1
|
Lv YF, Liu G, Shi Z, Wang Z. Chromium Catalyzed Asymmetric Reformatsky Reaction. Angew Chem Int Ed Engl 2024; 63:e202406109. [PMID: 38837496 DOI: 10.1002/anie.202406109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
This study describes an unprecedented chromium-catalyzed asymmetric Reformatsky reaction, enabling the synthesis of chiral β-hydroxy carbonyl compounds from α-chlorinated or α-brominated esters and amides. By employing a chiral chromium/diarylamine bis(oxazoline) catalyst, we achieved relatively broad functional group tolerance. Distinct from known reports, the protocol operates under both classical and photoredox conditions, facilitated by the in situ formation of a nucleophilic chiral chromium intermediate through a radical-polar crossover mechanism. Preliminary mechanistic insights, supported by DFT calculations, identify the nucleophilic aldehyde addition as the key stereo-determining step. This approach not only overcomes the limitations of existing Reformatsky reactions but also provides a versatile strategy for accessing complex chiral molecules.
Collapse
Affiliation(s)
- Yong-Feng Lv
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, 310030, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang Province, China
| | - Gang Liu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, 310030, Zhejiang Province, China
| | - Zhaoxin Shi
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, 310030, Zhejiang Province, China
| | - Zhaobin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, 310030, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang Province, China
| |
Collapse
|
2
|
Liu H, Fu M, Zhang Y, You Q, Wang L. Small molecules targeting canonical transient receptor potential channels: an update. Drug Discov Today 2024; 29:103951. [PMID: 38514041 DOI: 10.1016/j.drudis.2024.103951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
Transient receptor potential canonical (TRPC) channels belong to an important class of non-selective cation channels. This channel family consists of multiple members that widely participate in various physiological and pathological processes. Previous studies have uncovered the intricate regulation of these channels, as well as the spatial arrangement of TRPCs and the binding sites for various small molecule compounds. Multiple small molecules have been identified as selective agonists or inhibitors targeting different subtypes of TRPC, including potential preclinical drug candidates. This review covers recent advancements in the understanding of TRPC regulation and structure and the discovery of TRPC small molecules over the past few years, with the aim of facilitating research on TRPCs and small-molecule drug discovery.
Collapse
Affiliation(s)
- Hua Liu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Min Fu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yifan Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
3
|
Zhao K, Li X, Feng Y, Wang J, Yao W. The role of kinesin family members in hepatobiliary carcinomas: from bench to bedside. Biomark Res 2024; 12:30. [PMID: 38433242 PMCID: PMC10910842 DOI: 10.1186/s40364-024-00559-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/03/2024] [Indexed: 03/05/2024] Open
Abstract
As a major component of the digestive system malignancies, tumors originating from the hepatic and biliary ducts seriously endanger public health. The kinesins (KIFs) are molecular motors that enable the microtubule-dependent intracellular trafficking necessary for mitosis and meiosis. Normally, the stability of KIFs is essential to maintain cell proliferation and genetic homeostasis. However, aberrant KIFs activity may destroy this dynamic stability, leading to uncontrolled cell division and tumor initiation. In this work, we have made an integral summarization of the specific roles of KIFs in hepatocellular and biliary duct carcinogenesis, referring to aberrant signal transduction and the potential for prognostic evaluation. Additionally, current clinical applications of KIFs-targeted inhibitors have also been discussed, including their efficacy advantages, relationship with drug sensitivity or resistance, the feasibility of combination chemotherapy or other targeted agents, as well as the corresponding clinical trials. In conclusion, the abnormally activated KIFs participate in the regulation of tumor progression via a diverse range of mechanisms and are closely associated with tumor prognosis. Meanwhile, KIFs-aimed inhibitors also carry out a promising tumor-targeted therapeutic strategy that deserves to be further investigated in hepatobiliary carcinoma (HBC).
Collapse
Affiliation(s)
- Kai Zhao
- Department of Biliary and Pancreatic Surgery, Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Xiangyu Li
- Department of Thoracic Surgery Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Yunxiang Feng
- Department of Biliary and Pancreatic Surgery, Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Jianming Wang
- Department of Biliary and Pancreatic Surgery, Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China.
