1
|
Coldrick K, Newman C, Doran J, Amarandei G, Filatov MA. Enhancing Hybrid Photovoltaic-Thermal System Efficiency with Boron Dipyrromethene Dyes. ACS APPLIED OPTICAL MATERIALS 2024; 2:1985-1998. [PMID: 39360236 PMCID: PMC11443531 DOI: 10.1021/acsaom.4c00309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024]
Abstract
A library of boron dipyrromethene (BODIPY) compounds was studied to assess their efficacy as components of a working liquid in hybrid photovoltaic-thermal (PVT) systems. Two series of BODIPY dyes were investigated: series I included alkylBODIPYs with varying substitution patterns, while series II included 1,3,5,7-tetramethyl-substituted BODIPYs featuring electron-rich aromatic groups in the meso position, such as naphthalene, anthracene, and carbazole. Series II dyes were designed to exhibit luminescence downshifting due to enhanced UV absorption (300-400 nm) and excited-state energy transfer, leading to visible-region fluorescence under UV excitation. Samples of PVT liquids based on decalin and containing each individual BODIPY dye were tested on a standard a-Si solar cell to evaluate their impact on solar energy conversion efficiency. The thermal behavior of the working liquid and the cell during the illumination cycle was monitored, alongside the cell's electrical characteristics. Energy conversion pathways and the overall effects of the dyes on the system performance were scrutinized. Results indicated that all BODIPY dyes enhanced both the electrical conversion efficiency (up to 2.41% increase) and thermal energy generation (up to 6.87%) compared to the solvent alone. These findings highlight the potential of BODIPY dyes to significantly improve the performance of PVT systems.
Collapse
Affiliation(s)
- Kenneth Coldrick
- School
of Physics, Clinical and Optometric Sciences, Technological University Dublin, City Campus, Grangegorman Lower, D07 ADY7 Dublin, Ireland
- The
Group of Applied Physics, Technological
University Dublin, City Campus, Grangegorman Lower, D07
ADY7Dublin, Ireland
| | - Craig Newman
- School
of Chemical and Biopharmaceutical Sciences, Technological University Dublin, City Campus, Grangegorman Lower, D07 ADY7 Dublin, Ireland
| | - John Doran
- The
Group of Applied Physics, Technological
University Dublin, City Campus, Grangegorman Lower, D07
ADY7Dublin, Ireland
| | - George Amarandei
- School
of Physics, Clinical and Optometric Sciences, Technological University Dublin, City Campus, Grangegorman Lower, D07 ADY7 Dublin, Ireland
- The
Group of Applied Physics, Technological
University Dublin, City Campus, Grangegorman Lower, D07
ADY7Dublin, Ireland
| | - Mikhail A. Filatov
- School
of Chemical and Biopharmaceutical Sciences, Technological University Dublin, City Campus, Grangegorman Lower, D07 ADY7 Dublin, Ireland
| |
Collapse
|
2
|
Henriquez-Figuereo A, Morán-Serradilla C, Angulo-Elizari E, Sanmartín C, Plano D. Small molecules containing chalcogen elements (S, Se, Te) as new warhead to fight neglected tropical diseases. Eur J Med Chem 2023; 246:115002. [PMID: 36493616 DOI: 10.1016/j.ejmech.2022.115002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
Neglected tropical diseases (NTDs) encompass a group of infectious diseases with a protozoan etiology, high incidence, and prevalence in developing countries. As a result, economic factors constitute one of the main obstacles to their management. Endemic countries have high levels of poverty, deprivation and marginalization which affect patients and limit their access to proper medical care. As a matter of fact, statistics remain uncollected in some affected areas due to non-reporting cases. World Health Organization and other organizations proposed a plan for the eradication and control of the vector, although many of these plans were halted by the COVID-19 pandemic. Despite of the available drugs to treat these pathologies, it exists a lack of effectiveness against several parasite strains. Treatment protocols for diseases such as American trypanosomiasis (Chagas disease), leishmaniasis, and human African trypanosomiasis (HAT) have not achieved the desired results. Unfortunately, these drugs present limitations such as side effects, toxicity, teratogenicity, renal, and hepatic impairment, as well as high costs that have hindered the control and eradication of these diseases. This review focuses on the analysis of a collection of scientific shreds of evidence with the aim of identifying novel chalcogen-derived molecules with biological activity against Chagas disease, leishmaniasis and HAT. Compounds illustrated in each figure share the distinction of containing at least one chalcogen element. Sulfur (S), selenium (Se), and tellurium (Te) have been grouped and analyzed in accordance with their design strategy, chemical synthesis process and biological activity. After an exhaustive revision of the related literature on S, Se, and Te compounds, 183 compounds presenting excellent biological performance were gathered against the different causative agents of CD, leishmaniasis and HAT.
