1
|
Etikyala U, Reddyrajula R, Vani T, Kuchana V, Dalimba U, Manga V. An in silico approach to identify novel and potential Akt1 (protein kinase B-alpha) inhibitors as anticancer drugs. Mol Divers 2025; 29:1009-1032. [PMID: 38796797 DOI: 10.1007/s11030-024-10887-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/27/2024] [Indexed: 05/29/2024]
Abstract
Akt1 (protein kinase B) has become a major focus of attention due to its significant functionality in a variety of cellular processes and the inhibition of Akt1 could lead to a decrease in tumour growth effectively in cancer cells. In the present work, we discovered a set of novel Akt1 inhibitors by using multiple computational techniques, i.e. pharmacophore-based virtual screening, molecular docking, binding free energy calculations, and ADME properties. A five-point pharmacophore hypothesis was implemented and validated with AADRR38. The obtained R2 and Q2 values are in the acceptable region with the values of 0.90 and 0.64, respectively. The generated pharmacophore model was employed for virtual screening to find out the potential Akt1 inhibitors. Further, the selected hits were subjected to molecular docking, binding free energy analysis, and refined using ADME properties. Also, we designed a series of 6-methoxybenzo[b]oxazole analogues by comprising the structural characteristics of the hits acquired from the database. Molecules D1-D10 were found to have strong binding interactions and higher binding free energy values. In addition, Molecular dynamic simulation was performed to understand the conformational changes of protein-ligand complex.
Collapse
Affiliation(s)
- Umadevi Etikyala
- Medicinal Chemistry Laboratory, Department of Chemistry, Osmania University, Hyderabad, 500076, India
| | - Rajkumar Reddyrajula
- Central Research Facility, National Institute of Technology Karnataka, Surathkal, Mangalore, 575025, India
| | - T Vani
- Medicinal Chemistry Laboratory, Department of Chemistry, Osmania University, Hyderabad, 500076, India
| | - Vinutha Kuchana
- Medicinal Chemistry Laboratory, Department of Chemistry, Osmania University, Hyderabad, 500076, India
| | - Udayakumar Dalimba
- Organic Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore, 575025, India
| | - Vijjulatha Manga
- Medicinal Chemistry Laboratory, Department of Chemistry, Osmania University, Hyderabad, 500076, India.
| |
Collapse
|
2
|
Tian G, Chen Z, Shi K, Wang X, Xie L, Yang F. The evolution of small-molecule Akt inhibitors from hit to clinical candidate. Eur J Med Chem 2024; 279:116906. [PMID: 39353238 DOI: 10.1016/j.ejmech.2024.116906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024]
Abstract
Akt, a key regulator of cell survival, proliferation, and metabolism, has become a prominent target for treatment of cancer and inflammatory diseases. The journey of small-molecule Akt inhibitors from discovery to the clinic has faced numerous challenges, with a significant emphasis on optimization throughout the development process. Early discovery efforts identified various classes of inhibitors, including ATP-competitive and allosteric modulators. However, during preclinical and clinical development, several issues arose, including poor specificity, limited bioavailability, and toxicity. Optimization efforts have been central to overcoming these hurdles. Researchers focused on enhancing the selectivity of inhibitors to target Akt isoforms more precisely, reducing off-target effects, and improving pharmacokinetic properties to ensure better bioavailability and distribution. Structural modifications and the design of prodrugs have played a crucial role in refining the efficacy and safety profile of these inhibitors. Additionally, efforts have been made to optimize the therapeutic window, balancing effective dosing with minimal adverse effects. The review highlights how these optimization strategies have been key in advancing small-molecule Akt inhibitors toward clinical success and underscores the importance of continued refinement in their development.