- Affiliated Tianyou Hospital, Wuhan University of Science & Technology, 430064, Wuhan, China.
| | - Wei Yao
- Department of Oncology Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China.
| |
Collapse
|
4
|
de Abrantes RA, Batista TM, Mangueira VM, de Sousa TKG, Ferreira RC, Moura APG, Abreu LS, Alves AF, Velozo ES, Batista LM, da Silva MS, Tavares JF, Sobral MV. Antitumor and antiangiogenic effects of Tonantzitlolone B, an uncommon diterpene from Stillingia loranthacea. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:267-274. [PMID: 34854946 DOI: 10.1007/s00210-021-02185-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/14/2021] [Indexed: 01/04/2023]
Abstract
Natural products have played a pivotal role for the discovery of anticancer drugs. Tonantzitlolones are flexibilan-type diterpenes rare in nature; therefore, few reports have shown antiviral and cytotoxic activities. This study aimed to investigate the in vivo antitumor action of Tonantzitlolone B (TNZ-B) and its toxicity. Toxicity was evaluated in mice (acute and micronucleus assays). Antitumor activity of TNZ-B (1.5 or 3 mg/kg intraperitoneally - i.p.) was assessed in Ehrlich ascites carcinoma model. Angiogenesis and reactive oxygen species (ROS) and nitric oxide (NO) production were also investigated, in addition to toxicological effects after 7-day treatment. The LD50 (lethal dose 50%) was estimated at around 25 mg/kg (i.p.), and no genotoxicity was recorded. TNZ-B reduced the Ehrlich tumor's volume and total viable cancer cell count (p < 0.001 for both). Additionally, TNZ-B reduced peritumoral microvessel density (p < 0.01), suggesting antiangiogenic action. Moreover, a decrease was observed on ROS (p < 0.05) and nitric oxide (p < 0.001) levels. No significant clinical findings were observed in the analysis of biochemical, hematological, and histological (liver and kidney) parameters. In conclusion, TNZ-B exerts antitumor and antiangiogenic effects by reducing ROS and NO levels and has weak in vivo dose-repeated toxicity. These data contribute to elucidate the antitumor action of TNZ-B and point the way for further studies with this natural compound as an anticancer drug.
Collapse
Affiliation(s)
- Renata A de Abrantes
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
| | - Tatianne M Batista
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
| | - Vivianne M Mangueira
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
| | - Tatyanna K G de Sousa
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
| | - Rafael C Ferreira
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
| | - Ana Paula G Moura
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
| | - Lucas S Abreu
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
| | - Adriano F Alves
- Department of Physiology and Pathology, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Eudes S Velozo
- Research Laboratory in Materia Medica, School of Pharmacy, Federal University of Bahia, Salvador, Brazil
| | - Leônia M Batista
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, Brazil
| | - Marcelo S da Silva
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, Brazil
| | - Josean F Tavares
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, Brazil
| | - Marianna V Sobral
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil.
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, Brazil.
| |
Collapse
|
5
|
Canonical transient receptor potential channels and their modulators: biology, pharmacology and therapeutic potentials. Arch Pharm Res 2021; 44:354-377. [PMID: 33763843 PMCID: PMC7989688 DOI: 10.1007/s12272-021-01319-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 03/14/2021] [Indexed: 12/17/2022]
Abstract
Canonical transient receptor potential channels (TRPCs) are nonselective, high calcium permeability cationic channels. The TRPCs family includes TRPC1, TRPC2, TRPC3, TRPC4, TRPC5, TRPC6, and TRPC7. These channels are widely expressed in the cardiovascular and nervous systems and exist in many other human tissues and cell types, playing several crucial roles in the human physiological and pathological processes. Hence, the emergence of TRPCs modulators can help investigate these channels’ applications in health and disease. It is worth noting that the TRPCs subfamilies have structural and functional similarities, which presents a significant difficulty in screening and discovering of TRPCs modulators. In the past few years, only a limited number of selective modulators of TRPCs were detected; thus, additional research on more potent and more selective TRPCs modulators is needed. The present review focuses on the striking desired therapeutic effects of TRPCs modulators, which provides intel on the structural modification of TRPCs modulators and further pharmacological research. Importantly, TRPCs modulators can significantly facilitate future studies of TRPCs and TRPCs related diseases.