Collapse
Affiliation(s)
- Andreina Henriquez-Figuereo
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Technology and Chemistry, Irunlarrea 1, 31008, Pamplona, Spain; Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain.
| | - Cristina Morán-Serradilla
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Technology and Chemistry, Irunlarrea 1, 31008, Pamplona, Spain
| | - Eduardo Angulo-Elizari
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Technology and Chemistry, Irunlarrea 1, 31008, Pamplona, Spain
| | - Carmen Sanmartín
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Technology and Chemistry, Irunlarrea 1, 31008, Pamplona, Spain; Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain.
| | - Daniel Plano
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Technology and Chemistry, Irunlarrea 1, 31008, Pamplona, Spain; Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain.
| |
Collapse
|
3
|
de Aquino TM, França PHB, Rodrigues ÉEES, Nascimento IJS, Santos-Júnior PFS, Aquino PGV, Santos MS, Queiroz AC, Araújo MV, Alexandre-Moreira MS, Rodrigues RRL, Rodrigues KAF, Freitas JD, Bricard J, Meneghetti MR, Bourguignon JJ, Schmitt M, da Silva-Júnior EF, de Araújo-Júnior JX. Synthesis, Antileishmanial Activity and in silico Studies of Aminoguanidine Hydrazones (AGH) and Thiosemicarbazones (TSC) Against Leishmania chagasi Amastigotes. Med Chem 2021; 18:151-169. [PMID: 33593264 DOI: 10.2174/1573406417666210216154428] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Leishmaniasis is a worldwide health problem, highly endemic in developing countries. Among the four main clinical forms of the disease, visceral leishmaniasis is the most severe, fatal in 95% of cases. The undesired side-effects from first-line chemotherapy and the reported drug resistance search for effective drugs that can replace or supplement those currently used an urgent need. Aminoguanidine hydrazones (AGH's) have been explored for exhibiting a diverse spectrum of biological activities, in particular the antileishmanial activity of MGBG. The bioisosteres thiosemicarbazones (TSC's) offer a similar biological activity diversity, including antiprotozoal effects against Leishmania species and Trypanosoma cruzi. OBJECTIVE Considering the impact of leishmaniasis worldwide, this work aimed to design, synthesize, and perform a screening upon L. chagasi amastigotes and for the cytotoxicity of the small "in-house" library of both AGH and TSC derivatives and their structurally-related compounds. METHOD A set of AGH's (3-7), TSC's (9, 10), and semicarbazones (11) were initially synthesized. Subsequently, different semi-constrained analogs were designed and also prepared, including thiazolidines (12), dihydrothiazines (13), imidazolines (15), pyrimidines (16, 18) azines (19, 20), and benzotriazepinones (23-25). All intermediates and target compounds were obtained with satisfactory yields and exhibited spectral data consistent with their structures. All final compounds were evaluated against L. chagasi amastigotes and J774.A1 cell line. Molecular docking was performed towards trypanothione reductase using GOLD® software. RESULT The AGH's 3i, 4a, and 5d, and the TSC's 9i, 9k, and 9o were selected as valuable hits. These compounds presented antileishmanial activity compared with pentamidine, showing IC50 values ranged from 0.6 to 7.27 μM, maximal effects up to 55.3%, and satisfactory SI values (ranged from 11 to 87). On the other hand, most of the resulting semi-constrained analogs were found cytotoxic or presented reduced antileishmanial activity. In general, TSC class is more promising than its isosteric AGH analogs, and the beneficial aromatic substituent effects are not similar in both series. In silico studies have suggested that these hits are capable of inhibiting the trypanothione reductase from the amastigote forms. CONCLUSION The promising antileishmanial activity of three AGH's and three TSC's was characterized. These compounds presented antileishmanial activity compared with PTD, showing IC50 values ranged from 0.6 to 7.27 μM, and satisfactory SI values. Further pharmacological assays involving other Leishmania strains are under progress, which will help to choose the best hits for in vivo experiments.