Collapse
Affiliation(s)
- Gengren Tian
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhuo Chen
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Keqing Shi
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xinwai Wang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lijuan Xie
- Department of Vascularsurgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| | - Fuwei Yang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
3
|
Zhang W, Hu ML, Shi XY, Chen XL, Su X, Qi HZ, Yuan L, Zhang H. Discovery of novel Akt1 inhibitors by an ensemble-based virtual screening method, molecular dynamics simulation, and in vitro biological activity testing. Mol Divers 2024; 28:3949-3963. [PMID: 38240951 DOI: 10.1007/s11030-023-10788-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2024]
Abstract
Akt1, as an important member of the Akt family, plays a controlled role in cancer cell growth and survival. Inhibition of Akt1 activity can promote cancer cell apoptosis and inhibit tumor growth. Therefore, in this investigation, a multilayer virtual screening approach, including receptor-ligand interaction-based pharmacophore, 3D-QSAR, molecular docking, and deep learning methods, was utilized to construct a virtual screening platform for Akt1 inhibitors. 17 representative compounds with different scaffolds were identified as potential Akt1 inhibitors from three databases. Among these 17 compounds, the Hit9 exhibited the best inhibitory activity against Akt1 with inhibition rate of 33.08% at concentration of 1 μM. The molecular dynamics simulations revealed that Hit9 and Akt1 could form a compact and stable complex. Moreover, Hit9 interacted with some key residues by hydrophobic, electrostatic, and hydrogen bonding interactions and induced substantial conformation changes in the hinge region of the Akt1 active site. The average binding free energies for the Akt1-CQU, Akt1-Ipatasertib, and Akt1-Hit9 systems were - 34.44, - 63.37, and - 39.14 kJ mol-1, respectively. In summary, the results obtained in this investigation suggested that Hit9 with novel scaffold may be a promising lead compound for developing new Akt1 inhibitor for treatment of various cancers with Akt1 overexpressed.
Collapse
Affiliation(s)
- Wen Zhang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China
| | - Mei-Ling Hu
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China
| | - Xiu-Yun Shi
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China
| | - Xiang-Long Chen
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China
| | - Xue Su
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China
| | - Hua-Zhao Qi
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China
| | - Li Yuan
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China
| | - Hui Zhang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China.
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
4
|
Abd Emoniem N, Mukhtar RM, Ghaboosh H, Elshamly EM, Mohamed MA, Elsaman T, Alzain AA. Turning down PI3K/AKT/mTOR signalling pathway by natural products: an in silico multi-target approach. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023; 34:163-182. [PMID: 36853097 DOI: 10.1080/1062936x.2023.2181392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The PI3K/AKT/mTOR pathway is a significant target for cancer drug discovery. Many efforts have focused on discovering new inhibitors against key kinase proteins involved in this pathway for cancer treatment. PI3K/mTOR dual inhibitors, such as PKI-179, have been reported to be more effective than agents that act only on a single protein target. The present computational study aimed to discover triple target inhibitors against PI3K, AKT, and mTOR proteins. Accordingly, the PI3K protein bound with the ligand was used as input for e-pharmacophore modelling to generate the pharmacophore hypothesis and then screened for a library of 270,540 natural products from the Zinc database resulting in 57,220 compounds that matched the hypothesis. These compounds were then docked into the active site of PI3K, resulting in 292 compounds with better docking scores than the co-crystallized ligand. These compounds were re-docked into AKT and mTOR proteins. Besides, MM-GBSA binding free energy calculations, MD simulations, and ADMET prediction were carried out, leading to 5 potential triple-target inhibitors namely, ZINC000014644152, ZINC000014760695, ZINC000014644839, ZINC000095099451, and ZINC000005998557. In conclusion, these inhibitors may be possible leads for inhibiting PI3K/AKT/mTOR pathway, and they may be further evaluated in vitro and clinically as anticancer agents.