Collapse
|
6
|
Wu Z, Suppo JS, Tumova S, Strope J, Bravo F, Moy M, Weinstein ES, Peer CJ, Figg WD, Chain WJ, Echavarren AM, Beech DJ, Beutler JA. Bridgehead Modifications of Englerin A Reduce TRPC4 Activity and Intravenous Toxicity but not Cell Growth Inhibition. ACS Med Chem Lett 2020; 11:1711-1716. [PMID: 32944138 DOI: 10.1021/acsmedchemlett.0c00186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/03/2020] [Indexed: 11/29/2022] Open
Abstract
Modifications at the bridgehead position of englerin A were made to explore the effects of variation at this site on the molecule for biological activity, as judged by the NCI 60 screen, in which englerin A is highly potent and selective for renal cancer cells. Replacement of the isopropyl group by other, larger substituents yielded compounds which displayed excellent selectivity and potency comparable to the natural product. Selected compounds were also evaluated for their effect on the ion channel TRPC4 as well as for intravenous toxicity in mice, and these had lower potency in both assays compared to englerin A.
Collapse
Affiliation(s)
- Zhenhua Wu
- Department of Chemistry & Biochemistry, University of Delaware, 163 The Green, Newark, Delaware 19716, United States
| | - Jean-Simon Suppo
- Institute of Chemical Research of Catalonia (ICIQ), 43007 Tarragona, Spain
| | - Sarka Tumova
- School of Medicine, University of Leeds, Leeds LS2 9JT, U.K
| | - Jonathan Strope
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Fernando Bravo
- Institute of Chemical Research of Catalonia (ICIQ), 43007 Tarragona, Spain
| | - Melody Moy
- Department of Chemistry & Biochemistry, University of Delaware, 163 The Green, Newark, Delaware 19716, United States
| | - Ethan S. Weinstein
- Department of Chemistry & Biochemistry, University of Delaware, 163 The Green, Newark, Delaware 19716, United States
| | - Cody J. Peer
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - William D. Figg
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - William J. Chain
- Department of Chemistry & Biochemistry, University of Delaware, 163 The Green, Newark, Delaware 19716, United States
| | | | - David J. Beech
- School of Medicine, University of Leeds, Leeds LS2 9JT, U.K
| | - John A. Beutler
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
7
|
New pharmacological findings linked to biphenyl DHPMs, kinesin Eg5 ligands: anticancer and antioxidant effects. Future Med Chem 2020; 12:1137-1154. [PMID: 32513026 DOI: 10.4155/fmc-2019-0256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background: Dihydropyrimidin-2-thiones (DHPMs) are a class of heterocyclic compound which have been intensively investigated mainly due to their anticancer activity as kinesin Eg5 inhibitors. Materials & methods: A library of N1 aryl substituted DHPMs were tested against glioma and bladder cancer cell lines. Quantitative structure-activity relationship (QSAR) investigation was performed in order to identify key elements of DHPMs linked with their antiproliferative effect. The toxicity of most active compounds was investigated using Caenorhabditis elegans as the model. Results & conclusion: DHPMs 9, 13 and 17 have been identified as having improved activity against glioma and bladder cell lines as compared with monastrol. Flow cytometry investigations showed that the new compounds induce cell cycle arrest in phase G2/M and cell death by apoptosis. In addition, compound 13 was able to modulate the reactive oxygen species production in vivo in C. elegans. The biphenyl dihydropyrimidinthiones provided a safety profile in C. elegans.