Collapse
Affiliation(s)
- Thiago M de Aquino
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, 57072-900, Maceió-AL. Brazil
| | - Paulo H B França
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, 57072-900, Maceió-AL. Brazil
| | - Érica E E S Rodrigues
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, 57072-900, Maceió-AL. Brazil
| | - Igor J S Nascimento
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, 57072-900, Maceió-AL. Brazil
| | - Paulo F S Santos-Júnior
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, 57072-900, Maceió-AL. Brazil
| | - Pedro G V Aquino
- Federal Rural University of Pernambuco, Garanhuns-PE, 55292-270. Brazil
| | - Mariana S Santos
- Federal Rural University of Pernambuco, Garanhuns-PE, 55292-270. Brazil
| | - Aline C Queiroz
- Laboratory of Pharmacology and Immunology, Institute of Biological and Health Sciences, Federal University of Alagoas, 57072-900, Maceió-AL. Brazil
| | - Morgana V Araújo
- Laboratory of Pharmacology and Immunology, Institute of Biological and Health Sciences, Federal University of Alagoas, 57072-900, Maceió-AL. Brazil
| | - Magna S Alexandre-Moreira
- Laboratory of Pharmacology and Immunology, Institute of Biological and Health Sciences, Federal University of Alagoas, 57072-900, Maceió-AL. Brazil
| | - Raiza R L Rodrigues
- Laboratory of Infectious Diseases, Federal University of Parnaíba Delta, 64202-020, Parnaíba-PI. Brazil
| | - Klinger A F Rodrigues
- Laboratory of Infectious Diseases, Federal University of Parnaíba Delta, 64202-020, Parnaíba-PI. Brazil
| | - Johnnatan D Freitas
- Instrumental Analysis Laboratory, Federal Institute of Alagoas, Campus Maceió, Ferroviário Avenue, 57020-600, Maceió-AL. Brazil
| | - Jacques Bricard
- Laboratoire d'Innovation thérapeutique, UMR 7200, Labex Medalis, CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, BP 60024, 67401 Illkirch. France
| | - Mario R Meneghetti
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, 57072-90 0, Maceió-AL. Brazil
| | - Jean-Jacques Bourguignon
- Laboratoire d'Innovation thérapeutique, UMR 7200, Labex Medalis, CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, BP 60024, 67401 Illkirch. France
| | - Martine Schmitt
- Laboratoire d'Innovation thérapeutique, UMR 7200, Labex Medalis, CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, BP 60024, 67401 Illkirch. France
| | - Edeildo F da Silva-Júnior
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, 57072-900, Maceió-AL. Brazil
| | - João X de Araújo-Júnior
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, 57072-900, Maceió-AL. Brazil
| |
Collapse
|
4
|
Qian H, He P, Zhang L, Chen K, Xu B, Lin S. Synthesis and Photo-responsive Self-Assembly of Azobenzene-Containing Molecular Brushes. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202102047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Schadich E, Kryshchyshyn-Dylevych A, Holota S, Polishchuk P, Džubak P, Gurska S, Hajduch M, Lesyk R. Assessing different thiazolidine and thiazole based compounds as antileishmanial scaffolds. Bioorg Med Chem Lett 2020; 30:127616. [PMID: 33091607 DOI: 10.1016/j.bmcl.2020.127616] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 11/28/2022]
Abstract
