1
|
Kumar P, Singampalli A, Bandela R, Srimounika B, Rajyalakshmi SI, Devi A, Nanduri S, Venkata Madhavi Y. Spirocyclic compounds: potential drug leads in the fight against Mycobacterium tuberculosis. Future Med Chem 2025; 17:819-837. [PMID: 40103373 PMCID: PMC12026180 DOI: 10.1080/17568919.2025.2479413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/05/2025] [Indexed: 03/20/2025] Open
Abstract
TB drug discovery needs scientists' attention since drug resistance in TB, including extensively drug-resistant TB (XDR-TB) and multidrug-resistant TB (MDR-TB), is a major healthcare concern. Since millions of fatalities from tuberculosis are recorded each year, there is an urgent need to discover new anti-tubercular medications that will either eradicate or control the disease. Spiro compounds have garnered a lot of attention in medicinal chemistry these days because of various biological activities mainly because of their adaptability and structural resemblance to significant pharmacophores. This article overviews the synthesis and activity of spirocyclic compounds as anti-tubercular agents. Both synthesized and naturally occurring spiro chemicals exhibit antitubercular properties. The promising antitubercular potential shown by some of the spirocyclic compounds has attracted scientists to explore them further to develop molecules with improved pharmacodynamic and pharmacokinetic properties and new mechanisms of action with enhanced safety and efficacy in tuberculosis. The current review covers the exploration of spiro compounds from the year 2004 to 2024 for the combat of Tuberculosis. This review gives the comprehensive advancements in this scaffold which would help the logical design of powerful, less toxic, and more effective spirocyclic anti-TB medicinal molecules.
Collapse
Affiliation(s)
- Pardeep Kumar
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Anuradha Singampalli
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rani Bandela
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Bellapukonda Srimounika
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Sugali Indravath Rajyalakshmi
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ankita Devi
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Srinivas Nanduri
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Yaddanapudi Venkata Madhavi
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
2
|
Cardoso FS, Kadam AL, Nelson RC, Tomlin JW, Dahal D, Kuehner CS, Gudvangen G, Arduengo AJ, Burns JM, Aleshire SL, Snead DR, Qu F, Belmore K, Ahmad S, Agrawal T, Sieber JD, Donsbach KO. Practical and Scalable Two-Step Process for 6-(2-Fluoro-4-nitrophenyl)-2-oxa-6-azaspiro[3.3]heptane: A Key Intermediate of the Potent Antibiotic Drug Candidate TBI-223. Org Process Res Dev 2023; 27:1390-1399. [PMID: 37496954 PMCID: PMC10367134 DOI: 10.1021/acs.oprd.3c00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Indexed: 07/28/2023]
Abstract
A low-cost, protecting group-free route to 6-(2-fluoro-4-nitrophenyl)-2-oxa-6-azaspiro[3.3]heptane (1), the starting material for the in-development tuberculosis treatment TBI-223, is described. The key bond forming step in this route is the creation of the azetidine ring through a hydroxide-facilitated alkylation of 2-fluoro-4-nitroaniline (2) with 3,3-bis(bromomethyl)oxetane (BBMO, 3). After optimization, this ring formation reaction was demonstrated at 100 g scale with isolated yield of 87% and final product purity of >99%. The alkylating agent 3 was synthesized using an optimized procedure that starts from tribromoneopentyl alcohol (TBNPA, 4), a commercially available flame retardant. Treatment of 4 with sodium hydroxide under Schotten-Baumann conditions closed the oxetane ring, and after distillation, 3 was recovered in 72% yield and >95% purity. This new approach to compound 1 avoids the previous drawbacks associated with the synthesis of 2-oxa-6-azaspiro[3,3]heptane (5), the major cost driver used in previous routes to TBI-223. The optimization and multigram scale-up results for this new route are reported herein.
Collapse
Affiliation(s)
- Flavio S.P. Cardoso
- Medicines
for All Institute, Virginia Commonwealth
University, 737 N. 5th St., Box 980100, Richmond, Virginia 23298, United States
| | - Appasaheb L. Kadam
- Medicines
for All Institute, Virginia Commonwealth
University, 737 N. 5th St., Box 980100, Richmond, Virginia 23298, United States
| | - Ryan C. Nelson
- Medicines
for All Institute, Virginia Commonwealth
University, 737 N. 5th St., Box 980100, Richmond, Virginia 23298, United States
| | - John W. Tomlin
- Medicines
for All Institute, Virginia Commonwealth
University, 737 N. 5th St., Box 980100, Richmond, Virginia 23298, United States
| | - Dipendra Dahal
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332-0400, United States
| | - Christopher S. Kuehner
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332-0400, United States
| | - Gard Gudvangen
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332-0400, United States
| | - Anthony J. Arduengo
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332-0400, United States
| | - Justina M. Burns
- Medicines
for All Institute, Virginia Commonwealth
University, 737 N. 5th St., Box 980100, Richmond, Virginia 23298, United States
| | - Sarah L. Aleshire
- Medicines
for All Institute, Virginia Commonwealth
University, 737 N. 5th St., Box 980100, Richmond, Virginia 23298, United States
| | - David R. Snead
- Medicines
for All Institute, Virginia Commonwealth
University, 737 N. 5th St., Box 980100, Richmond, Virginia 23298, United States
| | - Fengrui Qu
- Department
of Chemistry and Biochemistry, The University
of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | - Ken Belmore
- Department
of Chemistry and Biochemistry, The University
of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | - Saeed Ahmad
- Medicines
for All Institute, Virginia Commonwealth
University, 737 N. 5th St., Box 980100, Richmond, Virginia 23298, United States
| | - Toolika Agrawal
- Department
of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284-3208, United States
| | - Joshua D. Sieber
- Department
of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284-3208, United States
| | - Kai Oliver Donsbach
- Medicines
for All Institute, Virginia Commonwealth
University, 737 N. 5th St., Box 980100, Richmond, Virginia 23298, United States
| |
Collapse
|
3
|
Fernandes GFS, Scarim CB, Kim SH, Wu J, Castagnolo D. Oxazolidinones as versatile scaffolds in medicinal chemistry. RSC Med Chem 2023; 14:823-847. [PMID: 37252095 PMCID: PMC10211318 DOI: 10.1039/d2md00415a] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/06/2023] [Indexed: 11/19/2023] Open
Abstract
Oxazolidinone is a five-member heterocyclic ring with several biological applications in medicinal chemistry. Among the three possible isomers, 2-oxazolidinone is the most investigated in drug discovery. Linezolid was pioneered as the first approved drug containing an oxazolidinone ring as the pharmacophore group. Numerous analogues have been developed since its arrival on the market in 2000. Some have succeeded in reaching the advanced stages of clinical studies. However, most oxazolidinone derivatives reported in recent decades have not reached the initial stages of drug development, despite their promising pharmacological applications in a variety of therapeutic areas, including antibacterial, antituberculosis, anticancer, anti-inflammatory, neurologic, and metabolic diseases, among other areas. Therefore, this review article aims to compile the efforts of medicinal chemists who have explored this scaffold over the past decades and highlight the potential of the class for medicinal chemistry.