Collapse
Affiliation(s)
- N Abd Emoniem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - R M Mukhtar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - H Ghaboosh
- Department of Pharmaceutics, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - E M Elshamly
- Department of Molecular Biotechnology, Hochschule Anhalt, Köthen, Germany
| | - M A Mohamed
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - T Elsaman
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - A A Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| |
Collapse
|
5
|
Huang J, Chen L, Wu J, Ai D, Zhang JQ, Chen TG, Wang L. Targeting the PI3K/AKT/mTOR Signaling Pathway in the Treatment of Human Diseases: Current Status, Trends, and Solutions. J Med Chem 2022; 65:16033-16061. [PMID: 36503229 DOI: 10.1021/acs.jmedchem.2c01070] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway is one of the most important intracellular pathways involved in cell proliferation, growth, differentiation, and survival. Therefore, this route is a prospective biological target for treating various human diseases, such as tumors, neurodegenerative diseases, pulmonary fibrosis, and diabetes. An increasing number of clinical studies emphasize the necessity of developing novel molecules targeting the PI3K/AKT/mTOR pathway. This review focuses on recent advances in ATP-competitive inhibitors, allosteric inhibitors, covalent inhibitors, and proteolysis-targeting chimeras against the PI3K/AKT/mTOR pathway, and highlights possible solutions for overcoming the toxicities and acquired drug resistance of currently available drugs. We also provide recommendations for the future design and development of promising drugs targeting this pathway.
Collapse
Affiliation(s)
- Jindi Huang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Liye Chen
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jiangxia Wu
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Daiqiao Ai
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Ji-Quan Zhang
- College of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Tie-Gen Chen
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Room 109, Building C, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan, Guangdong 528400, China
| | - Ling Wang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
6
|
Che J, Li D, Hong W, Wang L, Guo Y, Wu M, Lu J, Tong L, Weng Q, Wang J, Dong X. Discovery of new macrophage M2 polarization modulators as multiple sclerosis treatment agents that enable the inflammation microenvironment remodeling. Eur J Med Chem 2022; 243:114732. [DOI: 10.1016/j.ejmech.2022.114732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 11/04/2022]
|
7
|
Zhu CL, Luo X, Tian T, Rao Z, Wang H, Zhou Z, Mi T, Chen D, Xu Y, Wu Y, Che J, Zhou Y, Li J, Dong X. Structure-based rational design enables efficient discovery of a new selective and potent AKT PROTAC degrader. Eur J Med Chem 2022; 238:114459. [DOI: 10.1016/j.ejmech.2022.114459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022]
|
8
|
Huang J, Chen Y, Guo Y, Bao M, Hong K, Zhang Y, Hu W, Lei J, Liu Y, Xu X. Synthesis of dihydrofuran-3-one and 9,10-phenanthrenequinone hybrid molecules and biological evaluation against colon cancer cells as selective Akt kinase inhibitors. Mol Divers 2022; 27:845-855. [PMID: 35751771 DOI: 10.1007/s11030-022-10458-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022]
Abstract
A series of dihydrofuran-3-one and 9,10-phenanthrenequinone hybrid compounds were synthetized through a one-pot gold-catalyzed oxidative cyclization and Aldol-type addition cascade reaction of homopropargylic alcohols with 9,10-phenanthrenequinone. The cytotoxicity of newly synthesized compounds was evaluated in CCK8 assay against different human cancer cells, showing significantly antiproliferative activity against tested tumor cell lines with a lowest IC50 value of 0.92 μM over HCT-116. Further investigation revealed that the treatment of HCT-116 cell line with the promising compound 4c induced cell death as a selective Akt inhibitor. In addition, controlled experiments and molecular docking study suggested that the significant antitumor activity might be attributed to the unique hybrid structure, which implied the promising potential of this dual heterocycle hybrid method in the discovery of novel bioactive molecules with structural diversity.
Collapse
Affiliation(s)
- Jingjing Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yufei Chen
- Research Center of Chinese Herbal Resources Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yinfeng Guo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ming Bao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Kemiao Hong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yuanqing Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Wenhao Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jinping Lei
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Yongqiang Liu
- Research Center of Chinese Herbal Resources Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Xinfang Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
9
|
Evaluation of Substituted Pyrazole-Based Kinase Inhibitors in One Decade (2011-2020): Current Status and Future Prospects. Molecules 2022; 27:molecules27010330. [PMID: 35011562 PMCID: PMC8747022 DOI: 10.3390/molecules27010330] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 11/17/2022] Open
Abstract
Pyrazole has been recognized as a pharmacologically important privileged scaffold whose derivatives produce almost all types of pharmacological activities and have attracted much attention in the last decades. Of the various pyrazole derivatives reported as potential therapeutic agents, this article focuses on pyrazole-based kinase inhibitors. Pyrazole-possessing kinase inhibitors play a crucial role in various disease areas, especially in many cancer types such as lymphoma, breast cancer, melanoma, cervical cancer, and others in addition to inflammation and neurodegenerative disorders. In this article, we reviewed the structural and biological characteristics of the pyrazole derivatives recently reported as kinase inhibitors and classified them according to their target kinases in a chronological order. We reviewed the reports including pyrazole derivatives as kinase inhibitors published during the past decade (2011-2020).
