1
|
Pont I, Felipe R, Frías JC, Chicote JU, García-España A, García-España E, Albelda MT. An Effective Liposome-Based Nanodelivery System for Naphthalene Derivative Polyamines with Antitumor Activity. Biomolecules 2024; 14:1347. [PMID: 39595524 PMCID: PMC11591986 DOI: 10.3390/biom14111347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024] Open
Abstract
This study focuses on the development of a novel liposome-based nanodelivery system designed to encapsulate polyamine-1, a compound with potential anti-tumor properties. The main objective of this work was to enhance the therapeutic and imaging potential of polyamine-1 by incorporating it into liposome-based nanoparticles, which were functionalized with a gadolinium complex for imaging purposes and a fluorescent phospholipid for tracking applications. These nanoparticles were characterized by measuring their size, shape, polydispersity index, zeta potential and encapsulation efficiency. In vitro experiments were conducted to evaluate the antitumor activity, specifically determining the cytotoxicity of both free and encapsulated polyamine-1 in cancerous and non-cancerous cell lines. Additionally, the study shows the enhanced signal intensity of gadolinium-loaded liposomes by T1-weighted MRI, highlighting their imaging potential. The experimental results suggest that this liposome-based nanodelivery system not only has therapeutic potential in targeted cancer therapy but also could be advantageous for diagnostic imaging, particularly in MRI applications.
Collapse
Affiliation(s)
- Isabel Pont
- Instituto de Ciencia Molecular, Departamento de Química Inorgánica, Universidad de Valencia, 46010 Valencia, Spain; (I.P.); (R.F.); (E.G.-E.)
| | - Rubén Felipe
- Instituto de Ciencia Molecular, Departamento de Química Inorgánica, Universidad de Valencia, 46010 Valencia, Spain; (I.P.); (R.F.); (E.G.-E.)
| | - Juan C. Frías
- Departamento de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, Spain;
| | - Javier U. Chicote
- Unitat de Recerca, Hospital Joan XXIII, Institut de Investigació Sanitaria Pere Virgili (IISPV), Universitat Roviri i Virgili, 43002 Tarragona, Spain;
| | - Antonio García-España
- Unitat de Recerca, Hospital Joan XXIII, Institut de Investigació Sanitaria Pere Virgili (IISPV), Universitat Roviri i Virgili, 43002 Tarragona, Spain;
| | - Enrique García-España
- Instituto de Ciencia Molecular, Departamento de Química Inorgánica, Universidad de Valencia, 46010 Valencia, Spain; (I.P.); (R.F.); (E.G.-E.)
| | - M. Teresa Albelda
- Department of Inorganic Chemistry, University of Valencia, 46010 Burjassot, Spain
| |
Collapse
|
2
|
Basagni F, Marotta G, Rosini M, Minarini A. Polyamine-Drug Conjugates: Do They Boost Drug Activity? Molecules 2023; 28:molecules28114518. [PMID: 37298993 DOI: 10.3390/molecules28114518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Over the past two decades, the strategy of conjugating polyamine tails with bioactive molecules such as anticancer and antimicrobial agents, as well as antioxidant and neuroprotective scaffolds, has been widely exploited to enhance their pharmacological profile. Polyamine transport is elevated in many pathological conditions, suggesting that the polyamine portion could improve cellular and subcellular uptake of the conjugate via the polyamine transporter system. In this review, we have presented a glimpse on the polyamine conjugate scenario, classified by therapeutic area, of the last decade with the aim of highlighting achievements and fostering future developments.