Collapse
|
8
|
Abreu LS, do Nascimento YM, Costa RDS, Guedes MLS, Souza BNRF, Pena LJ, Costa VCDO, Scotti MT, Braz-Filho R, Barbosa-Filho JM, da Silva MS, Velozo EDS, Tavares JF. Tri- and Diterpenoids from Stillingia loranthacea as Inhibitors of Zika Virus Replication. JOURNAL OF NATURAL PRODUCTS 2019; 82:2721-2730. [PMID: 31599155 DOI: 10.1021/acs.jnatprod.9b00251] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This study represents the first phytochemical analysis of Stillingia loranthacea (S. loranthacea) and describes new terpenoids obtained from the root bark of this species. The fractionation of the hexane extract from the root bark led to the isolation of two new 28-nor-taraxarenes derivatives, loranthones A and B (1 and 2), four new tigliane diterpenes (5-8), three known tigliane diterpenes (9-11), and three known flexibilene diterpenes, tonantzitlolones A-C (12-14). The investigation of these compounds and the use of a molecular networking-based prioritization approach afforded two other new 28-nor-taraxarenes, loranthones C and D (3 and 4). The cytotoxicity of compounds 1, 2, and 5-14 was evaluated against Vero cells, and their 20% cytotoxic concentration (CC20) values varied from 8.7 to 328 μM; antiviral activity was tested against an epidemic Zika virus (ZIKV) strain circulating in Brazil. Six out of 12 compounds (2, 5, 9-11, and 14) exhibited significant antiviral effects against ZIKV. Specifically, compounds 2 and 5 offered the most promise as lead compounds as they had a 1.7 and 1.8 log10 TCID50/mL reduction in ZIKV replication, respectively. Together, the present findings have identified S. loranthacea terpenoids as potent anti-ZIKV inhibitors and pave the way to the development of possible new treatments against this devastating pathogen.
Collapse
Affiliation(s)
- Lucas Silva Abreu
- Institute for Research in Pharmaceuticals and Medications , Federal University of Paraíba , João Pessoa 58051-900 , Brazil
| | - Yuri Mangueira do Nascimento
- Institute for Research in Pharmaceuticals and Medications , Federal University of Paraíba , João Pessoa 58051-900 , Brazil
| | - Rafael Dos Santos Costa
- Research Laboratory in Materia Medica, School of Pharmacy , Federal University of Bahia , Salvador 40170-290 , Brazil
| | | | | | - Lindomar José Pena
- Department of Virology , Oswaldo Cruz Foundation (Fiocruz) , Recife 50740-465 , Brazil
| | | | - Marcus Tullius Scotti
- Institute for Research in Pharmaceuticals and Medications , Federal University of Paraíba , João Pessoa 58051-900 , Brazil
| | - Raimundo Braz-Filho
- Department of Chemistry, Institute of Chemistry , Federal Rural University of Rio de Janeiro , Seropédica 23890-000 , Brazil
| | - José Maria Barbosa-Filho
- Institute for Research in Pharmaceuticals and Medications , Federal University of Paraíba , João Pessoa 58051-900 , Brazil
| | - Marcelo Sobral da Silva
- Institute for Research in Pharmaceuticals and Medications , Federal University of Paraíba , João Pessoa 58051-900 , Brazil
| | - Eudes da Silva Velozo
- Research Laboratory in Materia Medica, School of Pharmacy , Federal University of Bahia , Salvador 40170-290 , Brazil
| | - Josean Fechine Tavares
- Institute for Research in Pharmaceuticals and Medications , Federal University of Paraíba , João Pessoa 58051-900 , Brazil
| |
Collapse
|
9
|
An overview of microtubule targeting agents for cancer therapy. Arh Hig Rada Toksikol 2019; 70:160-172. [DOI: 10.2478/aiht-2019-70-3258] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 09/01/2019] [Indexed: 12/27/2022] Open
Abstract
Abstract
The entire world is looking for effective cancer therapies whose benefits would outweigh their toxicity. One way to reduce resistance to chemotherapy and its adverse effects is the so called targeted therapy, which targets specific molecules (“molecular targets”) that play a critical role in cancer growth, progression, and metastasis. One such specific target are microtubules. In this review we address the current knowledge about microtubule-targeting agents or drugs (MTAs/MTDs) used in cancer therapy from their synthesis to toxicities. Synthetic and natural MTAs exhibit antitumor activity, and preclinical and clinical studies have shown that their anticancer effectiveness is higher than that of traditional drug therapies. Furthermore, MTAs involve a lower risk of adverse effects such as neurotoxicity and haemotoxicity. Several new generation MTAs are currently being evaluated for clinical use. This review brings updated information on the benefits of MTAs, therapeutic approaches, advantages, and challenges in their research.