The compounds from eight different thiazolidine and thiazole series were assessed as potential antileishmanial scaffolds. They were tested for antileishmanial activity against promastigotes of Leishmania major using in vitro primary screen and dose response assays. The compounds from six thiazolidine and thiazole series were identified as the hits with antileishmanial activity against L. major. However, the analyses of structure-activity relations (SARs) showed that the interpretable SARs were obtained only for phenyl-indole hybrids (compounds C1, C2, C3 and C5) as the most effective compounds against L. major promastigotes (IC50 < 10 µM) with low toxicity to human fibroblasts. For the scaffold of these compounds, the most significant SAR patterns were: free N3 position of thiazolidinone core, absence of big fragments at the C5 position of thiazolidinone core and presence of halogen atoms or nitro group in the phenyl ring of phenyl-indole fragment. As previous studies showed that these compounds also have activity against the two Trypanosoma species, Trypanosoma brucei and Trypanosoma gambiense, their scaffold could be associated with a broader antiparasitic activity.
Collapse
Affiliation(s)
- Ermin Schadich
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| | - Anna Kryshchyshyn-Dylevych
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine
| | - Serhiy Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine
| | - Pavel Polishchuk
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| | - Petr Džubak
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| | - Sona Gurska
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine; Department of Public Health, Dietetics and Lifestyle Disorders, Faculty of Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland.
| |
Collapse
|
6
|
Ramachandran E, Gandin V, Bertani R, Sgarbossa P, Natarajan K, Bhuvanesh NSP, Venzo A, Zoleo A, Mozzon M, Dolmella A, Albinati A, Castellano C, Reis Conceição N, C. Guedes da Silva MF, Marzano C. Synthesis, Characterization and Biological Activity of Novel Cu(II) Complexes of 6-Methyl-2-Oxo-1,2-Dihydroquinoline-3-Carbaldehyde-4n-Substituted Thiosemicarbazones. Molecules 2020; 25:E1868. [PMID: 32316698 PMCID: PMC7221752 DOI: 10.3390/molecules25081868] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023] Open
Abstract
Three new 6-methyl-2-oxo-1,2-dihydroquinoline-3-carbaldehyde-thiosemicarbazones-N-4-substituted pro-ligands and their Cu(II) complexes (1, -NH2; 2, -NHMe; 3, -NHEt) have been prepared and characterized. In both the X-ray structures of 1 and 3, two crystallographically independent complex molecules were found that differ either in the nature of weakly metal-binding species (water in 1a and nitrate in 1b) or in the co-ligand (water in 3a and methanol in 3b). Electron Paramagnetic Resonance (EPR) measurements carried out on complexes 1 and 3 confirmed the presence of such different species in the solution. The electrochemical behavior of the pro-ligands and of the complexes was investigated, as well as their biological activity. Complexes 2 and 3 exhibited a high cytotoxicity against human tumor cells and 3D spheroids derived from solid tumors, related to the high cellular uptake. Complexes 2 and 3 also showed a high selectivity towards cancerous cell lines with respect to non-cancerous cell lines and were able to circumvent cisplatin resistance. Via the Transmission Electron Microscopy (TEM) imaging technique, preliminary insights into the biological activity of copper complexes were obtained.
Collapse
Affiliation(s)
- Eswaran Ramachandran
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy; (E.R.); (R.B.); (M.M.)