Collapse
Affiliation(s)
- Filippo Basagni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Giambattista Marotta
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Michela Rosini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Anna Minarini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
3
|
Zhou S, Ding X, Zhao Y, Li J, Luo W. A Flavone-Based Long-Wavelength Fluorescent Probe to Detect Biothiols in vitro and in vivo. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202206016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
4
|
Lu B, Wang L, Ran X, Tang H, Cao D. Recent Advances in Fluorescent Methods for Polyamine Detection and the Polyamine Suppressing Strategy in Tumor Treatment. BIOSENSORS 2022; 12:bios12080633. [PMID: 36005029 PMCID: PMC9405807 DOI: 10.3390/bios12080633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/23/2022] [Accepted: 08/08/2022] [Indexed: 12/22/2022]
Abstract
The biogenic aliphatic polyamines (spermine, spermidine, and putrescine) are responsible for numerous cell functions, including cell proliferation, the stabilization of nucleic acid conformations, cell division, homeostasis, gene expression, and protein synthesis in living organisms. The change of polyamine concentrations in the urine or blood is usually related to the presence of malignant tumors and is regarded as a biomarker for the early diagnosis of cancer. Therefore, the detection of polyamine levels in physiological fluids can provide valuable information in terms of cancer diagnosis and in monitoring therapeutic effects. In this review, we summarize the recent advances in fluorescent methods for polyamine detection (supramolecular fluorescent sensing systems, fluorescent probes based on the chromophore reaction, fluorescent small molecules, and fluorescent nanoparticles). In addition, tumor polyamine-suppressing strategies (such as polyamine conjugate, polyamine analogs, combinations that target multiple components, spermine-responsive supramolecular chemotherapy, a combination of polyamine consumption and photodynamic therapy, etc.) are highlighted. We hope that this review promotes the development of more efficient polyamine detection methods and provides a comprehensive understanding of polyamine-based tumor suppressor strategies.
Collapse
Affiliation(s)
- Bingli Lu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| | - Lingyun Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
- Correspondence:
| | - Xueguang Ran
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510641, China
| | - Hao Tang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| | - Derong Cao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| |
Collapse
|
5
|
Nichugovskiy A, Tron GC, Maslov M. Recent Advances in the Synthesis of Polyamine Derivatives and Their Applications. Molecules 2021; 26:6579. [PMID: 34770986 PMCID: PMC8588431 DOI: 10.3390/molecules26216579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Biogenic polyamines (PAs) are involved in the growth and development of normal cells, and their intracellular concentration is stable. The concentration of PAs in cancer cells is significantly increased to promote and sustain their rapid proliferation. Over the years, synthetic PAs, which differ in their structure, have demonstrated high antitumor activity and are involved in clinical trials. The chemical synthesis of PAs and their conjugates require the correct choice of synthetic pathways-methods for constructing conjugates and the orthogonal protection of amino groups. The most common methods of synthesis of PA conjugates are acylation of regioselectively protected PAs or their alkylation under the conditions of the Fukuyama reaction. One of the most promising methods of PA synthesis is the use of a multicomponent Ugi reaction, which allows various PAs to be obtained in high yields. In this review, we describe and analyze various approaches that are used in the synthesis of polyamines and their conjugates.
Collapse
Affiliation(s)
- Artemiy Nichugovskiy
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 86 Vernadsky Ave., 119571 Moscow, Russia;
| | - Gian Cesare Tron
- Dipartimento di Scienza del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy;
| | - Mikhail Maslov
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 86 Vernadsky Ave., 119571 Moscow, Russia;
| |
Collapse
|
6
|
Acetylsalicylic Acid Enhanced Neurotrophic Profile of Epidermal Neural Crest Stem Cells: A Possible Approach for the Combination Therapy. PHYSIOLOGY AND PHARMACOLOGY 2021. [DOI: 10.52547/phypha.26.2.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
A naphthalimide-polyamine conjugate preferentially accumulates in hepatic carcinoma metastases as a lysosome-targeted antimetastatic agent. Eur J Med Chem 2021; 221:113469. [PMID: 33965862 DOI: 10.1016/j.ejmech.2021.113469] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/31/2022]
Abstract
Disseminated tumors lead to approximately 90% of cancer-associated deaths especially for hepatocellular carcinoma (HCC), indicating the imperative need of antimetastatic drugs and the ineffectiveness of current therapies. Recently polyamine derivatives have been identified as a promising prospect in dealing with metastatic tumors. Herein, a novel class of naphthalimide-polyamine conjugates 8a-8d, 13a-13c, 17 and 21 were synthesized and the mechanism was further determined. The polyamine conjugate 13b displayed remarkably elevated anti-tumor and anti-metastatic effects (76.01% and 75.02%) than the positive control amonafide (46.91% and 55.77%) at 5 mg/kg in vivo. The underlying molecular mechanism indicated that in addition to induce DNA damage by up-regulating p53 and γH2AX, 13b also targeted lysosome to modulate polyamine metabolism and function in a totally different way from that of amonafide. Furthermore, the HMGB1/p62/LC3II/LC3I and p53/SSAT/β-catenin pathways were mainly involved in the inhibition of 13b-induced HCC metastasis by targeting polyamine transporters (PTs) overexpressed in HCC. At last, 13b down-regulated the concentrations of Put, Spd and Spm by modulating polyamine metabolism key enzymes SSAT and PAO, which favored the suppression of fast growing tumor cells. Taken together, our study implies a promising strategy for naphthalimide conjugates to treat terminal cancer of HCC by targeting autophagy and tumor microenvironment with reduced toxicities and notable activities.