Collapse
Affiliation(s)
| | - Cauê Benito Scarim
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University Araraquara 14800903 Brazil
| | - Seong-Heun Kim
- Department of Chemistry, University College London 20 Gordon Street WC1H 0AJ London UK
- School of Cancer and Pharmaceutical Sciences, King's College London 150 Stamford Street SE1 9NH London UK
| | - Jingyue Wu
- Department of Chemistry, University College London 20 Gordon Street WC1H 0AJ London UK
| | - Daniele Castagnolo
- Department of Chemistry, University College London 20 Gordon Street WC1H 0AJ London UK
| |
Collapse
|
4
|
Wang X, Jin B, Han Y, Wang T, Sheng Z, Tao Y, Yang H. Optimization and Antibacterial Evaluation of Novel 3-(5-Fluoropyridine-3-yl)-2-oxazolidinone Derivatives Containing a Pyrimidine Substituted Piperazine. Molecules 2023; 28:molecules28114267. [PMID: 37298744 DOI: 10.3390/molecules28114267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
In this study, a series of novel 3-(5-fluoropyridine-3-yl)-2-oxazolidinone derivatives were designed and synthesized based on compounds previously reported, and their antibacterial activity was investigated. Then their antibacterial activity was investigated for the first time. Preliminary screening results showed that all these compounds exhibited antibacterial activity against gram-positive bacteria, including 7 drug-sensitive strains and 4 drug-resistant strains, among which compound 7j exhibited an 8-fold stronger inhibitory effect than linezolid, with a minimum inhibitory concentration (MIC) value of 0.25 µg/mL. Further molecular docking studies predicted the possible binding mode between active compound 7j and the target. Interestingly, these compounds could not only hamper the formation of biofilms, but also have better safety, as confirmed by cytotoxicity experiments. All these results indicate that these 3-(5-fluoropyridine-3-yl)-2-oxazolidinone derivatives have the potential to be developed into novel candidates for the treatment of gram-positive bacterial infections.
Collapse
Affiliation(s)
- Xin Wang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Bo Jin
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yutong Han
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Tong Wang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zunlai Sheng
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Ye Tao
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Hongliang Yang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| |
Collapse
|
5
|
Du C, Yang X, Long Y, Lang X, Liu L, Xu Y, Wu H, Chu Y, Hu X, Deng J, Ji Q. Design, synthesis and biological evaluation of novel spiro-quinazolinone derivatives as chitin synthase inhibitors and antifungal agents. Eur J Med Chem 2023; 255:115388. [PMID: 37141707 DOI: 10.1016/j.ejmech.2023.115388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 05/06/2023]
Abstract
A series of spiro-quinazolinone scaffolds were constructed based on the bioactivity of quinazolinone and the inherent feature of spirocycle to design novel chitin synthase inhibitors that possess mode of action different from that of the currently used antifungal agents. Among them, the spiro[thiophen-quinazolin]-one derivatives containing α, β-unsaturated carbonyl fragments had shown inhibitory activities against chitin synthase and antifungal activities. The enzymatic experiments showed that among the sixteen compounds, compounds 12d, 12g, 12j, 12l and 12m exhibited inhibitions against chitin synthase with IC50 values of 116.7 ± 19.6 μM, 106.7 ± 14.2 μM, 102.3 ± 9.6 μM, 122.7 ± 22.2 μM and 136.8 ± 12.4 μM, respectively, which were comparable to that of polyoxin B (IC50 = 93.5 ± 11.1 μM). The assays of enzymatic Kinetic parameters showed that compound 12g was a non-competitive inhibitor of chitin synthase. The antifungal assays showed that compounds 12d, 12g, 12j, 12l and 12m exhibited a broad-spectrum of antifungal activity against the four strains tested in vitro. In which, compounds 12g and 12j had stronger antifungal activity against four tested strains than that of polyoxin B and similar to that of fluconazole, while compounds 12d, 12l and 12m showed antifungal activity comparable to that of polyoxin B against four tested strains. Meanwhile, compounds 12d, 12g, 12j, 12l and 12m exhibited good antifungal activity against fluconazole-resistant and micafungin-resistant fungi variants with MIC values ranging from 4 to 32 μg/mL while the MIC values of reference drugs were above 256 μg/mL. Furthermore, the results of drug-combination experiments showed that compounds 12d, 12g, 12j, 12l and 12m had synergistic or additive effects with fluconazole or polyoxin B. The results of sorbitol protection experiment and the experiment of antifungal activity against micafungin-resistant fungi further demonstrated that these compounds target chitin synthase. The result of cytotoxicity assay showed that compound 12g had low toxicity toward human lung cancer A549 cells and the ADME analysis in silico displayed that compound 12g possessed promising pharmacokinetic properties. The molecular docking indicated that compound 12g formed multiple hydrogen bond interactions binding to chitin synthase, which might be conductive to increasing the binding affinity and inhibiting the activity of chitin synthase. The above results indicated that the designed compounds were chitin synthase inhibitors with selectivity and broad-spectrum antifungal activity and could be act as the lead compounds against drug-resistant fungi.