- Chemistry Research Center, National Engineering College, K. R. Nagar, Kovilpatti, Tamilnadu 628503, India
| | - Valentina Gandin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (V.G.); (A.D.); (C.M.)
| | - Roberta Bertani
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy; (E.R.); (R.B.); (M.M.)
| | - Paolo Sgarbossa
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy; (E.R.); (R.B.); (M.M.)
| | - Karuppannan Natarajan
- Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore, Tamil Nadu 641020, India
| | | | - Alfonso Venzo
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy; (A.V.); (A.Z.)
| | - Alfonso Zoleo
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy; (A.V.); (A.Z.)
| | - Mirto Mozzon
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy; (E.R.); (R.B.); (M.M.)
| | - Alessandro Dolmella
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (V.G.); (A.D.); (C.M.)
| | - Alberto Albinati
- Department of Chemistry, University of Milan, 20133 Milan, Italy; (A.A.); (C.C.)
| | - Carlo Castellano
- Department of Chemistry, University of Milan, 20133 Milan, Italy; (A.A.); (C.C.)
| | - Nuno Reis Conceição
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (N.R.C.); (M.F.C.G.d.S.)
| | - M. Fátima C. Guedes da Silva
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (N.R.C.); (M.F.C.G.d.S.)
| | - Cristina Marzano
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (V.G.); (A.D.); (C.M.)
| |
Collapse
|
7
|
Novel indol-3-yl-thiosemicarbazone derivatives: Obtaining, evaluation of in vitro leishmanicidal activity and ultrastructural studies. Chem Biol Interact 2019; 315:108899. [PMID: 31738906 DOI: 10.1016/j.cbi.2019.108899] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/12/2019] [Indexed: 12/19/2022]
Abstract
Parasitic diseases still represent serious public health problems, since the high and steady emergence of resistant strains is evident. Because parasitic infections are distributed predominantly in developing countries, less toxic, more efficient, safer and more accessible drugs have become desirable in the treatment of the infected population. This is the case of leishmaniasis, an infectious disease caused by a protozoan of the genus Leishmania sp., responsible for triggering pathological processes from the simplest to the most severe forms leading to high rates of morbidity and mortality throughout the world. In the search for new leishmanicidal drugs, the thiosemicarbazones and the indole fragments have been identified as promising structures for leishmanicidal activity. The present study proposes the synthesis and structural characterization of new indole-thiosemicarbazone derivatives (2a-j), in addition to performing in vitro evaluations through cytotoxicity assays using macrophages (J774) activity against forms of Leishmania infantum and Leishmania amazonensis promastigote as well as ultrastructural analyzes in promastigotes of L. infantum. Results show that the indole-thiosemicarbazone derivatives were obtained with yield values varying from 32.09 to 94.64%. In the evaluation of cytotoxicity, the indole-thiosemicarbazone compounds presented CC50 values between 53.23 and 357.97 μM. Concerning the evaluation against L. amazonensis promastigote forms, IC50 values ranged between 12.31 and > 481.52 μM, while the activity against L. infantum promastigotes obtained IC50 values between 4.36 and 23.35 μM. The compounds 2d and 2i tested against L. infantum were the most promising in the series, as they showed the lowest IC50 values: 5.60 and 4.36 respectively. The parasites treated with the compounds 2d and 2i showed several structural alterations, such as shrinkage of the cell body, shortening and loss of the flagellum, intense mitochondrial swelling and vacuolization of the cytoplasm leading the parasite to cellular unviability. Therefore, the indole-thiosemicarbazone compounds are promising because they yield considerable synthesis, have low cytotoxicity to mammalian cells and act as leishmanicidal agents.