Collapse
|
8
|
A Pt(IV)-based mononitro-naphthalimide conjugate with minimized side-effects targeting DNA damage response via a dual-DNA-damage approach to overcome cisplatin resistance. Bioorg Chem 2020; 101:104011. [PMID: 32599363 DOI: 10.1016/j.bioorg.2020.104011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 01/09/2023]
Abstract
Platinum(Pt)(II) drugs and new Pt(IV) agents behave the dysregulation of apoptosis as the result of DNA damage repair and thus, are less effective in the treatment of resistant tumors. Herein, mononitro-naphthalimide Pt(IV) complex 10b with minimized side-effects was reported targeting DNA damage response via a dual-DNA-damage approach to overcome cisplatin resistance. 10b displayed remarkably evaluated antitumor (70.10%) activities in vivo compared to that of cisplatin (52.88%). The highest fold increase (FI) (5.08) for A549cisR cells and the lowest (0.72) for A549 indicated 10b preferentially accumulated in resistant cell lines. The possible molecular mechanism indicates that 10b targets resistant cells in a totally different way from the existing Pt drugs. The cell accumulation and the Pt levels in genomic DNA from 10b is almost 5 folds higher than that of cisplatin and oxaliplatin, indicating the naphthalimide moiety in 10b exhibits preferentially DNA damage. Using 5'-dGMP as a DNA model, the DNA-binding properties of 10b (1 mM) with 5'-dGMP (3 mM) in the presence of ascorbic acid (5 mM) deduced that 10b was generated by the combination of cisplatin with 5'-dGMP after reduction by ascorbic acid. Moreover, 10b promoted the expression of p53 gene and protein more effectively than cisplatin, leading to the increased anticancer activity. The up-regulated γH2A.X and down-regulated RAD51 indicates that 10b not only induced severe DNA damage but also inhibited the DNA damage repair, thus resulting in its higher cytotoxicity in comparison to that of cisplatin. Their preferential accumulation in cancer cells (SMMC-7721) compared to the matched normal cells (HL-7702 cells) demonstrated that they were potentially safe for clinical therapeutic use. In addition, the higher therapeutic indices of 10b for 4T1 cells in vivo indicated that naphthalimide-Pt(IV) conjugates behaved a vital function in the treatment of breast cancer. For the first time, our study implies a significant strategy for Pt drugs to treat resistance cancer targeting DNA damage repair via dual DNA damage mechanism in a totally new field.
Collapse
|
9
|
Tian Z, Tian L, Shi M, Zhao S, Guo S, Luo W, Wang C, Tian Z. Investigation of the interaction of a polyamine-modified flavonoid with bovine serum albumin (BSA) by spectroscopic methods and molecular simulation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 209:111917. [PMID: 32679511 DOI: 10.1016/j.jphotobiol.2020.111917] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023]
Abstract
The interaction between BSA and compound 1 was studied by UV-vis, fluorescence and circular dichroism spectroscopy under physiological conditions (pH = 7.4). Molecular docking and molecular dynamics analyses were also performed. The results showed that compound 1 could bind to BSA. When compound 1 bound to BSA, there were a series of changes in the spectral properties of BSA, which were an enhancement effect of the UV-Vis spectrum of BSA, fluorescence quenching and a weak conformational change in the CD spectrum. The results of the fluorescence experiments at 298, 303 and 310 K showed that fluorescence quenching caused by the addition of compound 1 to BSA was generally static quenching accompanied by a dynamic quenching process, which was shown by the quenching constants of 2.010 × 104 L∙M-1, 1.850 × 104 L∙M-1, and 1.970 × 104 L∙M-1 at the three different temperatures, respectively. From the obtained binding constants and thermodynamic parameters, it was found that hydrophobic forces played an important role in the binding process of 1 to BSA. The results of synchronous fluorescence and three-dimensional fluorescence showed that compound 1 caused a weak conformational change in BSA. Docking results showed that compound 1 was located at binding site II of bovine serum albumin protease. In addition, the flavonoid moiety of compound 1 contributes to the hydrophobic binding of compound 1 to BSA. The results of molecular dynamics, including the root-mean-square deviation (RMSD) and RMS fluctuation (RMSF) values, showed that the binding of compound 1 to BSA did not cause a significant conformational change in BSA.
