1
|
da Rocha VME, da Motta KP, Martins CC, Lemos BB, Larroza A, Morais RB, Steinhorst RK, Roehrs JA, Alves D, Luchese C, Wilhelm EA. Structure-Activity Relationship of 7-Chloro-4-(Phenylselanyl) Quinoline: Novel Antinociceptive and Anti-Inflammatory Effects in Mice. Chem Biodivers 2025; 22:e202301246. [PMID: 39431922 DOI: 10.1002/cbdv.202301246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 10/22/2024]
Abstract
The 7-chloro-4-(phenylselanyl) quinoline (4-PSQ) shows promise for its antinociceptive and anti-inflammatory properties. Here, we explored the structure-activity relationship of 4-PSQ and its analogues: 7-chloro-4-[(4-fluorophenyl) selanyl]quinoline (a), 7-chloro-4-{[3-trifluoromethyl)phenyl] selanyl} quinoline (b), 4-((3,5-Bis(trifluoromethyl)phenyl) selanyl-7-chloroquinoline (c), 7-chloro-4-[(2,4,6-trimethyl)selanyl]quinolinic acid (d) and 7-chloroquinoline-4-selenium acid (e) in models of acute inflammation and chemical, thermal and mechanical nociception in mice, alongside in silico analysis. Compounds a (-F), b (-CF3), c (-Bis-CF3), d (-CH3), e (-OOH), and 4-PSQ exhibited antinociceptive effects in chemical and thermal nociception models, except d (-CH3) and e (-OOH) in the hot plate test. None induced locomotor changes. In silico, only c (-Bis-CF3) showed low gastrointestinal absorption, and c (-Bis-CF3) and e (-OOH) lacked blood-brain barrier penetration, suggesting e (-OOH) lacked central antinociceptive effect. These compounds had higher COX-2 affinity than COX-1. Our findings suggest substituent insertion alters 4-PSQ's efficacy as an antinociceptive and anti-inflammatory agent.
Collapse
Affiliation(s)
- Vanessa M E da Rocha
- Postgraduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical Pharmacology (LaFarBio), Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, RS, CEP 96010-900, Brazil
| | - Ketlyn P da Motta
- Postgraduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical Pharmacology (LaFarBio), Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, RS, CEP 96010-900, Brazil
| | - Carolina C Martins
- Postgraduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical Pharmacology (LaFarBio), Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, RS, CEP 96010-900, Brazil
| | - Briana B Lemos
- Postgraduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical Pharmacology (LaFarBio), Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, RS, CEP 96010-900, Brazil
| | - Allya Larroza
- Postgraduate Program in Chemistry, Clean Organic Synthesis Laboratory - LASOL, - CCQFA, Federal University of Pelotas, UFPel, Pelotas, RS, CEP - 96010-900, Brazil
| | - Roberto B Morais
- Postgraduate Program in Chemistry, Clean Organic Synthesis Laboratory - LASOL, - CCQFA, Federal University of Pelotas, UFPel, Pelotas, RS, CEP - 96010-900, Brazil
| | - Rodrigo K Steinhorst
- Postgraduate Program in Chemistry, Clean Organic Synthesis Laboratory - LASOL, - CCQFA, Federal University of Pelotas, UFPel, Pelotas, RS, CEP - 96010-900, Brazil
- Postgraduate Program in Environmental Engineering and Sciences, Federal Institute of Education, Science and Technology Sul-Rio-Grandense, IFSul, Pelotas, RS, CEP - 96015-360, Brazil
| | - Juliano A Roehrs
- Postgraduate Program in Chemistry, Clean Organic Synthesis Laboratory - LASOL, - CCQFA, Federal University of Pelotas, UFPel, Pelotas, RS, CEP - 96010-900, Brazil
- Postgraduate Program in Environmental Engineering and Sciences, Federal Institute of Education, Science and Technology Sul-Rio-Grandense, IFSul, Pelotas, RS, CEP - 96015-360, Brazil
| | - Diego Alves
- Postgraduate Program in Chemistry, Clean Organic Synthesis Laboratory - LASOL, - CCQFA, Federal University of Pelotas, UFPel, Pelotas, RS, CEP - 96010-900, Brazil
| | - Cristiane Luchese
- Postgraduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical Pharmacology (LaFarBio), Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, RS, CEP 96010-900, Brazil
| | - Ethel A Wilhelm
- Postgraduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical Pharmacology (LaFarBio), Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, RS, CEP 96010-900, Brazil