Collapse
|
10
|
Che J, Dai X, Gao J, Sheng H, Zhan W, Lu Y, Li D, Gao Z, Jin Z, Chen B, Luo P, Yang B, Hu Y, He Q, Weng Q, Dong X. Discovery of N-((3 S,4 S)-4-(3,4-Difluorophenyl)piperidin-3-yl)-2-fluoro-4-(1-methyl-1 H-pyrazol-5-yl)benzamide (Hu7691), a Potent and Selective Akt Inhibitor That Enables Decrease of Cutaneous Toxicity. J Med Chem 2021; 64:12163-12180. [PMID: 34375113 DOI: 10.1021/acs.jmedchem.1c00815] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Rash is one of the primary dose-limiting toxicities of Akt (protein kinase B) inhibitors in clinical trials. Here, we demonstrate the inhibition of Akt2 isozyme may be a driver for keratinocyte apoptosis, which promotes us to search for new selective Akt inhibitors with an improved cutaneous safety property. According to our previous research, compound 2 is selected for further optimization for overcoming the disadvantages of compound 1, including high Akt2 inhibition and high toxicity against HaCaT keratinocytes. The dihedral angle-based design and molecular dynamics simulation lead to the identification of Hu7691 (B5) that achieves a 24-fold selectivity between Akt1 and Akt2. Hu7691 exhibits low activity in inducing HaCaT apoptosis, promising kinase selectivity, and excellent anticancer cell proliferation potencies. Based on the superior results of safety property, pharmacokinetic profile, and in vivo efficacy, the National Medical Products Administration (NMPA) approved the investigational new drug (IND) application of Hu7691.
Collapse
Affiliation(s)
- Jinxin Che
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xiaoyang Dai
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jian Gao
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Haichao Sheng
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Wenhu Zhan
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yang Lu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Dan Li
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zizheng Gao
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zegao Jin
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Binhui Chen
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Peihua Luo
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Bo Yang
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yongzhou Hu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Qiaojun He
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, P. R. China
- Cancer Center, Zhejiang University, Hangzhou 310058, P. R. China
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, P. R. China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, P. R. China
- Cancer Center, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
11
|
Sadeghi F, Afkhami A, Madrakian T, Ghavami R. Computational study on subfamilies of piperidine derivatives: QSAR modelling, model external verification, the inter-subset similarity determination, and structure-based drug designing. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:433-462. [PMID: 33960256 DOI: 10.1080/1062936x.2021.1891568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
A new subset of furan-pyrazole piperidine derivatives was used for QSAR model development. These compounds exhibit good Akt1 inhibitory activity; moreover, antiproliferative activities in vitro against OVCAR-8 (Human ovarian carcinoma cells) and HCT116 (human colon cancer cells), were confirmed for them. Based on the relevant three-dimensional (3D) and 2D autocorrelation descriptors, selected by genetic algorithm (GA), multiple linear regression (MLR) was established on half maximal-inhibitory concentration (IC50), in Akt1 and cancer cell lines independently. Robustness, stability, and predictive ability of the models were evaluated using external and internal validation (r2: 0.742-0.832, Q2LOO: 0.684-0.796, RMSE: 0.247-0.299, F: 32.283-57.578, and r2y-random: 0.049-0.080). Furthermore, in the new strategy, each of the evaluated models was generalized to two other subfamilies of piperidines to simultaneously compare the activities and structural similarity of these three subsets. Probably, structural similarity can be more considered as a criterion of similarity in the mechanism of action. Also, external verification of suggested predictive models was performed by another subset. Finally, by focusing on M64 as the most potent in vivo antitumor compound, 15 new derivatives were designed and six potent candidates were proposed for further investigation.