Collapse
Affiliation(s)
- Zhiyong Tian
- Institute for innovative drug design and evaluation, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Luyao Tian
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan 475001, China
| | - Man Shi
- Institute for innovative drug design and evaluation, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Sihan Zhao
- Institute for innovative drug design and evaluation, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Shudi Guo
- Institute for innovative drug design and evaluation, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Wen Luo
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Chaojie Wang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Zhihui Tian
- Smart city institute of Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
10
|
Ma J, Li Y, Li L, Yue K, Liu H, Wang J, Xi Z, Shi M, Zhao S, Ma Q, Liu S, Guo S, Liu J, Hou L, Wang C, Wang PG, Tian Z, Xie S. A Polyamine-Based Dinitro-Naphthalimide Conjugate as Substrates for Polyamine Transporters Preferentially Accumulates in Cancer Cells and Minimizes Side Effects in vitro and in vivo. Front Chem 2020; 8:166. [PMID: 32328475 PMCID: PMC7160362 DOI: 10.3389/fchem.2020.00166] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/25/2020] [Indexed: 01/10/2023] Open
Abstract
Naphthalimides, such as amonafide and mitonafide in clinical trials, have been developed as antitumor agents for orthotopic tumor. However, the serious side effects in cancer patients limit their applications. Herein, a new class of polyamine-based naphthalimide conjugates 5a-5c, 7a-7b, and 11a-11b with and without the alkylation of the distant nitrogen in the polyamine chain were synthesized and the mechanism was determined. Compared with amonafide, dinitro-naphthalimide conjugate 5c with a 4,3-cyclopropyl motif preferentially accumulates in cancer cells and minimizes side effects in vitro and in vivo. More importantly, 5c at the dosage of as low as 3 mg/kg (57.97%) displays better antitumor effects than the positive control amonafide (53.27%) at 5 mg/kg in vivo. And a remarkably elevated antitumor activity and a reduced toxicity are also observed for 5c at 5 mg/kg (65.90%). The upregulated p53 and the apoptotic cells (73.50%) indicate that the mechanism of 5c to induce apoptosis may result from its enhanced DNA damage. Further investigation indicates that in addition to target DNA, 5c can modulate the polyamine homeostasis by upregulating polyamine oxidase (PAO) in a different way from that of amonafide. And also by targeting PTs overexpressed in most of cancer cells, 5c downregulates the contents of Put, Spd, and Spm, which are in favor of suppressing fast-growing tumor cells. Our study implies a promising strategy for naphthalimide conjugates to treat hepatic carcinoma with notable activities and reduced toxicities at a low dosage.