| |
Collapse
|
2
|
Pasala PK, Raghupathi NK, Yaraguppi DA, Challa RR, Vallamkonda B, Ahmad SF, Chennamsetty Y, Kumari PK, DSNBK P. Potential preventative impact of aloe-emodin nanoparticles on cerebral stroke-associated myocardial injury by targeting myeloperoxidase: In supporting with In silico and In vivo studies. Heliyon 2024; 10:e33154. [PMID: 39022073 PMCID: PMC11253067 DOI: 10.1016/j.heliyon.2024.e33154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
The present study examined the potential neuroprotective effects of aloe-emodin (AE) nanoparticles on the cerebral stroke-associated target protein myeloperoxidase (MPO). We investigated the binding interactions between AE and MPO through molecular docking and molecular dynamics simulations. Molecular docking results indicated that AE exhibited a binding energy of -6.9 kcal/mol, whereas it was -7.7 kcal/mol for 2-{[3,5-bis(trifluoromethyl)benzyl]amino}-n-hydroxy-6-oxo-1,6-dihydropyrimidine-5-carboxamide (CCl). Furthermore, molecular dynamics studies demonstrated that AE possesses a stronger binding affinity (-57.137 ± 13.198 kJ/mol) than does CCl (-22.793 ± 30.727 kJ/mol), suggesting that AE has a more substantial inhibitory effect on MPO than does CCl. Despite the therapeutic potential of AE for neurodegenerative disorders, its bioavailability is limited within the body. A proposed hypothesis to enhance the bioavailability of AE is its conversion into aloe-emodin nanoparticles (AENP). The AENPs synthesized through a fabrication method were spherical with a consistent diameter of 104.4 ± 7.9 nm and a polydispersity index ranging from 0.525 to 0.586. In rats experiencing cerebral stroke, there was a notable increase in cerebral infarction size; abnormalities in electrocardiogram (ECG) and electroencephalogram (EEG) patterns; a decrease in brain and cardiac antioxidant activities; and an increase in myeloperoxidase levels compared to those in normal rats. Compared with AE treatment, AENP treatment significantly ameliorated cerebral infarction, normalized ECG and EEG patterns, enhanced brain and cardiac antioxidant activities, and reduced MPO levels in stroke rats. Histopathological evaluations revealed pronounced alterations in the rat hippocampus, with pyknotic nuclei, disarray and loosely packed cells, deterioration of cardiac muscle fibers, and extensive damage to cardiac myocytes, in contrast to those in normal rats. AENP treatment mitigated these pathological changes more effectively than AE treatment in both brain and cardiac cells. These findings support that AENP provides considerable protection against stroke-associated myocardial infarction.
Collapse
Affiliation(s)
- Praveen Kumar Pasala
- Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research, JNTUA, Anantapuramu, Andhra Pradesh, 515721, India
| | - Niranjan Kumar Raghupathi
- Department of Pharmacology, Santhiram College of Pharmacy, JNTUA, Nandyal, 518112, Andhra Pradesh, India
| | - Deepak A. Yaraguppi
- Department of Biotechnology, KLE Technological University, Hubli, Karnataka, 580031, India
| | - Ranadheer Reddy Challa
- Department of Formulation and Development, Quotient Sciences, 3080 McCann Farm Dr, Garnet Valley, PA, 19060, USA
| | - Bhaskar Vallamkonda
- Department of Pharmaceutical Analysis, Odin Pharmaceutical LLC, Somerset, NJ, 08873, USA
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Yeswanth Chennamsetty
- Department of Pharmacology, Santhiram College of Pharmacy, JNTUA, Nandyal, 518112, Andhra Pradesh, India
| | - P.V. Kamala Kumari
- Department of Pharmaceutics, Vignan Institute of Pharmaceutical Technology, Duvvada, Visakhapatnam, India
| | - Prasanth DSNBK
- School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Polepally SEZ, TSIIC, Jadcherla, Mahbubnagar, Hyderabad, 509301, India
| |
Collapse
|
3
|
Potential effect of novel thiadiazole derivatives against radiation induced inflammation with low cardiovascular risk in rats. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02948-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