Collapse
|
10
|
Ding XB, Furkert DP, Brimble MA. Highly Diastereoselective Synthesis of Syn-1,3-Dihydroxyketone Motifs from Propargylic Alcohols via Spiroepoxide Intermediates. Angew Chem Int Ed Engl 2019; 58:11830-11835. [PMID: 31218800 DOI: 10.1002/anie.201905736] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/19/2019] [Indexed: 12/29/2022]
Abstract
Syn dihydroxyketone motifs are embedded in a wide range of biologically active natural products, however the development of stereoselective synthetic methods to assemble these structures has proven a challenging task. We report a highly diastereoselective method for the synthesis of syn dihydroxyketones from propargylic alcohols, with wide scope for application in natural product synthesis. The reaction sequence involves regioselective cyclisation of propargylic alcohols with incorporation of a triketone to give enol dioxolanes that are then diastereoselectively epoxidised to form unusual spiroepoxide intermediates. Hydrolysis affords syn dihydroxyketones as essentially single diastereisomers. The reaction sequence is operationally simple, of wide substrate scope, and remarkably can be efficiently carried out as a one-pot process with no loss of overall yield or diastereoselectivity.
Collapse
Affiliation(s)
- Xiao-Bo Ding
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
| | - Daniel P Furkert
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
| |
Collapse
|
11
|
Ding X, Furkert DP, Brimble MA. Highly Diastereoselective Synthesis of
Syn
‐1,3‐Dihydroxyketone Motifs from Propargylic Alcohols via Spiroepoxide Intermediates. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiao‐Bo Ding
- School of Chemical Sciences The University of Auckland 23 Symonds Street Auckland 1010 New Zealand
| | - Daniel P. Furkert
- School of Chemical Sciences The University of Auckland 23 Symonds Street Auckland 1010 New Zealand
| | - Margaret A. Brimble
- School of Chemical Sciences The University of Auckland 23 Symonds Street Auckland 1010 New Zealand
| |
Collapse
|
12
|
Behrens VA, Walter WJ, Peters C, Wang T, Brenner B, Geeves MA, Scholz T, Steffen W. Mg 2+ -free ATP regulates the processivity of native cytoplasmic dynein. FEBS Lett 2019; 593:296-307. [PMID: 30575960 DOI: 10.1002/1873-3468.13319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/15/2018] [Accepted: 12/12/2018] [Indexed: 11/07/2022]
Abstract
Cytoplasmic dynein, a microtubule-based motor protein, is responsible for many cellular functions ranging from cargo transport to cell division. The various functions are carried out by a single isoform of cytoplasmic dynein, thus requiring different forms of motor regulation. A possible pathway to regulate motor function was revealed in optical trap experiments. Switching motor function from single steps to processive runs could be achieved by changing Mg2+ and ATP concentrations. Here, we confirm by single molecule total internal reflection fluorescence microscopy that a native cytoplasmic dynein dimer is able to switch to processive runs of more than 680 consecutive steps or 5.5 μm. We also identified the ratio of Mg2+ -free ATP to Mg.ATP as the regulating factor and propose a model for dynein processive stepping.