Collapse
Affiliation(s)
- Jing Ma
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng, China
| | - Yingguang Li
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng, China
| | - Linrong Li
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng, China
| | - Kexin Yue
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng, China
| | - Hanfang Liu
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng, China
| | - Jiajia Wang
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medicine Science, Henan University, Kaifeng, China
| | - Zhuoqing Xi
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng, China.,Henan University of Science and Technology Second Affiliated Hospital, Luoyang, China
| | - Man Shi
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng, China
| | - Sihan Zhao
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng, China
| | - Qi Ma
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng, China
| | - Sitong Liu
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng, China
| | - Shudi Guo
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng, China
| | - Jianing Liu
- School of Medicine, Henan University Minsheng College, Kaifeng, China
| | - Lili Hou
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng, China
| | - Chaojie Wang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, China
| | - Peng George Wang
- Southern University of Science and Technology, School of Medicine, Shenzhen, China
| | - Zhiyong Tian
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng, China
| | - Songqiang Xie
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng, China
| |
Collapse
|
11
|
Liu H, Ma J, Li Y, Yue K, Li L, Xi Z, Zhang X, Liu J, Feng K, Ma Q, Liu S, Guo S, Wang PG, Wang C, Xie S. Polyamine-Based Pt(IV) Prodrugs as Substrates for Polyamine Transporters Preferentially Accumulate in Cancer Metastases as DNA and Polyamine Metabolism Dual-Targeted Antimetastatic Agents. J Med Chem 2019; 62:11324-11334. [PMID: 31765154 DOI: 10.1021/acs.jmedchem.9b01641] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diverse platinum drug candidates have been designed to improve inhibitory potency and overcome resistance for orthotopic tumors. However, the antimetastatic properties have rarely been reported. We herein report that homospermidineplatin (4a), a polyamine-Pt(IV) prodrug, can potently inhibit tumor growth in situ and reverse cisplatin resistance as expected, and more importantly, 4a displays remarkably elevated antimetastatic activity in vivo (65.7%), compared to those of cisplatin (27.0%) and oxaliplatin (19.6%). The underlying molecular mechanism indicates that in addition to targeting nuclear DNA, 4a can modulate polyamine metabolism and function in a manner different from that of cisplatin. By upregulating SSAT and PAO, 4a downregulates the concentrations of Put, Spd, and Spm, which favors the suppression of fast-growing tumor cells. Moreover, the p53/SSAT/β-catenin and PAO/ROS/GSH/GSH-Px pathways are involved in the inhibition of 4a-induced tumor metastasis. Our study implies a promising strategy for the design of platinum drugs for the treatment of terminal cancer.
Collapse
Affiliation(s)
- Hanfang Liu
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation , Henan University , North Jinming Avenue , Kaifeng 475004 , China
| | - Jing Ma
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation , Henan University , North Jinming Avenue , Kaifeng 475004 , China
| | - Yingguang Li
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation , Henan University , North Jinming Avenue , Kaifeng 475004 , China
| | - Kexin Yue
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation , Henan University , North Jinming Avenue , Kaifeng 475004 , China
| | - Linrong Li
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation , Henan University , North Jinming Avenue , Kaifeng 475004 , China
| | - Zhuoqing Xi
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation , Henan University , North Jinming Avenue , Kaifeng 475004 , China
- Henan University of Science and Technology Second Affiliated Hospital , Luoyang 471000 , China
| | - Xiao Zhang
- The Key Laboratory of Natural Medicine and Immuno-Engineering , Henan University , Kaifeng 475004 , China
| | - Jianing Liu
- School of Medicine , Henan University Minsheng College , Kaifeng 475004 , China
| | - Kai Feng
- School of Medicine , Henan University Minsheng College , Kaifeng 475004 , China
| | - Qi Ma
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation , Henan University , North Jinming Avenue , Kaifeng 475004 , China
| | - Sitong Liu