Collapse
Affiliation(s)
- Chuanbiao Du
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Xinlong Yang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yan Long
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Xueqing Lang
- Key Laboratory of Laboratory Medicine Diagnostics, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Lige Liu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yajie Xu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Hu Wu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yiwen Chu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, PR China
| | - Xiaolei Hu
- Key Laboratory of Laboratory Medicine Diagnostics, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Junfeng Deng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, PR China.
| | - Qinggang Ji
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
6
|
Chen XM, Zhou JY, Liu SQ, Song LH, Wang HL, Wang Q, Liang SM, Lu L, Wei JH, Huang R, Zhang Y. Design, synthesis, and antitumor evaluation of morpholine substituted bisnaphthalimides as DNA targeting agents. Bioorg Med Chem Lett 2023; 85:129218. [PMID: 36894107 DOI: 10.1016/j.bmcl.2023.129218] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
A series of mono- and bisnaphthalimides derivatives containing 3-nitro and 4-morpholine moieties were designed, synthesized, and evaluated for their in vitro anticancer activities against four cancer cell lines. Some compounds exhibited relatively good antiproliferative activity on the cell lines tested, in comparison with mitonafide and amonafide. It is noteworthy that bisnaphthalimide A6 was identified as the most potent compound in anti-proliferation against MGC-803 cells, with an IC50 lowered to 0.09 μM, a far greater potency than that of mono-naphthalimide A7, mitonafide, and amonafide. A gel electrophoresis assay revealed that DNA and Topo I were the potential targets of compounds A6 and A7. The treatment of CNE-2 cells with compounds A6 and A7 resulted in an S phase cell cycle arrest, accompanied by the upregulation of the expression levels of the antioncogene p27 and the down-regulation of the expression levels of CDK2 and cyclin E. In addition, compounds A6 and A7-induced apoptosis was further confirmed by flow cytometry, ROS generation assay, and Hoechst 33,258 staining. In particular, in vivo antitumor assay results revealed that bisnaphthalimide A6 exhibited potent anticancer efficiency in an MGC-803 xenograft tumor model, in comparison with mitonafide, and had lower toxicity than mono-naphthalimide A7. In brief, the results suggested that bisnaphthalimide derivatives containing 3-nitro and 4-morpholine moieties might serve as DNA binding agents for the development of new antitumor agents.
Collapse
Affiliation(s)
- Xiao-Man Chen
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China
| | - Jian-Yu Zhou
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China
| | - Shuang-Qiang Liu
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China
| | - Long-Hao Song
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China
| | - Hui-Ling Wang
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China
| | - Qi Wang
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China
| | - Si-Min Liang
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China
| | - Lin Lu
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China
| | - Jian-Hua Wei
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China.
| | - Rizhen Huang
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China.
| | - Ye Zhang
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 5411199, China.
| |
Collapse
|
7
|
Malik MS, Faazil S, Alsharif MA, Sajid Jamal QM, Al-Fahemi JH, Banerjee A, Chattopadhyay A, Pal SK, Kamal A, Ahmed SA. Antibacterial Properties and Computational Insights of Potent Novel Linezolid-Based Oxazolidinones. Pharmaceuticals (Basel) 2023; 16:516. [PMID: 37111273 PMCID: PMC10143092 DOI: 10.3390/ph16040516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
The mounting evidence of bacterial resistance against commonly prescribed antibiotics warrants the development of new antibacterial drugs on an urgent basis. Linezolid, an oxazolidinone antibiotic, is a lead molecule in designing new oxazolidinones as antibacterial agents. In this study, we report the antibacterial potential of the novel oxazolidinone-sulphonamide/amide conjugates that were recently reported by our research group. The antibacterial assays showed that, from the series, oxazolidinones 2 and 3a exhibited excellent potency (MIC of 1.17 μg/mL) against B. subtilis and P. aeruginosa strains, along with good antibiofilm activity. Docking studies revealed higher binding affinities of oxazolidinones 2 and 3a compared to linezolid, which were further validated by molecular dynamics simulations. In addition to this, other computational studies, one-descriptor (log P) analysis, ADME-T and drug likeness studies demonstrated the potential of these novel linezolid-based oxazolidinones to be taken forward for further studies.
Collapse
Affiliation(s)
- M. Shaheer Malik
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (M.A.A.)
| | - Shaikh Faazil
- Department of Chemistry, Poona College of Arts, Science and Commerce, Pune 411001, India
- Department of Medicinal Chemistry and Pharmacology, CSIR—Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Meshari A. Alsharif
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (M.A.A.)
| | - Qazi Mohammad Sajid Jamal
- Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia;
| | - Jabir H. Al-Fahemi
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (M.A.A.)
| | - Amrita Banerjee
- Department of Physics, Jadavpur University, 188, Raja S.C. Mallick Rd., Kolkata 700032, India;
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India
| | - Arpita Chattopadhyay
- Department of Basic Science and Humanities, Techno International New Town, Block—DG 1/1, Action Area 1, New Town, Rajarhat, Kolkata 700156, India;
| | - Samir Kumar Pal
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector 3, Salt Lake, Kolkata 700106, India;
| | - Ahmed Kamal
- Department of Medicinal Chemistry and Pharmacology, CSIR—Indian Institute of Chemical Technology, Hyderabad 500007, India
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad 500078, India
| | - Saleh A. Ahmed
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (M.A.A.)