AbstractThe aim of the present study is to explore new selective anti-inflammatory compounds with low cardiovascular risk. Twelve thiadiazole derivatives incorporating different amino acid moieties were newly synthesized (4–15) as potential anti-inflammatory agents with low cardiovascular risks through dual COX-2/MPO inhibition. Compounds were initially screened for their anti-inflammatory effect by assay of COX-2, the most potent (4–6, 8) were further tested for COX-1 inhibition, myeloperoxidase MPO activity as well as total nitric oxide content NO in heart of irradiated rats. Cardiac toxicity potential was evaluated by assay of creatine kinase-MB (CK-MB), troponin-I (Tn-I) and lactate dehydrogenase (LDH). Celcoxcib was used as reference drug. S-(5-((4-Methoxybenzylidene)amino)-2,3-dihydro-1,3,4-thiadiazol-2-yl)2-amino propanethioate (5) was the most potent anti-inflammatory with the least cardiotoxicity effect. It exhibited IC50 0.09 µM on COX-2 inhibition with very low activity on COX-1. Troponin I was elevated by 11% using compound 5 in non-irradiated rats. Moreover, compound (5) showed 73% reduction in MPO level. Results were supported by molecular docking into the active sites of COX-2 and MPO enzymes to have more insights about the possible dual inhibition of compound 5 of both enzymes.
Collapse
|
4
|
Etsè KS, Etsè KD, Nyssen P, Mouithys-Mickalad A. Assessment of anti-inflammatory-like, antioxidant activities and molecular docking of three alkynyl-substituted 3-ylidene-dihydrobenzo[d]isothiazole 1,1-dioxide derivatives. Chem Biol Interact 2021; 344:109513. [PMID: 33974901 DOI: 10.1016/j.cbi.2021.109513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/12/2021] [Accepted: 05/05/2021] [Indexed: 11/19/2022]
Abstract
The presence of enyne and benzoisothiazole functions in the molecular architecture of compounds 1, 2 and 3 were expected to provide biochemical activities. In the present work, we first examined the molecular surface contact of three alkynyl-substituted 3-ylidenedihydrobenzo[d] isothiazole 1,1-dioxides. The analysis of the Hirshfeld surfaces reveals that only compound 3 exhibited a well-defined red spots, indicating intermolecular interactions identified as S-O⋯H, C-H⋯O and C-O⋯H contacts. Comparative fingerprint histograms of the three compounds show that close pair interactions are dominated by C-H⋯H-C contact. By UV-visible analysis, compound 1 showed the most intense absorbances at 407 and 441 nm, respectively. The radical scavenging activity explored in the DPPH test, shows that only 1 exhibited low anti-radical activity. Furthermore, cellular antioxidant capacity of benzoisothiazoles 1-3 was investigated with PMA-activated HL-60 cells using chemiluminescence and fluorescence techniques in the presence of L-012 and Amplex Red probe, respectively. Results highlight that compound 1 exhibited moderate anti-ROS capacity while compounds 2 and 3 enhanced ROS production. The cytotoxicity test performed on HL-60 cells, using the MTS assay, confirmed the lack of toxicity of the tested benzoisothiazole 1 compared to 2 and 3 which show low cytotoxicity (≤30%). Anti-catalytic activity was evaluated by following the inhibitory potential of the benzoisothiazoles on MPO activity and depicted benzoisothiazoles-MPO interactions by docking. Both SIEFED and docking studies demonstrated an anti-catalytic activity of the tested benzoisothiazoles towards MPO with the best activity for compound 2.
Collapse
Affiliation(s)
- Koffi Sénam Etsè
- Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Quartier Ho^pital B36 Av. Hippocrate 15 B-4000 Liège, Belgium
| | - Kodjo Djidjolé Etsè
- Laboratoire de Physiologie et Biotechnologie Végétales (LPBV), Faculté des Sciences (FDS), Université de Lomé (UL), Lomé, Togo
| | - Pauline Nyssen
- Biomedical Spectroscopy Laboratory, Department of Physics, CESAM, ULiège, Sart-Tilman, B-4000 Liège, Belgium
| | - Ange Mouithys-Mickalad
- Center for Oxygen, Research and Development (CORD) and Center for Interdisciplinary Research on Medicine (CIRM) Institute of Chemistry University of Liège, Sart-Tilman (B.6a), 4000 Liège, Belgium.