Collapse
Affiliation(s)
| | | | - Carsten Peters
- Molecular and Cell Physiology, Hannover Medical School, Germany
| | - Tianbang Wang
- Molecular and Cell Physiology, Hannover Medical School, Germany
| | | | | | - Tim Scholz
- Molecular and Cell Physiology, Hannover Medical School, Germany
| | - Walter Steffen
- Molecular and Cell Physiology, Hannover Medical School, Germany
| |
Collapse
|
13
|
Mata R, Figueroa M, Navarrete A, Rivero-Cruz I. Chemistry and Biology of Selected Mexican Medicinal Plants. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2019; 108:1-142. [PMID: 30924013 DOI: 10.1007/978-3-030-01099-7_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Herbal medicines are an integral element of alternative medical care in Mexico, and the best testimony to their efficacy and cultural value is their persistence in contemporary Mexican marketplaces where the highest percentages of medicinal and aromatic plants are sold. This chapter summarizes current trends in research on medicinal plants in Mexico, with emphasis on work carried out at the authors' laboratories. The most relevant phytochemical and pharmacological profiles of a selected group of plants used widely for treating major national health problems are described.From this contribution, it is evident that in the last five decades a significant amount of research on medicinal plants has been performed by Mexican scientists. Such efforts have led to the publication of many research papers in noted peer-reviewed journals and technical books. The isolation and structural characterization of hundreds of bioactive secondary metabolites have been accomplished, and most importantly, these studies have tended to support the ethnomedical uses of many different species. A multidisciplinary approach for investigating these plants has led to an increased emphasis on areas such as phytopharmacology, phytotoxicology, quality control, regulation, and conservation issues for these valuable resources. The medicinal plants analyzed so far have shown a very broad chemical diversity of their constituents, which have a high potential for exhibiting novel mechanistic effects biologically. The chapter shows also that there is need to conduct additional clinical studies on herbal drugs, in particular because the longstanding traditional evidence for their safety is not always sufficient to assure their rational use. There is also need to move to "omics" approaches for investigating the holistic effect and the influence of groups of phytochemicals on the whole organism. Mexican scientists may be expected to have bright prospects in this regard, which will imbue medicinal plant research with a new dynamism in the future.
Collapse
Affiliation(s)
- Rachel Mata
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México.
| | - Mario Figueroa
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México.
| | - Andrés Navarrete
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Isabel Rivero-Cruz
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
14
|
Rubaiy HN, Ludlow MJ, Siems K, Norman K, Foster R, Wolf D, Beutler JA, Beech DJ. Tonantzitlolone is a nanomolar potency activator of transient receptor potential canonical 1/4/5 channels. Br J Pharmacol 2018; 175:3361-3368. [PMID: 29859013 DOI: 10.1111/bph.14379] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 05/24/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND AND PURPOSE The diterpene ester tonantzitlolone (TZL) is a natural product, which displays cytotoxicity towards certain types of cancer cell such as renal cell carcinoma cells. The effect is similar to that of (-)-englerin A, and so, although it is chemically distinct, we investigated whether TZL also targets transient receptor potential canonical (TRPC) channels of the 1, 4 and 5 type (TRPC1/4/5 channels). EXPERIMENTAL APPROACH The effects of TZL on renal cell carcinoma A498 cells natively expressing TRPC1 and TRPC4, modified HEK293 cells overexpressing TRPC4, TRPC5, TRPC4-TRPC1 or TRPC5-TRPC1 concatemer, TRPC3 or TRPM2, or CHO cells overexpressing TRPV4 were studied by determining changes in intracellular Ca2+ , or whole-cell or excised membrane patch-clamp electrophysiology. KEY RESULTS TZL induced an elevation of intracellular Ca2+ in A498 cells, similar to that evoked by englerin A. TZL activated overexpressed channels with EC50 values of 123 nM (TRPC4), 83 nM (TRPC5), 140 nM (TRPC4-TRPC1) and 61 nM (TRPC5-TRPC1). These effects of TZL were reversible on wash-out and potently inhibited by the TRPC1/4/5 inhibitor Pico145. TZL activated TRPC5 channels when bath-applied to excised outside-out but not inside-out patches. TZL failed to activate endogenous store-operated Ca2+ entry or overexpressed TRPC3, TRPV4 or TRPM2 channels in HEK 293 cells. CONCLUSIONS AND IMPLICATIONS TZL is a novel potent agonist for TRPC1/4/5 channels, which should be useful for testing the functionality of this type of ion channel and understanding how TRPC1/4/5 agonists achieve selective cytotoxicity against certain types of cancer cell.