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation , Henan University , North Jinming Avenue , Kaifeng 475004 , China
| | - Shudi Guo
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation , Henan University , North Jinming Avenue , Kaifeng 475004 , China
| | - Peng George Wang
- The State Key Laboratory of Microbial Technology and National Glycoengineering Research Center , Shandong University , Qingdao 266237 , China
| | - Chaojie Wang
- The Key Laboratory of Natural Medicine and Immuno-Engineering , Henan University , Kaifeng 475004 , China
| | - Songqiang Xie
- School of Pharmacy, Institute of Chemical Biology , Henan University , North Jinming Avenue , Kaifeng 475004 , China
| |
Collapse
|
12
|
Tian JL, Yao GD, Zhang YY, Lin B, Zhang Y, Li LZ, Huang XX, Song SJ. Pyran-2-one derivatives from Croton crassifolius as potent apoptosis inducers in HepG2 cells via p53-mediated Ras/Raf/ERK pathway. Bioorg Chem 2018; 79:355-362. [DOI: 10.1016/j.bioorg.2018.05.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/17/2018] [Accepted: 05/20/2018] [Indexed: 01/22/2023]
|
13
|
Ramya PVS, Thatikonda S, Angapelly S, Babu BN, Naidu VGM, Kamal A. Synthesis and Biological Evaluation of Thieno[2, 3-d
]pyrimidine-amides as Potential Anticancer Agents. ChemistrySelect 2018. [DOI: 10.1002/slct.201703061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Posa Venkata Sri Ramya
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education & Research (NIPER); Hyderabad-500037 India
| | - Sowjanya Thatikonda
- Department of Pharmacology and Toxicology; National Institute of Pharmaceutical Education & Research (NIPER); Hyderabad-500037 India
| | - Srinivas Angapelly
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education & Research (NIPER); Hyderabad-500037 India
| | - Bathini Nagendra Babu
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education & Research (NIPER); Hyderabad-500037 India
| | - Vegi Ganga Modi Naidu
- Department of Pharmacology and Toxicology; National Institute of Pharmaceutical Education & Research (NIPER); Hyderabad-500037 India
| | - Ahmed Kamal
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education & Research (NIPER); Hyderabad-500037 India
- School of Pharmaceutical Education and Research (SPER); Jamia Hamdard University; New Delhi-110062 India
| |
Collapse
|
14
|
Li Q, Zhu ZX, Zhang X, Luo W, Chang LP, Chen S, Wang YX, Xie SQ, Chang CC, Wang CJ. The lead optimization of the polyamine conjugate of flavonoid with a naphthalene motif: Synthesis and biological evaluation. Eur J Med Chem 2018; 146:564-576. [PMID: 29407981 DOI: 10.1016/j.ejmech.2018.01.074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/22/2018] [Accepted: 01/22/2018] [Indexed: 01/08/2023]
Abstract
Polyamine conjugated flavonoid with a naphthalene moiety (ZYY14) displayed excellent therapeutic activity against hepatocellular carcinoma. In this study, three different series of novel flavonoid-polyamine conjugates were designed and screened against tumor cell lines. The structure-activity relationship study demonstrated the importance of the naphthalene moiety (as the B-ring), the basic side chains in the A-ring, and the methoxy group linked to the C-ring. The optimized compound 9b displayed better antitumor potency in vitro and in vivo than the lead compound ZYY14. Fluorescent assays revealed that 9b could enter cancer cells via polyamine transporter (PAT) and locate in mitochondria and endoplasmic reticulum. Compound 9b and ZYY14 demonstrated similar apoptotic mechanism in the cytotoxicity studies and stimulated the expression of apoptosis-related proteins, such as p-p38, p-JNK, p53 and Bax. In addition, 9b can initiate autophagy which inhibited the occurrence of apoptosis. Thus, 9b can be used as a valuable lead for the future development of antitumor agents.
Collapse
Affiliation(s)
- Qian Li
- Key Lab of Natural Medicine and Immune Engineering, Henan University, Kaifeng 475004, China
| | - Zi-Xin Zhu
- Key Lab of Natural Medicine and Immune Engineering, Henan University, Kaifeng 475004, China
| | - Xin Zhang
- Key Lab of Natural Medicine and Immune Engineering, Henan University, Kaifeng 475004, China
| | - Wen Luo
- Key Lab of Natural Medicine and Immune Engineering, Henan University, Kaifeng 475004, China; Institute of Chemical Biology, Henan University, Kaifeng 475004, China.
| | - Li-Ping Chang
- Key Lab of Natural Medicine and Immune Engineering, Henan University, Kaifeng 475004, China
| | - Shuai Chen
- Key Lab of Natural Medicine and Immune Engineering, Henan University, Kaifeng 475004, China
| | - Yu-Xia Wang
- Chemistry Department, Henan University, Kaifeng 475004, China.