Collapse
|
8
|
Rajendran N, Periyasamy A, Kamatchi N, Solomon V. Biological evaluation of copper(II) complexes on N(4)−substituted thiosemicarbazide derivatives and diimine co-ligands using DNA interaction, antibacterial and in vitro cytotoxicity. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1634806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - Abirami Periyasamy
- Department of Biotechnology, Lady Doak College, Madurai, Tamil Nadu, India
| | - Nithya Kamatchi
- Department of Zoology, Lady Doak College, Madurai, Tamil Nadu, India
| | - Vasantha Solomon
- Department of Chemistry, Lady Doak College, Madurai, Tamil Nadu, India
| |
Collapse
|
9
|
Eldehna WM, Almahli H, Ibrahim TM, Fares M, Al-Warhi T, Boeckler FM, Bekhit AA, Abdel-Aziz HA. Synthesis, in vitro biological evaluation and in silico studies of certain arylnicotinic acids conjugated with aryl (thio)semicarbazides as a novel class of anti-leishmanial agents. Eur J Med Chem 2019; 179:335-346. [PMID: 31260888 DOI: 10.1016/j.ejmech.2019.06.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/14/2019] [Accepted: 06/18/2019] [Indexed: 11/29/2022]
Abstract
Herein we introduce new compounds as conjugates of arylnicotinic acids with aryl (thio)semicarbazide derivatives. Based on a structure-guided approach, they were designed to possess anti-leishmanial activity through anti-folate mechanism, via targeting Leishmania major pteridine reductase 1 (Lm-PTR1). The in vitro anti-promastigote and anti-amastigote activity were promising for many thiosemicarbazide derivatives and superior to the reference miltefosine. The most active compounds 8i and 8j exhibited their anti-amastigote activity with IC50 values of 4.2 and 3.3 μM, respectively, compared to reference miltefosine (IC50 value of 7.3). Their anti-folate mechanism was confirmed via the ability of folic and folinic acids to reverse the anti-leishmanial activity of these compounds, comparably to Lm-PTR1 inhibitor trimethoprim. Interestingly, the in vitro cytotoxicity test of the most active compounds displayed higher selectivity indices than that of miltefosine emphasizing their safety on mammalian cells. Furthermore, the docking experiments on Lm-PTR1 as a putative target rationalized the in vitro anti-leishmanial activity. The in silico predictions exhibited promising pharmacokinetics and drug-likeness profiles of the most active compounds. Generally, this work introduces a fruitful matrix for new anti-leishmanial chemotype which would extend the chemical space for the anti-leishmanial activity.
Collapse
Affiliation(s)
- Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Hadia Almahli
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt
| | - Tamer M Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt; Molecular Design and Pharmaceutical Biophysics, Institute of Pharmaceutical Sciences, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, 72076, Tuebingen, Germany.
| | - Mohamed Fares
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt; School of Chemistry, University of Wollongong, Wollongong, 2522, New South Wales, Australia
| | - Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Frank M Boeckler
- Molecular Design and Pharmaceutical Biophysics, Institute of Pharmaceutical Sciences, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, 72076, Tuebingen, Germany
| | - Adnan A Bekhit
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Pharmacy Program, Allied Health Department, College of Health Sciences, University of Bahrain, P.O. Box 32038, Kingdom of Bahrain
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Cairo, 12622, Egypt
| |
Collapse
|
10
|
Sajiki H, Sawama Y, Kawajiri T, Yamamoto Y, Shishido Y, Goto R. Acetal Elimination Reaction Accompanied with Regioselective Ring Opening of 1,4-Bisacetal-1,4-epoxy-1,4-dihydronaphthalenes. HETEROCYCLES 2019. [DOI: 10.3987/com-18-s(f)50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Scarim CB, Jornada DH, Machado MGM, Ferreira CMR, Dos Santos JL, Chung MC. Thiazole, thio and semicarbazone derivatives against tropical infective diseases: Chagas disease, human African trypanosomiasis (HAT), leishmaniasis, and malaria. Eur J Med Chem 2018; 162:378-395. [PMID: 30453246 DOI: 10.1016/j.ejmech.2018.11.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/18/2018] [Accepted: 11/06/2018] [Indexed: 12/13/2022]
Abstract
Thiazole, thiosemicarbazone and semicarbazone moieties are privileged scaffolds (acting as primary pharmacophores) in many compounds that are useful to treat several diseases, mainly tropical infectious diseases. In this review article, we critically analyzed the contribution of these scaffolds to medicinal chemistry in the last five years, focusing on tropical infectious diseases, such as Chagas disease, human African trypanosomiasis (HAT), leishmaniasis, and malaria. We also present perspectives for their use in drug design in order to contribute to the development of new drugs.