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| |
Collapse
|
8
|
Weinmann J, Kirchner L, Engstler M, Meinel L, Holzgrabe U. Design, synthesis and biological evaluations of quinolone amides against African trypanosomiasis with improved solubility. Eur J Med Chem 2023; 250:115176. [PMID: 36805945 DOI: 10.1016/j.ejmech.2023.115176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023]
Abstract
The human African trypanosomiasis is a devastating parasitic infection, which is caused by the protozoan Trypanosoma brucei and transmitted by the bite of the tsetse fly. An untreated infection usually results in death and only few drugs with significant drawbacks are currently available for treatment. Previous investigations revealed the quinolone amide MB007 as a lead compound with an excellent selectivity for T. b. brucei. Here, new quinolone amides were synthesized for deeper insights into the structure-activity relationship. Furthermore, the aqueous solubility of the compounds was analyzed, as the poor solubility of previous quinolone amides impeded in vivo studies for target identification. The biological evaluation led to the new lead structure 9f, which exhibits a promising in vitro activity against T. b. brucei (IC50 = 22 nM) and showed no cytotoxicity against macrophages. Moreover, compounds 10b and 10c were discovered, which possessed an improved solubility combined with a decent selectivity.
Collapse
Affiliation(s)
- Joshua Weinmann
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Lukas Kirchner
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Markus Engstler
- Department of Cell and Developmental Biology, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
9
|
Wurm KW, Bartz FM, Schulig L, Bodtke A, Bednarski PJ, Link A. Replacing the oxidation-sensitive triaminoaryl chemotype of problematic K V 7 channel openers: Exploration of a nicotinamide scaffold. Arch Pharm (Weinheim) 2023; 356:e2200473. [PMID: 36395379 DOI: 10.1002/ardp.202200473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 11/18/2022]
Abstract
KV 7 channel openers have proven their therapeutic value in the treatment of pain as well as epilepsy and, moreover, they hold the potential to expand into additional indications with unmet medical needs. However, the clinically validated but meanwhile discontinued KV 7 channel openers flupirtine and retigabine bear an oxidation-sensitive triaminoraryl scaffold, which is suspected of causing adverse drug reactions via the formation of quinoid oxidation products. Here, we report the design and synthesis of nicotinamide analogs and related compounds that remediate the liability in the chemical structure of flupirtine and retigabine. Optimization of a nicotinamide lead structure yielded analogs with excellent KV 7.2/3 opening activity, as evidenced by EC50 values approaching the single-digit nanomolar range. On the other hand, weighted KV 7.2/3 opening activity data including inactive compounds allowed for the establishment of structure-activity relationships and a plausible binding mode hypothesis verified by docking and molecular dynamics simulations.
Collapse
Affiliation(s)
- Konrad W Wurm
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Frieda-Marie Bartz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Lukas Schulig
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Anja Bodtke
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Patrick J Bednarski
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Andreas Link
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| |
Collapse
|
10
|
Synthesis and biological activity evaluation of novel 3,5,7-trisubstituted pyrazolo[1,5-a]pyrimidines. Bioorg Med Chem Lett 2023; 80:129096. [PMID: 36496201 DOI: 10.1016/j.bmcl.2022.129096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022]
Abstract
Mutation of FLT3 protein kinase is often associated with deregulated cell proliferation in acute myeloid leukemia and the inhibition of this kinase is a potential therapeutic strategy. We report a novel series of 3,5,7-trisubstituted pyrazolo[1,5-a]pyrimidines prepared in an effort to study their biological activity particularly toward FLT3-ITD and its downstream regulators as well as toward CDK2 and CDK9. Derivative 10b was capable to strongly inhibit all kinases and its selectivity in FLT3-ITD expressing cell lines MOLM13 and MV4-11 was in line with FLT3-ITD inhibition. Further biochemical analyses and molecular docking confirmed FLT3 as a cellular target of 10b.
Collapse
|
11
|
Jin B, Wang T, Chen JY, Liu XQ, Zhang YX, Zhang XY, Sheng ZL, Yang HL. Synthesis and Biological Evaluation of 3-(Pyridine-3-yl)-2-Oxazolidinone Derivatives as Antibacterial Agents. Front Chem 2022; 10:949813. [PMID: 35923260 PMCID: PMC9339906 DOI: 10.3389/fchem.2022.949813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
In this research, a series of 3-(pyridine-3-yl)-2-oxazolidinone derivatives was designed, synthesized, and evaluated for in vitro antibacterial activity, which included bacteriostatic, morphological, kinetic studies, and molecular docking. The results demonstrated that compounds 21b, 21d, 21e and 21f exhibited strong antibacterial activity similar to that of linezolid toward five Gram-positive bacteria. After observing the effect of the drug on the morphology and growth dynamics of the bacteria, the possible modes of action were predicted by molecular docking. Furthermore, the antibiofilm activity and the potential drug resistance assay was proceeded. These compounds exhibited universal antibiofilm activity and compound 21d showed significant concentration-dependent inhibition of biofilm formation. Compound 21d also showed a stable effect on S. pneumoniae (ATCC 49619) with less drug resistance growth for 15 days, which is much longer than that of linezolid. Overall, these results can be used to guide further exploration of novel antimicrobial agents.