Collapse
Affiliation(s)
| | | | | | | | | | | | - John A Beutler
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | | |
Collapse
|
15
|
Liu X, Chen R, Duan F, Jia J, Zhou Y, Chen X. A concise synthesis of (+)-botryolide-E and its C-7 epimer. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.08.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Yusubov MS, Postnikov PS, Yusubova RY, Yoshimura A, Jürjens G, Kirschning A, Zhdankin VV. 2‐Iodoxybenzoic Acid Tosylates: the Alternative to Dess–Martin Periodinane Oxidizing Reagents. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700776] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | | | - Akira Yoshimura
- The Tomsk Polytechnic University 634050 Tomsk Russia
- Department of Chemistry Southern Methodist University Dallas, TX 75275 USA
| | - Gerrit Jürjens
- Institute for Medicinal Chemistry Helmholtz Zentrum München German Research Center for Environmental Health Schneiderberg 1b 30167 Hannover Germany
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ) Leibniz University Hannover Schneiderberg 1b 30167 Hannover Germany
| | - Andreas Kirschning
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ) Leibniz University Hannover Schneiderberg 1b 30167 Hannover Germany
| | - Viktor V. Zhdankin
- Department of Chemistry and Biochemistry University of Minnesota Duluth Duluth Minnesota 55812 USA
| |
Collapse
|
17
|
Islam MT. Diterpenes and Their Derivatives as Potential Anticancer Agents. Phytother Res 2017; 31:691-712. [PMID: 28370843 DOI: 10.1002/ptr.5800] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/23/2017] [Accepted: 02/26/2017] [Indexed: 12/21/2022]
Abstract
As therapeutic tools, diterpenes and their derivatives have gained much attention of the medicinal scientists nowadays. It is due to their pledging and important biological activities. This review congregates the anticancer diterpenes. For this, a search was made with selected keywords in PubMed, Science Direct, Web of Science, Scopus, The American Chemical Society and miscellaneous databases from January 2012 to January 2017 for the published articles. A total 28, 789 published articles were seen. Among them, 240 were included in this study. More than 250 important anticancer diterpenes and their derivatives were seen in the databases, acting in the different pathways. Some of them are already under clinical trials, while others are in the nonclinical and/or pre-clinical trials. In conclusion, diterpenes may be one of the lead molecules in the treatment of cancer. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Department of Pharmacy, Southern University Bangladesh, Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, 64.049-550, Brazil
| |
Collapse
|
18
|
Wu Z, Zhao S, Fash DM, Li Z, Chain WJ, Beutler JA. Englerins: A Comprehensive Review. JOURNAL OF NATURAL PRODUCTS 2017; 80:771-781. [PMID: 28170253 PMCID: PMC6198806 DOI: 10.1021/acs.jnatprod.6b01167] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In the decade since the discovery of englerin A (1) and its potent activity in cancer models, this natural product and its analogues have been the subject of numerous chemical, biological, and preclinical studies by many research groups. This review summarizes published findings and proposes further research directions required for entry of an englerin analogue into clinical trials for kidney cancer and other conditions.
Collapse
Affiliation(s)
- Zhenhua Wu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Senzhi Zhao
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - David M. Fash
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Zhenwu Li
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - William J. Chain
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - John A. Beutler
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
19
|
Busch T, Dräger G, Kunst E, Benson H, Sasse F, Siems K, Kirschning A. Synthesis and antiproliferative activity of new tonantzitlolone-derived diterpene derivatives. Org Biomol Chem 2016; 14:9040-5. [PMID: 27604289 DOI: 10.1039/c6ob01697a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The synthesis of the diterpene (+)-tonantzitlolone A and a series of derivatives is reported. The study includes the determination of their antiproliferative activities against selected cancer cell lines.
Collapse
Affiliation(s)
- Torsten Busch
- Institut für Organische Chemie and Biomolekulares Wirkstoffzentrum (BMWZ), Leibniz Universität Hannover, Schneiderberg 1b, 30167 Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|