| |
Collapse
|
5
|
Lyu H, Kevlishvili I, Yu X, Liu P, Dong G. Boron insertion into alkyl ether bonds via zinc/nickel tandem catalysis. Science 2021; 372:175-182. [PMID: 33833121 DOI: 10.1126/science.abg5526] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/05/2021] [Indexed: 12/23/2022]
Abstract
Mild methods to cleave the carbon-oxygen (C-O) bond in alkyl ethers could simplify chemical syntheses through the elaboration of these robust, readily available precursors. Here we report that dibromoboranes react with alkyl ethers in the presence of a nickel catalyst and zinc reductant to insert boron into the C-O bond. Subsequent reactivity can effect oxygen-to-nitrogen substitution or one-carbon homologation of cyclic ethers and more broadly streamline preparation of bioactive compounds. Mechanistic studies reveal a cleavage-then-rebound pathway via zinc/nickel tandem catalysis.
Collapse
Affiliation(s)
- Hairong Lyu
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Ilia Kevlishvili
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Xuan Yu
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
6
|
Matos IDA, da Costa Júnior NB, Meotti FC. Integration of an Inhibitor-like Rule and Structure-based Virtual Screening for the Discovery of Novel Myeloperoxidase Inhibitors. J Chem Inf Model 2020; 60:6408-6418. [PMID: 33270445 DOI: 10.1021/acs.jcim.0c00813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Myeloperoxidase (MPO) is an attractive therapeutic target against inflammation. Herein, we developed an inhibitor-like rule, based on known MPO inhibitors, and generated a target database containing 6546 molecules with privileged inhibitory properties. Using a structure-based approach validated by decoys, robust statistical metrics, redocking, and cross-docking, we selected 10 putative MPO inhibitors with high chemical diversity. At 20 μM, six of these 10 compounds (i.e., 60% success rate) inhibited more than 20% of the chlorinating activity of the enzyme. Additionally, we found that compound ZINC9089086 forms hydrogen bonds with Arg233 and with the hemic carboxylate. It makes a π-stacking interaction with the heme group and displays a high affinity for the enzyme active site. When incubated with purified MPO, ZINC9089086 inhibited the chlorinating activity of the enzyme with an IC50 of 2.2 ± 0.1 μM in a reversible manner. Subsequent experiments revealed that ZINC9089086 inhibited hypochlorous acid production in dHL-60 cells and human neutrophils. Furthermore, the theoretical ADME/Tox profile indicated that this compound exhibits low toxicity risks and adequate pharmacokinetic parameters, thus making ZINC9089086 a very promising candidate for preclinical anti-inflammatory studies. Overall, our study shows that integrating an inhibitor-like rule with a validated structure-based methodology is an excellent approach for improving the success rate and molecular diversity of novel MPO inhibitors with good pharmacokinetics and toxicological profiles. By combining these tools, it was possible to increase the assurance rate, which ultimately diminishes the costs and time needed for the acquisition, synthesis, and evaluation of new compounds.
Collapse
Affiliation(s)
- Isaac de Araújo Matos
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil
| | | | - Flavia Carla Meotti
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil
| |
Collapse
|
7
|
Myeloperoxidase: A versatile mediator of endothelial dysfunction and therapeutic target during cardiovascular disease. Pharmacol Ther 2020; 221:107711. [PMID: 33137376 DOI: 10.1016/j.pharmthera.2020.107711] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023]
Abstract
Myeloperoxidase (MPO) is a prominent mammalian heme peroxidase and a fundamental component of the innate immune response against microbial pathogens. In recent times, MPO has received considerable attention as a key oxidative enzyme capable of impairing the bioactivity of nitric oxide (NO) and promoting endothelial dysfunction; a clinically relevant event that manifests throughout the development of inflammatory cardiovascular disease. Increasing evidence indicates that during cardiovascular disease, MPO is released intravascularly by activated leukocytes resulting in its transport and sequestration within the vascular endothelium. At this site, MPO catalyzes various oxidative reactions that are capable of promoting vascular inflammation and impairing NO bioactivity and endothelial function. In particular, MPO catalyzes the production of the potent oxidant hypochlorous acid (HOCl) and the catalytic consumption of NO via the enzyme's NO oxidase activity. An emerging paradigm is the ability of MPO to also influence endothelial function via non-catalytic, cytokine-like activities. In this review article we discuss the implications of our increasing knowledge of the versatility of MPO's actions as a mediator of cardiovascular disease and endothelial dysfunction for the development of new pharmacological agents capable of effectively combating MPO's pathogenic activities. More specifically, we will (i) discuss the various transport mechanisms by which MPO accumulates into the endothelium of inflamed or diseased arteries, (ii) detail the clinical and basic scientific evidence identifying MPO as a significant cause of endothelial dysfunction and cardiovascular disease, (iii) provide an up-to-date coverage on the different oxidative mechanisms by which MPO can impair endothelial function during cardiovascular disease including an evaluation of the contributions of MPO-catalyzed HOCl production and NO oxidation, and (iv) outline the novel non-enzymatic mechanisms of MPO and their potential contribution to endothelial dysfunction. Finally, we deliver a detailed appraisal of the different pharmacological strategies available for targeting the catalytic and non-catalytic modes-of-action of MPO in order to protect against endothelial dysfunction in cardiovascular disease.