Collapse
Affiliation(s)
- Bo Jin
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tong Wang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jia-yi Chen
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiao-qing Liu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yi-xin Zhang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiu-ying Zhang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zun-lai Sheng
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Hong-Liang Yang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
- *Correspondence: Hong-Liang Yang,
| |
Collapse
|
12
|
Roman G. Thiophene-containing compounds with antimicrobial activity. Arch Pharm (Weinheim) 2022; 355:e2100462. [PMID: 35289443 DOI: 10.1002/ardp.202100462] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/19/2022]
Abstract
Thiophene, as a member of the group of five-membered heterocycles containing one heteroatom, is one of the simplest heterocyclic systems. Many synthetic strategies allow the accurate positioning of various functionalities onto the thiophene ring. This review provides a comprehensive, systematic and detailed account of the developments in the field of antimicrobial compounds featuring at least one thiophene ring in their structure, over the last decade.
Collapse
Affiliation(s)
- Gheorghe Roman
- Department of Inorganic Polymers, Petru Poni Institute of Macromolecular Chemistry, Iaşi, Romania
| |
Collapse
|
13
|
Recent advancements and developments in search of anti-tuberculosis agents: A quinquennial update and future directions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131473] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Kshirsagar R, Gadekar PK, Khedkar VM, Vijayakumar V. Design, Synthesis, and the Effects of ( E)-9-Oxooctadec-10-en-12-ynoic Acid Analogues to Promote Glucose Uptake. ACS OMEGA 2021; 6:24118-24127. [PMID: 34568690 PMCID: PMC8459440 DOI: 10.1021/acsomega.1c03600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 06/13/2023]
Abstract
(E)-9-Oxooctadec-10-en-12-ynoic acid is found to mediate its antidiabetic activity by increasing insulin-stimulated glucose uptake in L6 myotubes by activating the phosphoinositide 3-kinase (PI3K) pathway. A simultaneous study of site-specific modification followed by structure-activity relationship provides a tremendous scope for exploiting the bioactivity of the parent molecule. Therefore, in the present study, we focused on site-specific modification of (E)-9-oxooctadec-10-en-12-ynoic acid (1) to generate multiple derivatives and extensive structure-activity relationship (SAR) studies. We have done structural base design and synthesized a series of amides from acid compound 1. Compound 1 consists of an acid functionality, which is known for its metabolism-related liabilities. The SAR has been generated using scaffolds of different antidiabetic drugs such as biguanides, sulfonylureas, thiazolidinediones/glitazones, peroxisome proliferator-activated receptors, K + ATP, α-glucosidase inhibitors, and others. Furthermore, the study demonstrates and explains the promising derivatives and importance of SAR of the compound (E)-9-oxooctadec-10-en-12-ynoic acid. In order to gain mechanistic insights, a molecular docking study was performed against PI3K, which could identify the binding modes and thermodynamic interactions governing the binding affinity. According to our research, compounds 5, 6, 27, 28, 31, 32, and 33 are the best compounds from the series having EC50 values of 15.47, 8.89, 7.00, 13.99, 8.70, 12.27, and 16.14 μM, respectively.
Collapse
Affiliation(s)
- Rajendra
R. Kshirsagar
- Centre
for Organic and Medicinal Chemistry, Department of Chemistry, School
of Advanced Sciences, VIT University, Vellore, Tamil Nadu 632014, India
- Discovery
Analytical Sciences Department, Piramal
Enterprises Limited, 1A - Nirlon Complex,
Off Western Express Highway, Goregaon (East), Mumbai, Maharashtra 400 063, India
| | - Pradip K. Gadekar
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Vijay M. Khedkar
- Department
of Pharmaceutical Chemistry, School of Pharmacy, Vishwakarma University, Pune, Maharashtra 411 048, India
| | - Vijayaparthasarathi Vijayakumar
- Centre
for Organic and Medicinal Chemistry, Department of Chemistry, School
of Advanced Sciences, VIT University, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
15
|
Design, synthesis and biological evaluation of 2,3-dihydroimidazo[2,1-b]thiazoles as dual EGFR and IGF1R inhibitors. Bioorg Chem 2021; 115:105151. [PMID: 34333424 DOI: 10.1016/j.bioorg.2021.105151] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 11/21/2022]
Abstract
Herein we describe the design, synthesis and anticancer evaluation of a series of 2,3-dihydroimidazo[2,1-b]thiazoles as dual kinase inhibitors of IGF1R and EGFR. A series of saturated dihydroimidazo[2,1-b] thiazoles were synthesized to understand the structure-activity relationship. Further, the key modifications were performed to improve drug like properties of the series. A 2-oxa-6-azaspiro [3.3] heptane moiety was incorporated as a bioisosteric replacement of morpholine on dihydroimidazo[2,1-b] thiazole scaffold.Subsequent structure-activity relationship (SAR) studies identified several compounds with nM range of activity. The compound 18a shows promising activity, IC50 = 52 nM against IGF1R and IC50 = 35.5 nM against EGFR with descent PK profile. The identified leadshows promising activity against both wild type and the T790M mutant forms of enzymes.
Collapse
|
16
|
Hao L, Ma Y, Zhao L, Zhang Y, Zhang X, Ma Y, Dodd RH, Sun H, Yu P. Synthesis of tetracyclic oxindoles and evaluation of their α-glucosidase inhibitory and glucose consumption-promoting activity. Bioorg Med Chem Lett 2020; 30:127264. [PMID: 32527562 DOI: 10.1016/j.bmcl.2020.127264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/22/2020] [Accepted: 05/12/2020] [Indexed: 01/05/2023]
Abstract
A series of tetracyclic oxindole derivatives was synthesized by asymmetric 1, 3-dipole reaction in 2-4 steps in 57-86% overall yields. These compounds were evaluated for α-glucosidase inhibitory and glucose consumption-promoting activity in vitro. Compound 4l competitively and reversibly inhibited α-glucosidase (IC50 = 3.64 μM) with activity 14-fold higher than that of acarbose. Docking analysis substantiated these findings. In addition, compound 4l exhibited significant glucose consumption promoting activity at 1 μM.