Collapse
Affiliation(s)
- F Sadeghi
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - A Afkhami
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
- Department of Chemistry, D-8 International University, Hamedan, Iran
| | - T Madrakian
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - R Ghavami
- Chemometrics Laboratory, Chemistry Department, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
12
|
Mor S, Khatri M, Punia R, Sindhu S. Recent Progress on Anticancer Agents Incorporating Pyrazole Scaffold. Mini Rev Med Chem 2021; 22:115-163. [PMID: 33823764 DOI: 10.2174/1389557521666210325115218] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/01/2021] [Accepted: 02/07/2021] [Indexed: 11/22/2022]
Abstract
The search of new anticancer agents is considered as a dynamic field of medicinal chemistry. In recent years, the synthesis of compounds with anticancer potential has increased and a large number of structurally varied compounds displaying potent anticancer activities have been published. Pyrazole is an important biologically active scaffold that possessed nearly all types of biological activities. The aim of this review is to collate literature work reported by researchers to provide an overview on in vivo and in vitro anticancer activities of pyrazole based derivatives among the diverse biological activities displayed by them and also presents recent efforts made on this heterocyclic moiety regarding anticancer activities. This review has been driven from the increasing number of publications, on this issue, which have been reported in the literature since the ending of the 20th century (from 1995-to date).
Collapse
Affiliation(s)
- Satbir Mor
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar-125001, Haryana. India
| | - Mohini Khatri
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar-125001, Haryana. India
| | - Ravinder Punia
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar-125001, Haryana. India
| | - Suchita Sindhu
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar-125001, Haryana. India
| |
Collapse
|
13
|
Che J, Huang F, Zhang M, Xu G, Qu B, Gao J, Chen B, Zhang J, Ying H, Hu Y, Hu X, Zhou Y, Gao A, Li J, Dong X. Structure-based design, synthesis and bioactivity evaluation of macrocyclic inhibitors of mutant isocitrate dehydrogenase 2 (IDH2) displaying activity in acute myeloid leukemia cells. Eur J Med Chem 2020; 203:112491. [PMID: 32679449 DOI: 10.1016/j.ejmech.2020.112491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/04/2020] [Accepted: 05/25/2020] [Indexed: 12/15/2022]
Abstract
The enzymes involved in the metabolic pathways in cancer cells have been demonstrated as important therapeutic targets such as the isocitrate dehydrogenase 2 (IDH2). A series of macrocyclic derivatives was designed based on the marketed IDH2 inhibitor AG-221 by using the conformational restriction strategy. The resulted compounds showed moderate to good inhibitory potential against different IDH2-mutant enzymes. Amongst, compound C6 exhibited better IDH2R140Q inhibitory potency than AG-221, and showed excellent activity of 2-hydroxyglutarate (2-HG) suppression in vitro and its mesylate displayed good pharmacokinetic profiles. Moreover, C6 performed strong binding mode to IDH2R140Q after computational docking and dynamic simulation, which may serve as a good starting point for further development.
Collapse
Affiliation(s)
- Jinxin Che
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Feng Huang
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Mengmeng Zhang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Gaoya Xu
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Bingxue Qu
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Jian Gao
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Binhui Chen
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Jianjun Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, 310058, PR China
| | - Huazhou Ying
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yongzhou Hu
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Xiaobei Hu
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Yubo Zhou
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Anhui Gao
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China.
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China; Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Aoshanwei, Jimo, Qingdao, 266237, PR China.