| | - Song-Qiang Xie
- Institute of Chemical Biology, Henan University, Kaifeng 475004, China
| | - Cong-Cong Chang
- Key Lab of Natural Medicine and Immune Engineering, Henan University, Kaifeng 475004, China
| | - Chao-Jie Wang
- Key Lab of Natural Medicine and Immune Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
15
|
Li M, Wang Y, Ge C, Chang L, Wang C, Tian Z, Wang S, Dai F, Zhao L, Xie S. Synthesis and biological evaluation of novel alkylated polyamine analogues as potential anticancer agents. Eur J Med Chem 2018; 143:1732-1743. [DOI: 10.1016/j.ejmech.2017.10.069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 01/17/2023]
|
16
|
Dai F, Li Q, Wang Y, Ge C, Feng C, Xie S, He H, Xu X, Wang C. Design, Synthesis, and Biological Evaluation of Mitochondria-Targeted Flavone–Naphthalimide–Polyamine Conjugates with Antimetastatic Activity. J Med Chem 2017; 60:2071-2083. [DOI: 10.1021/acs.jmedchem.6b01846] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Fujun Dai
- Key
Laboratory of Natural Medicine and Immuno-Engineering, ‡College of Chemistry
and Chemical Engineering, and §Pharmaceutical College, Henan University, Kaifeng 475004, Henan, China
| | - Qian Li
- Key
Laboratory of Natural Medicine and Immuno-Engineering, ‡College of Chemistry
and Chemical Engineering, and §Pharmaceutical College, Henan University, Kaifeng 475004, Henan, China
| | - Yuxia Wang
- Key
Laboratory of Natural Medicine and Immuno-Engineering, ‡College of Chemistry
and Chemical Engineering, and §Pharmaceutical College, Henan University, Kaifeng 475004, Henan, China
| | - Chaochao Ge
- Key
Laboratory of Natural Medicine and Immuno-Engineering, ‡College of Chemistry
and Chemical Engineering, and §Pharmaceutical College, Henan University, Kaifeng 475004, Henan, China
| | - Chenyang Feng
- Key
Laboratory of Natural Medicine and Immuno-Engineering, ‡College of Chemistry
and Chemical Engineering, and §Pharmaceutical College, Henan University, Kaifeng 475004, Henan, China
| | - Songqiang Xie
- Key
Laboratory of Natural Medicine and Immuno-Engineering, ‡College of Chemistry
and Chemical Engineering, and §Pharmaceutical College, Henan University, Kaifeng 475004, Henan, China
| | - Haoying He
- Key
Laboratory of Natural Medicine and Immuno-Engineering, ‡College of Chemistry
and Chemical Engineering, and §Pharmaceutical College, Henan University, Kaifeng 475004, Henan, China
| | - Xiaojuan Xu
- Key
Laboratory of Natural Medicine and Immuno-Engineering, ‡College of Chemistry
and Chemical Engineering, and §Pharmaceutical College, Henan University, Kaifeng 475004, Henan, China
| | - Chaojie Wang
- Key
Laboratory of Natural Medicine and Immuno-Engineering, ‡College of Chemistry
and Chemical Engineering, and §Pharmaceutical College, Henan University, Kaifeng 475004, Henan, China
| |
Collapse
|
17
|
Thakor V, Poddar M, Dey S, Manjula SN, Madhunapantula SV, Pawara R, Patel HM, Noolvi MN. Exploring the anti-breast cancer potential of flavonoid analogs. RSC Adv 2016. [DOI: 10.1039/c6ra14428d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the course of our search for new antitumor agents for breast cancer, novel flavone derivatives were synthesized, characterized and examined for their antitumor activities against breast cancer cell lines.
Collapse
Affiliation(s)
- Vanrajsinh Thakor
- Department of Pharmaceutical Chemistry
- Shree Dhanvantary Pharmacy College
- Kim (Surat)-394110
- India
| | - Mayur Poddar
- Department of Pharmaceutical Chemistry
- Shree Dhanvantary Pharmacy College
- Kim (Surat)-394110
- India
| | - Sumit Dey
- Department of Pharmacology
- JSS College of Pharmacy
- Mysore-570015
- India
| | - S. N. Manjula
- Department of Pharmacology
- JSS College of Pharmacy
- Mysore-570015
- India
| | | | - Rahul Pawara
- Department of Pharmaceutical Chemistry
- R. C. Patel Institute of Pharmaceutical Education and Research
- District Dhule-425 405
- India
| | - Harun M. Patel
- Department of Pharmaceutical Chemistry
- R. C. Patel Institute of Pharmaceutical Education and Research
- District Dhule-425 405
- India
| | - Malleshappa N. Noolvi
- Department of Pharmaceutical Chemistry
- Shree Dhanvantary Pharmacy College
- Kim (Surat)-394110
- India
| |
Collapse
|