Collapse
Affiliation(s)
- Lei Hao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yujiao Ma
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Lianbo Zhao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yinan Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xinying Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ying Ma
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Robert H Dodd
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China; Centre de recherche de Gif-sur-Yvette, Institut de Chimie des Substances Naturelles, UPR 2301, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Hua Sun
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
17
|
Yan M, Xu L, Wang Y, Wan J, Liu T, Liu W, Wan Y, Zhang B, Wang R, Li Q. Opportunities and challenges of using five-membered ring compounds as promising antitubercular agents. Drug Dev Res 2020; 81:402-418. [PMID: 31904877 DOI: 10.1002/ddr.21638] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 12/07/2019] [Accepted: 12/24/2019] [Indexed: 12/17/2022]
Abstract
Tuberculosis (TB), a chronic infectious disease, is one of the greatest risks to human beings and 10 million people were diagnosed with TB and 1.6 million died from this disease in 2017. In addition, with the emergence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB), the TB situation has become even worse, which has aggravated the mortality and spread of this disease. To overcome this problem, research into novel antituberculosis agents with enhanced activities against MDR-TB, reduced toxicity, and shortened duration of therapy is of great importance. Fortunately, many novel potential anti-TB drug candidates with five-membered rings, which are most likely to be effective against sensitive and resistant strains, have recently entered clinical trials. Different five-membered rings such as furans, pyranoses, thiazoles, pyrazolines, imidazoles, oxazolidinone, thiazolidins, isoxazoles, triazoles, oxadiazoles, thiadiazoles, and tetrazoles have been designed, prepared, and evaluated for their antimycobacterial activity against Mycobacterium tuberculosis. In this article, we highlight the recent advances made in the discovery of novel five-membered ring compounds and focus on their antitubercular activities, toxicity, structure-activity relationships, and mechanisms of action.
Collapse
Affiliation(s)
- Mi Yan
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan, China
| | - Linlin Xu
- Department of Pharmacy, Taian Central Hospital, Taian, China
| | - Yinhu Wang
- School of Pharmacy, Liaocheng University, Liaocheng, China
| | - Jianhua Wan
- China Resources Land Huabei Region Shandong Company, Jinan, China
| | - Ting Liu
- Department of Laboratory Medical Centre, The Second Hospital of Shandong University, Jinan, China
| | - Wenjie Liu
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan, China
| | - Yichao Wan
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, China
| | - Bin Zhang
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan, China
| | - Rongmei Wang
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan, China
| | - Qiang Li
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
18
|
Yingcharoen P, Natongchai W, Poater A, D' Elia V. Intertwined chemistry of hydroxyl hydrogen-bond donors, epoxides and isocyanates in the organocatalytic synthesis of oxazolidinones versus isocyanurates: rational catalytic investigation and mechanistic understanding. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00987c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The efficiency and chemoselectivity of the cycloaddition of isocyanates to epoxides to afford oxazolidinones were investigated using hydroxyl hydrogen-bond donors as organocatalysts.
Collapse
Affiliation(s)
- Prapussorn Yingcharoen
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong
- Thailand
| | - Wuttichai Natongchai
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong
- Thailand
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química
- Universitat de Girona
- 17003 Girona
- Spain
| | - Valerio D' Elia
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong
- Thailand
| |
Collapse
|
19
|
García-Olaiz G, Alcántar-Zavala E, Ochoa-Terán A, Cabrera A, Muñiz-Salazar R, Montes-Ávila J, Salazar-Medina AJ, Alday E, Velazquez C, Medina-Franco JL, Laniado-Laborín R. Design, synthesis and evaluation of the antibacterial activity of new Linezolid dipeptide-type analogues. Bioorg Chem 2020; 95:103483. [DOI: 10.1016/j.bioorg.2019.103483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 11/24/2022]
|
20
|
Degorce SL, Bodnarchuk MS, Scott JS. Lowering Lipophilicity by Adding Carbon: AzaSpiroHeptanes, a log D Lowering Twist. ACS Med Chem Lett 2019; 10:1198-1204. [PMID: 31417667 DOI: 10.1021/acsmedchemlett.9b00248] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022] Open
Abstract
We have conducted an analysis of azaspiro[3.3]heptanes used as replacements for morpholines, piperidines, and piperazines in a medicinal chemistry context. In most cases, introducing a spirocyclic center lowered the measured logD 7.4 of the corresponding molecules by as much as -1.0 relative to the more usual heterocycle. This may seem counterintuitive, as the net change in the molecule is the addition of a single carbon atom, but it may be rationalized in terms of increased basicity. An exception to this was found with N-linked 2-azaspiro[3.3]heptane, where logD 7.4 increased by as much as +0.5, consistent with the addition of carbon. During our investigation, we also concluded that azaspiro[3.3]heptanes are most likely not suitable bioisosteres for morpholines, piperidines, and piperazines, when not used as terminal groups, due to significant changes in their geometry.