Collapse
Affiliation(s)
- Cauê Benito Scarim
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil.
| | | | | | | | - Jean Leandro Dos Santos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Man Chin Chung
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil.
| |
Collapse
|
12
|
Anti-leishmanial click modifiable thiosemicarbazones: Design, synthesis, biological evaluation and in silico studies. Eur J Med Chem 2018; 151:585-600. [DOI: 10.1016/j.ejmech.2018.04.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/20/2018] [Accepted: 04/02/2018] [Indexed: 01/07/2023]
|
13
|
Freijo MB, López-Arencibia A, Piñero JE, McNaughton-Smith G, Abad-Grillo T. Design, synthesis and evaluation of amino-substituted 1H-phenalen-1-ones as anti-leishmanial agents. Eur J Med Chem 2017; 143:1312-1324. [PMID: 29126735 DOI: 10.1016/j.ejmech.2017.10.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/15/2017] [Accepted: 10/10/2017] [Indexed: 02/08/2023]
Abstract
Screening of a designed collection of mono-substituted amino-1H-phenalen-1-ones against promastigote forms of L. donovani and L. amazonensis, identified seven compounds with anti-leishmanial activities comparable or better than the commonly prescribed anti-leishmanial drug, miltefosine. Structure-activity analysis revealed that appendages containing a basic tertiary nitrogen were favored, and that the position of the appendage also affected their potency. Like miltefosine, several of these active compounds significantly reduced the mitochondrial membrane potential in promastigotes. Further studies in amastigotes of L. amazonensis revealed that compounds 14, 15 and 33 were more active and more selective than miltefosine, with sub-micromolar potencies and selectivity indices >100.
Collapse
Affiliation(s)
- Mónica Blanco Freijo
- Instituto Universitario de Bio-Orgánica 'Antonio González', Departamento de Química Orgánica, Universidad de La Laguna, Avda. Fco. Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | - Atteneri López-Arencibia
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Las Islas Canarias, Laboratorio de Quimioterapias de Protozoos, Universidad de La Laguna, Tenerife, Spain
| | - José E Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Las Islas Canarias, Laboratorio de Quimioterapias de Protozoos, Universidad de La Laguna, Tenerife, Spain.
| | | | - Teresa Abad-Grillo
- Instituto Universitario de Bio-Orgánica 'Antonio González', Departamento de Química Orgánica, Universidad de La Laguna, Avda. Fco. Sánchez 2, 38206 La Laguna, Tenerife, Spain.
| |
Collapse
|
14
|
In vitro antileishmanial activity and iron superoxide dismutase inhibition of arylamine Mannich base derivatives. Parasitology 2017; 144:1783-1790. [PMID: 28789716 DOI: 10.1017/s0031182017001123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Leishmaniasis is one of the world's most neglected diseases, and it has a worldwide prevalence of 12 million. There are no effective human vaccines for its prevention, and treatment is hampered by outdated drugs. Therefore, research aiming at the development of new therapeutic tools to fight leishmaniasis remains a crucial goal today. With this purpose in mind, we present 20 arylaminoketone derivatives with a very interesting in vitro and in vivo efficacy against Trypanosoma cruzi that have now been studied against promastigote and amastigote forms of Leishmania infantum, Leishmania donovani and Leishmania braziliensis strains. Six out of the 20 Mannich base-type derivatives showed Selectivity Index between 39 and 2337 times higher in the amastigote form than the reference drug glucantime. These six derivatives affected the parasite infectivity rates; the result was lower parasite infectivity rates than glucantime tested at an IC25 dose. In addition, these derivatives were substantially more active against the three Leishmania species tested than glucantime. The mechanism of action of these compounds has been studied, showing a greater alteration in glucose catabolism and leading to greater levels of iron superoxide dismutase inhibition. These molecules could be potential candidates for leishmaniasis chemotherapy.
Collapse
|