Collapse
|
8
|
Soubhye J, Van Antwerpen P, Dufrasne F. A patent review of myeloperoxidase inhibitors for treating chronic inflammatory syndromes (focus on cardiovascular diseases, 2013-2019). Expert Opin Ther Pat 2020; 30:595-608. [DOI: 10.1080/13543776.2020.1780210] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Jalal Soubhye
- Department of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Universite Libre De Bruxelles (ULB), Bruxelles, Belgium
| | - Pierre Van Antwerpen
- Department of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Universite Libre De Bruxelles (ULB), Bruxelles, Belgium
| | - François Dufrasne
- Microbiology, Bioorganic and Macromolecular Chemistry, Faculty of Pharmacy, Universite Libre De Bruxelles, Bruxelles, Belgium
| |
Collapse
|
9
|
Gonçalves DS, de S Melo SM, Jacomini AP, J V da Silva M, Pianoski KE, Ames FQ, Aguiar RP, Oliveira AF, Volpato H, Bidóia DL, Nakamura CV, Bersani-Amado CA, Back DF, Moura S, Paula FR, Rosa FA. Synthesis of novel 3,5,6-trisubstituted 2-pyridone derivatives and evaluation for their anti-inflammatory activity. Bioorg Med Chem 2020; 28:115549. [PMID: 32503692 DOI: 10.1016/j.bmc.2020.115549] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/26/2020] [Accepted: 05/05/2020] [Indexed: 11/19/2022]
Abstract
The inflammatory response is the reaction of living tissue to an injury of a foreign nature, such as infection and irritants, and occurs as part of the body's natural defence response. Compounds capable of inhibiting cyclooxygenase (COX) enzymes, especially COX-2, have great potential as anti-inflammatory agents. Herein we present the regioselective synthesis of 49 novel compounds based on the 2-pyridone nucleus. The topical anti-inflammatory activity of seventeen compounds was evaluated in mice by croton oil (CO) induced ear edema assay. Most of the compounds exhibited a high level of in vivo anti-inflammatory activity, reducing ear edema and myeloperoxidase (MPO) activity. The most active compounds (2a and 7a) were inhibitors of COX enzymes. Compound 2a selectively inhibited the COX-2, while 7a was nonselective. Further, the compound 2a showed effective binding at the active site of COX-2 co-crystal by docking molecular study.