Collapse
Affiliation(s)
- Sébastien L. Degorce
- Medicinal Chemistry, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge Science Park, Unit 310 Darwin Building, Cambridge CB4 0WG, United Kingdom
| | - Michael S. Bodnarchuk
- Medicinal Chemistry, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge Science Park, Unit 310 Darwin Building, Cambridge CB4 0WG, United Kingdom
| | - James S. Scott
- Medicinal Chemistry, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge Science Park, Unit 310 Darwin Building, Cambridge CB4 0WG, United Kingdom
| |
Collapse
|
21
|
Mannisto JK, Sahari A, Lagerblom K, Niemi T, Nieger M, Sztanó G, Repo T. One‐Step Synthesis of 3,4‐Disubstituted 2‐Oxazolidinones by Base‐Catalyzed CO
2
Fixation and Aza‐Michael Addition. Chemistry 2019; 25:10284-10289. [DOI: 10.1002/chem.201902451] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Jere K. Mannisto
- Department of ChemistryUniversity of Helsinki, P.O. Box 55 A.I. Virtasen aukio 1 00014 Helsinki Finland
| | - Aleksi Sahari
- Department of ChemistryUniversity of Helsinki, P.O. Box 55 A.I. Virtasen aukio 1 00014 Helsinki Finland
| | - Kalle Lagerblom
- Department of ChemistryUniversity of Helsinki, P.O. Box 55 A.I. Virtasen aukio 1 00014 Helsinki Finland
| | - Teemu Niemi
- Department of ChemistryUniversity of Helsinki, P.O. Box 55 A.I. Virtasen aukio 1 00014 Helsinki Finland
| | - Martin Nieger
- Department of ChemistryUniversity of Helsinki, P.O. Box 55 A.I. Virtasen aukio 1 00014 Helsinki Finland
| | - Gábor Sztanó
- Department of ChemistryUniversity of Helsinki, P.O. Box 55 A.I. Virtasen aukio 1 00014 Helsinki Finland
| | - Timo Repo
- Department of ChemistryUniversity of Helsinki, P.O. Box 55 A.I. Virtasen aukio 1 00014 Helsinki Finland
| |
Collapse
|
22
|
Arshad F, Khan MF, Akhtar W, Alam MM, Nainwal LM, Kaushik SK, Akhter M, Parvez S, Hasan SM, Shaquiquzzaman M. Revealing quinquennial anticancer journey of morpholine: A SAR based review. Eur J Med Chem 2019; 167:324-356. [PMID: 30776694 DOI: 10.1016/j.ejmech.2019.02.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/24/2019] [Accepted: 02/04/2019] [Indexed: 02/07/2023]
Abstract
Morpholine, a six-membered heterocycle containing one nitrogen and one oxygen atom, is a moiety of great significance. It forms an important intermediate in many industrial and organic syntheses. Morpholine containing drugs are of high therapeutic value. Its wide array of pharmacological activity includes anti-diabetic, anti-emetic, growth stimulant, anti-depressant, bronchodilator and anticancer. Multi-drug resistance in cancer cases have emerged in the last few years and have led to the failure of many chemotherapeutic drugs. Newer treatment methods and drugs are being developed to overcome this problem. Target based drug discovery is an effective method to develop novel anticancer drugs. To develop newer drugs, previously reported work needs to be studied. Keeping this in mind, last five year's literature on morpholine used as anticancer agents has been reviewed and summarized in the paper herein.
Collapse
Affiliation(s)
- Fatima Arshad
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohemmed Faraz Khan
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Wasim Akhtar
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Mumtaz Alam
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Lalit Mohan Nainwal
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Sumit Kumar Kaushik
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mymoona Akhter
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | | | - Mohammad Shaquiquzzaman
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
23
|
Feskov IO, Chernykh AV, Kuchkovska YO, Daniliuc CG, Kondratov IS, Grygorenko OO. 3-((Hetera)cyclobutyl)azetidines, “Stretched” Analogues of Piperidine, Piperazine, and Morpholine: Advanced Building Blocks for Drug Discovery. J Org Chem 2018; 84:1363-1371. [DOI: 10.1021/acs.joc.8b02822] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Illia O. Feskov
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine
- Institute of Bioorganic Chemistry & Petrochemistry, NAS of Ukraine, Murmanska Street 1, Kyiv 02660, Ukraine
| | | | - Yuliya O. Kuchkovska
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Ivan S. Kondratov
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine
- Institute of Bioorganic Chemistry & Petrochemistry, NAS of Ukraine, Murmanska Street 1, Kyiv 02660, Ukraine
| | - Oleksandr O. Grygorenko
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| |
Collapse
|
24
|
Bai PY, Qin SS, Chu WC, Yang Y, Cui DY, Hua YG, Yang QQ, Zhang E. Synthesis and antibacterial bioactivities of cationic deacetyl linezolid amphiphiles. Eur J Med Chem 2018; 155:925-945. [DOI: 10.1016/j.ejmech.2018.06.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 05/10/2018] [Accepted: 06/22/2018] [Indexed: 10/28/2022]
|
25
|
Fan YL, Jin XH, Huang ZP, Yu HF, Zeng ZG, Gao T, Feng LS. Recent advances of imidazole-containing derivatives as anti-tubercular agents. Eur J Med Chem 2018; 150:347-365. [PMID: 29544148 DOI: 10.1016/j.ejmech.2018.03.016] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/02/2018] [Accepted: 03/04/2018] [Indexed: 12/20/2022]
Abstract
Tuberculosis still remains one of the most common, communicable, and leading deadliest diseases known to mankind throughout the world. Drug-resistance in Mycobacterium tuberculosis which threatens to worsen the global tuberculosis epidemic has caused great concern in recent years. To overcome the resistance, the development of new drugs with novel mechanisms of actions is of great importance. Imidazole-containing derivatives endow with various biological properties, and some of them demonstrated excellent anti-tubercular activity. As the most emblematic example, 4-nitroimidazole delamanid has already received approval for treatment of multidrug-resistant tuberculosis infected patients. Thus, imidazole-containing derivatives have caused great interests in discovery of new anti-tubercular agents. Numerous of imidazole-containing derivatives were synthesized and screened for their in vitro and in vivo anti-mycobacterial activities against both drug-sensitive and drug-resistant Mycobacterium tuberculosis pathogens. This review aims to outline the recent advances of imidazole-containing derivatives as anti-tubercular agents, and summarize the structure-activity relationship of these derivatives. The enriched structure-activity relationship may pave the way for the further rational development of imidazole-containing derivatives as anti-tubercular agents.