| | - Xiaowu Dong
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
14
|
Liao Y, Ye Y, Li S, Zhuang Y, Chen L, Chen J, Cui Z, Huo L, Liu S, Song G. Synthesis and SARs of dopamine derivatives as potential inhibitors of influenza virus PA N endonuclease. Eur J Med Chem 2020; 189:112048. [PMID: 31954881 DOI: 10.1016/j.ejmech.2020.112048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 10/25/2022]
Abstract
Currently, influenza PAN endonuclease has become an attractive target for development of new drugs to treat influenza infections. Herein we report the discovery of new PAN endonuclease inhibitors derived from a chelating agent dopamine moiety. A series of dopamine amide derivatives and their conformationally constrained 1,2,3,4-tetrahydroisoquinoline-6,7-diol-based analogs were elaborated and assayed against influenza virus A/WSN/33 (H1N1). Most compounds exhibited moderate to excellent antiviral activities, generating a preliminary SARs. Among them, compounds 14 and 19 showed stronger anti-IAV activity compared with the reference Peramivir. Moreover, 14 and 19 demonstrated a concentration-dependent inhibition of PAN endonuclease based on both FRET assay and SPR assay. Docking studies were also performed to elucidate the binding mode of 14 and 19 with the PAN protein and to identify amino acids involved in their mechanism of action, which were well consistent with the biological data. This finding was beneficial to laying the foundation for the rational development of more effective PAN endonuclease inhibitors.
Collapse
Affiliation(s)
- Yixian Liao
- College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Yilu Ye
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Sumei Li
- Department of Human Anatomy, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Yilian Zhuang
- College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Liye Chen
- College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Jianxin Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zining Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Lijian Huo
- College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Shuwen Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Gaopeng Song
- College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
15
|
Zhan W, Che J, Xu L, Wu Y, Hu X, Zhou Y, Cheng G, Hu Y, Dong X, Li J. Discovery of pyrazole-thiophene derivatives as highly Potent, orally active Akt inhibitors. Eur J Med Chem 2019; 180:72-85. [DOI: 10.1016/j.ejmech.2019.07.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/05/2019] [Accepted: 07/05/2019] [Indexed: 12/31/2022]
|
16
|
Dong X, Zhan W, Zhao M, Che J, Dai X, Wu Y, Xu L, Zhou Y, Zhao Y, Tian T, Cheng G, Jin Z, Li J, Shao Y, He Q, Yang B, Weng Q, Hu Y. Discovery of 3,4,6-Trisubstituted Piperidine Derivatives as Orally Active, Low hERG Blocking Akt Inhibitors via Conformational Restriction and Structure-Based Design. J Med Chem 2019; 62:7264-7288. [DOI: 10.1021/acs.jmedchem.9b00891] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | | | | | | | | | | | - Lei Xu
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yubo Zhou
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | | | | | - Gang Cheng
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | | | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yanfei Shao
- Department of Pharmacy, Zhejiang Provincial People’s Hospital, Hangzhou 310014, China
| | | | | | | | | |
Collapse
|
17
|
Ma X, Fang F, Tao Q, Shen L, Zhong G, Qiao T, Lv X, Li J. Conformationally restricted quinazolone derivatives as PI3Kδ-selective inhibitors: the design, synthesis and biological evaluation. MEDCHEMCOMM 2019; 10:413-420. [PMID: 30996859 PMCID: PMC6431952 DOI: 10.1039/c8md00556g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/22/2019] [Indexed: 11/21/2022]
Abstract
A series of structurally novel quinazolone-based PI3Kδ-selective inhibitors were designed and synthesized via the approach of conformational restriction. The majority of them exhibited two-digit to single-digit nanomolar IC50 values against PI3Kδ, along with low micromolar to submicromolar GI50 values against human malignant B-cell line SU-DHL-6. The representative compound, with the most potent PI3Kδ inhibitory activity (IC50 = 6.3 nM) and anti-proliferative activity (GI50 = 0.21 μM) in this series, was further evaluated for its PI3Kδ selectivity, capability to down-regulate PI3K signaling in SU-DHL-6 cells, in vitro metabolic stability, and pharmacokinetic (PK) properties. The experimental results illustrated that this compound, as a promising lead, merits extensive structural optimization for exploring novel PI3Kδ-selective inhibitors as clinical candidates.
Collapse
Affiliation(s)
- Xiaodong Ma
- School of Pharmacy , Anhui University of Chinese Medicine , Hefei 230031 , China .
- Department of Medicinal Chemistry , Anhui Academy of Chinese Medicine , Hefei 230031 , China
| | - Fang Fang
- School of Pharmacy , Anhui University of Chinese Medicine , Hefei 230031 , China .
