethanolamine Acid Amidase (NAAA) inhibitors: Synthesis and SAR study of new, potent N-O-substituted derivatives. Eur J Med Chem 2017; 126:561-575. [DOI: 10.1016/j.ejmech.2016.11.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/18/2016] [Accepted: 11/19/2016] [Indexed: 10/20/2022]
|
17
|
Petracca R, Romeo E, Baggelaar MP, Artola M, Pontis S, Ponzano S, Overkleeft HS, van der Stelt M, Piomelli D. Novel activity-based probes for N-acylethanolamine acid amidase. Chem Commun (Camb) 2017; 53:11810-11813. [DOI: 10.1039/c7cc06838g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Two NAAA activity-based probes were generated as tool for the identification of new inhibitors and the investigation of NAAA physiology.
Collapse
Affiliation(s)
- Rita Petracca
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)
- Trinity College Dublin
- The University of Dublin
- Dublin 2
- Ireland
| | - Elisa Romeo
- Drug Discovery and Development
- Istituto Italiano di Tecnologia
- Italy
| | - Marc P. Baggelaar
- Department of Molecular Physiology
- Leiden Institute of Chemistry
- Leiden University
- Leiden
- The Netherlands
| | - Marta Artola
- Department of Bio-organic Synthesis
- Leiden Institute of Chemistry
- Leiden University
- Leiden
- The Netherlands
| | - Silvia Pontis
- Drug Discovery and Development
- Istituto Italiano di Tecnologia
- Italy
| | - Stefano Ponzano
- Drug Discovery and Development
- Istituto Italiano di Tecnologia
- Italy
| | - Herman S. Overkleeft
- Department of Bio-organic Synthesis
- Leiden Institute of Chemistry
- Leiden University
- Leiden
- The Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology
- Leiden Institute of Chemistry
- Leiden University
- Leiden
- The Netherlands
| | - Daniele Piomelli
- Departments of Anatomy and Neurobiology
- Pharmacology and Biological Chemistry
- University of California
- Irvine
- USA
| |
Collapse
|
18
|
Romeo E, Pontis S, Ponzano S, Bonezzi F, Migliore M, Di Martino S, Summa M, Piomelli D. Preparation and In Vivo Use of an Activity-based Probe for N-acylethanolamine Acid Amidase. J Vis Exp 2016. [PMID: 27911411 DOI: 10.3791/54652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Activity-based protein profiling (ABPP) is a method for the identification of an enzyme of interest in a complex proteome through the use of a chemical probe that targets the enzyme's active sites. A reporter tag introduced into the probe allows for the detection of the labeled enzyme by in-gel fluorescence scanning, protein blot, fluorescence microscopy, or liquid chromatography-mass spectrometry. Here, we describe the preparation and use of the compound ARN14686, a click chemistry activity-based probe (CC-ABP) that selectively recognizes the enzyme N-acylethanolamine acid amidase (NAAA). NAAA is a cysteine hydrolase that promotes inflammation by deactivating endogenous peroxisome proliferator-activated receptor (PPAR)-alpha agonists such as palmitoylethanolamide (PEA) and oleoylethanolamide (OEA). NAAA is synthesized as an inactive full-length proenzyme, which is activated by autoproteolysis in the acidic pH of the lysosome. Localization studies have shown that NAAA is predominantly expressed in macrophages and other monocyte-derived cells, as well as in B-lymphocytes. We provide examples of how ARN14686 can be used to detect and quantify active NAAA ex vivo in rodent tissues by protein blot and fluorescence microscopy.
Collapse
Affiliation(s)
- Elisa Romeo
- Drug Discovery and Development, Istituto Italiano di Tecnologia
| | - Silvia Pontis
- Drug Discovery and Development, Istituto Italiano di Tecnologia
| | - Stefano Ponzano
- Drug Discovery and Development, Istituto Italiano di Tecnologia
| | - Fabiola Bonezzi
- Drug Discovery and Development, Istituto Italiano di Tecnologia
| | - Marco Migliore
- Drug Discovery and Development, Istituto Italiano di Tecnologia
| | | | - Maria Summa
- Drug Discovery and Development, Istituto Italiano di Tecnologia
| | - Daniele Piomelli
- Drug Discovery and Development, Istituto Italiano di Tecnologia; Departments of Anatomy and Neurobiology, Pharmacology, and Biological Chemistry, University of California, Irvine School of Medicine;
| |
Collapse
|
19
|
Tuo W, Leleu-Chavain N, Spencer J, Sansook S, Millet R, Chavatte P. Therapeutic Potential of Fatty Acid Amide Hydrolase, Monoacylglycerol Lipase, and N-Acylethanolamine Acid Amidase Inhibitors. J Med Chem 2016; 60:4-46. [DOI: 10.1021/acs.jmedchem.6b00538] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Wei Tuo
- Université de Lille, Inserm, CHU Lille, U995,
LIRIC, Lille Inflammation Research International Center, F-59000 Lille, France
| | - Natascha Leleu-Chavain
- Université de Lille, Inserm, CHU Lille, U995,
LIRIC, Lille Inflammation Research International Center, F-59000 Lille, France
| | - John Spencer
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K
| | - Supojjanee Sansook
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K
| | - Régis Millet
- Université de Lille, Inserm, CHU Lille, U995,
LIRIC, Lille Inflammation Research International Center, F-59000 Lille, France
| | - Philippe Chavatte
- Université de Lille, Inserm, CHU Lille, U995,
LIRIC, Lille Inflammation Research International Center, F-59000 Lille, France
| |
Collapse
|
20
|
Dražić T, Roje M, Jurin M, Pescitelli G. Synthesis, Separation and Absolute Configuration Determination by ECD Spectroscopy and TDDFT Calculations of 3-Amino-β-lactams and Derived Guanidines. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600641] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tonko Dražić
- Ruđer Bošković Institute; Bijenička cesta 54 Zagreb Croatia
| | - Marin Roje
- Ruđer Bošković Institute; Bijenička cesta 54 Zagreb Croatia
| | - Mladenka Jurin
- Ruđer Bošković Institute; Bijenička cesta 54 Zagreb Croatia
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale; Università di Pisa; Via Moruzzi 13 Pisa Italy
| |
Collapse
|