Collapse
Affiliation(s)
- Yi-Lei Fan
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Zhejiang Police College, Hangzhou, PR China
| | - Xiao-Hong Jin
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Zhong-Ping Huang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, PR China.
| | - Hai-Feng Yu
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Zhi-Gang Zeng
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Tao Gao
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, PR China.
| | - Lian-Shun Feng
- Synthetic and Functional Biomolecules Center, Peking University, Beijing, PR China
| |
Collapse
|
26
|
Demirci S. Synthesis of Thiazole Derivatives as Antimicrobial Agents by Green Chemistry Techniques. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2018. [DOI: 10.18596/jotcsa.375716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
27
|
Masood MM, Irfan M, Khan P, Alajmi MF, Hussain A, Garrison J, Rehman MT, Abid M. 1,2,3-Triazole–quinazolin-4(3H)-one conjugates: evolution of ergosterol inhibitor as anticandidal agent. RSC Adv 2018; 8:39611-39625. [PMID: 35558055 PMCID: PMC9090800 DOI: 10.1039/c8ra08426b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/19/2018] [Indexed: 11/21/2022] Open
Abstract
The present study describes the synthesis of 1,2,3-triazole–quinazolinone conjugates (5a–q) from ethyl 4-oxo-3-(prop-2-ynyl)-3,4-dihydroquinazoline-2-carboxylate and phenyl azide/substituted phenyl azides employing Cu(i) catalysed Huisgen 1,3-dipolar cycloaddition. The corresponding acids (6a–q) were obtained by hydrolysis of esters (5a–q) to study the effect of these functionalities on the biological activity. All synthesized compounds were screened for in vitro anticandidal evaluation against Candia albicans, Candida glabrata and Candida tropicalis strains. The results indicated that compound 5n showed potent anticandidal activity with IC50 in the range of 8.4 to 14.6 μg mL−1. Hemolytic activity using human red blood cells (hRBCs) and cytotoxicity by MTT assay on human embryonic kidney (HEK-293) cells revealed the non-toxic nature of the selected compounds. Growth kinetic study with compound 5n showed its fungicidal nature as no significant growth of Candida cells was observed even after 24 h. Cellular ergosterol content was determined in the presence of different concentrations of 5n to measure the activity of lanosterol 14α-demethylase indirectly. The results showed significant disruption of the ergosterol biosynthetic pathway through inhibition of lanosterol 14α-demethylase activity supported by docking studies (PDB: 5v5z). Overall, this study demonstrates the anticandidal potential of 5n which can serve as the lead for further structural optimization and SAR studies. The present study elicits the synthesis of 1,2,3-triazole–quinazolinone conjugates (5a–q) as ergosterol inhibitors for Candida infections.![]()
Collapse
Affiliation(s)
- Mir Mohammad Masood
- Medicinal Chemistry Laboratory
- Department of Biosciences
- Jamia Millia Islamia
- New Delhi-110025
- India
| | - Mohammad Irfan
- Medicinal Chemistry Laboratory
- Department of Biosciences
- Jamia Millia Islamia
- New Delhi-110025
- India
| | - Parvez Khan
- Center for Interdisciplinary Research in Basic Science
- Jamia Millia Islamia
- New Delhi
- India-110025
| | - Mohamed F. Alajmi
- Department of Pharmacognosy
- College of Pharmacy
- King Saud University
- Riyadh
- Kingdom of Saudi Arabia
| | - Afzal Hussain
- Department of Pharmacognosy
- College of Pharmacy
- King Saud University
- Riyadh
- Kingdom of Saudi Arabia
| | - Jered Garrison
- Department of Pharmaceutical Sciences
- College of Pharmacy
- University of Nebraska Medical Center
- Omaha
- USA
| | - Md. Tabish Rehman
- Department of Pharmacognosy
- College of Pharmacy
- King Saud University
- Riyadh
- Kingdom of Saudi Arabia
| | - Mohammad Abid
- Medicinal Chemistry Laboratory
- Department of Biosciences
- Jamia Millia Islamia
- New Delhi-110025
- India
| |
Collapse
|
28
|
Reilly SW, Bryan NW, Mach RH. Pd-catalyzed arylation of linear and angular spirodiamine salts under aerobic conditions. Tetrahedron Lett 2017; 58:466-469. [PMID: 31762498 PMCID: PMC6874415 DOI: 10.1016/j.tetlet.2016.12.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Application of Buchwald-Hartwig catalysis for development of biologically relevant arylspirodiamine compounds is reported. This synthetic methodology requires no inert atmosphere and affords yields up to 93% in just 20 min. Linear and sterically hindered angular spirodiamines in salt and free-base form are coupled with electron-rich and -withdrawing aryl chlorides, demonstrating a broad scope and applicability of this protocol.
Collapse
Affiliation(s)
- Sean W. Reilly
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 231 S. 34th Street, Philadelphia, PA 19104, USA
| | - Nikaela W. Bryan
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, 421 Curie Blvd., Philadelphia, PA 19104, USA
| | - Robert H. Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 231 S. 34th Street, Philadelphia, PA 19104, USA
| |
Collapse
|
29
|
Antileishmanial evaluation of clubbed bis(indolyl)-pyridine derivatives: One-pot synthesis, in vitro biological evaluations and in silico ADME prediction. Bioorg Med Chem Lett 2017; 27:567-573. [DOI: 10.1016/j.bmcl.2016.12.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 12/03/2016] [Accepted: 12/06/2016] [Indexed: 11/19/2022]
|
30
|
|