- Department of Medicinal Chemistry , Anhui Academy of Chinese Medicine , Hefei 230031 , China
| | - Qiangqiang Tao
- School of Pharmacy , Anhui University of Chinese Medicine , Hefei 230031 , China .
| | - Li Shen
- Ocean College , Zhejiang University , Zhoushan , China
| | - Guochen Zhong
- School of Pharmacy , Anhui University of Chinese Medicine , Hefei 230031 , China .
| | - Tao Qiao
- School of Pharmacy , Anhui University of Chinese Medicine , Hefei 230031 , China .
| | - Xiaoqing Lv
- College of Medicine , Jiaxing University , Jiaxing 314001 , China .
| | - Jiaming Li
- School of Pharmacy , Anhui University of Chinese Medicine , Hefei 230031 , China .
- Department of Medicinal Chemistry , Anhui Academy of Chinese Medicine , Hefei 230031 , China
| |
Collapse
|
18
|
Elsayed NM, Serya RA, Tolba MF, Ahmed M, Barakat K, Abou El Ella DA, Abouzid KA. Design, synthesis, biological evaluation and dynamics simulation of indazole derivatives with antiangiogenic and antiproliferative anticancer activity. Bioorg Chem 2019; 82:340-359. [PMID: 30428414 DOI: 10.1016/j.bioorg.2018.10.071] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/26/2018] [Accepted: 10/31/2018] [Indexed: 02/07/2023]
|
19
|
Discovery of traditional Chinese medicine monomers and their synthetic intermediates, analogs or derivatives for battling P-gp-mediated multi-drug resistance. Eur J Med Chem 2018; 159:381-392. [DOI: 10.1016/j.ejmech.2018.09.061] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 09/22/2018] [Accepted: 09/25/2018] [Indexed: 12/15/2022]
|
20
|
Monier M, El-Mekabaty A, Elattar KM. Five-membered ring systems with one heteroatom: Synthetic routes, chemical reactivity, and biological properties of furan-carboxamide analogues. SYNTHETIC COMMUN 2018. [DOI: 10.1080/00397911.2017.1421227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- M. Monier
- Department of Chemistry, Faculty of Science, Taibah University, Yanbu, KSA
| | - Ahmed El-Mekabaty
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Khaled M. Elattar
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
21
|
Yao TT, Xiao DX, Li ZS, Cheng JL, Fang SW, Du YJ, Zhao JH, Dong XW, Zhu GN. Design, Synthesis, and Fungicidal Evaluation of Novel Pyrazole-furan and Pyrazole-pyrrole Carboxamide as Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:5397-5403. [PMID: 28616975 DOI: 10.1021/acs.jafc.7b01251] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The identification of novel succinate dehydrogenase (SDH) inhibitors represents one of the most attractive directions in the field of fungicide research and development. During our continuous efforts to pursue inhibitors belonging to this class, some structurally novel pyrazole-furan carboxamide and pyrazole-pyrrole carboxamide derivatives have been discovered via the introduction of scaffold hopping and bioisosterism to compound 1, a remarkably potent lead obtained by pharmacophore-based virtual screening. As a result of the evaluation against three destructive fungi, including Sclerotinia sclerotiorum, Rhizoctonia solani, and Pyricularia grisea, a majority of them displayed potent fungicidal activities. In particular, compounds 12I-i, 12III-f, and 12III-o exhibited excellent fungicidal activity against S. sclerotiorum and R. solani comparable to that of commercial SDHI thifluzamide and 1.
Collapse
Affiliation(s)
- Ting-Ting Yao
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University , Hangzhou 310029, P. R. China
| | - Dou-Xin Xiao
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University , Hangzhou 310029, P. R. China
| | - Zhong-Shan Li
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University , Hangzhou 310029, P. R. China
| | - Jing-Li Cheng
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University , Hangzhou 310029, P. R. China
| | - Shao-Wei Fang
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University , Hangzhou 310029, P. R. China
| | - Yong-Jun Du
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University , Hangzhou 310029, P. R. China
| | - Jin-Hao Zhao
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University , Hangzhou 310029, P. R. China
| | - Xiao-Wu Dong
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou, 310058, P. R. China
| | - Guo-Nian Zhu
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University , Hangzhou 310029, P. R. China
| |
Collapse
|