Collapse
Affiliation(s)
- Davana S Gonçalves
- Departamento de Química, Universidade Estadual de Maringá (UEM), 87030-900 Maringá, PR, Brazil
| | - Samara M de S Melo
- Departamento de Química, Universidade Estadual de Maringá (UEM), 87030-900 Maringá, PR, Brazil
| | - Andrey P Jacomini
- Departamento de Química, Universidade Estadual de Maringá (UEM), 87030-900 Maringá, PR, Brazil
| | - Michael J V da Silva
- Departamento de Química, Universidade Estadual de Maringá (UEM), 87030-900 Maringá, PR, Brazil
| | - Karlos E Pianoski
- Departamento de Química, Universidade Estadual de Maringá (UEM), 87030-900 Maringá, PR, Brazil
| | - Franciele Q Ames
- Departamento de Farmacologia e Terapêutica, Universidade Estadual de Maringá (UEM), 87030-900 Maringá, PR, Brazil
| | - Rafael P Aguiar
- Departamento de Farmacologia e Terapêutica, Universidade Estadual de Maringá (UEM), 87030-900 Maringá, PR, Brazil
| | - Alisson Felipe Oliveira
- Departamento de Farmácia, Universidade Federal do Pampa (UNIPAMPA), 97500-970 Uruguaiana, RS, Brazil
| | - Hélito Volpato
- Pós-Graduação em Ciências Biológicas, Universidade Estadual de Maringá (UEM), 87020-900 Maringá, PR, Brazil
| | - Danielle L Bidóia
- Pós-Graduação em Ciências Biológicas, Universidade Estadual de Maringá (UEM), 87020-900 Maringá, PR, Brazil
| | - Celso V Nakamura
- Pós-Graduação em Ciências Biológicas, Universidade Estadual de Maringá (UEM), 87020-900 Maringá, PR, Brazil
| | - Ciomar A Bersani-Amado
- Departamento de Farmacologia e Terapêutica, Universidade Estadual de Maringá (UEM), 87030-900 Maringá, PR, Brazil
| | - Davi F Back
- Departamento de Química, Universidade Federal de Santa Maria (UFSM), 97110-970 Santa Maria, RS, Brazil
| | - Sidnei Moura
- Instituto de Biotecnologia, Universidade de Caxias do Sul (UCS), 295070-560 Caxias do Sul, RS, Brazil
| | - Fávero R Paula
- Departamento de Farmácia, Universidade Federal do Pampa (UNIPAMPA), 97500-970 Uruguaiana, RS, Brazil
| | - Fernanda A Rosa
- Departamento de Química, Universidade Estadual de Maringá (UEM), 87030-900 Maringá, PR, Brazil.
| |
Collapse
|
10
|
Premkumar J, Sampath P, Sanjay R, Chandrakala A, Rajagopal D. Synthetic Guaiacol Derivatives as Promising Myeloperoxidase Inhibitors Targeting Atherosclerotic Cardiovascular Disease. ChemMedChem 2020; 15:1187-1199. [DOI: 10.1002/cmdc.202000084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/03/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Jayaraj Premkumar
- Department of ChemistrySchool of Advanced ScienceVellore Institute of Technology-Vellore Tamilnadu 632014 India
| | - Parthasarathy Sampath
- Burnett School of Biomedical SciencesCollege of MedicineUniversity of Central Florida Orlando FL 32832 USA
| | - Rajagopalan Sanjay
- Division of Cardiovascular MedicineHarrington Heart and Vascular Institute Cleveland 44106 Ohio USA
- Cardiovascular Research InstituteSchool of MedicineCase Western Reserve University Cleveland Ohio 44106 USA
| | - Aluganti Chandrakala
- Burnett School of Biomedical SciencesCollege of MedicineUniversity of Central Florida Orlando FL 32832 USA
| | - Desikan Rajagopal
- Department of ChemistrySchool of Advanced ScienceVellore Institute of Technology-Vellore Tamilnadu 632014 India
- Burnett School of Biomedical SciencesCollege of MedicineUniversity of Central Florida Orlando FL 32832 USA
| |
Collapse
|
11
|
Patnaik A, Axford L, Deng L, Cohick E, Ren X, Loi S, Kecman S, Hollis-Symynkywicz M, Harrison TJ, Papillon JPN, Dales N, Hamann LG, Lee L, Regard JB, Marcinkeviciene J, Marro ML, Patterson AW. Discovery of a novel indole pharmacophore for the irreversible inhibition of myeloperoxidase (MPO). Bioorg Med Chem 2020; 28:115548. [PMID: 32503688 DOI: 10.1016/j.bmc.2020.115548] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/01/2020] [Accepted: 05/05/2020] [Indexed: 12/23/2022]
Abstract
Myeloperoxidase (MPO) activity and subsequent generation of hypochlorous acid has been associated with the killing of host-invading microorganisms (e.g. bacteria, viruses, and fungi). However, during oxidative stress, high MPO activity can damage host tissue and is linked to several chronic inflammatory conditions. Herein, we describe the development of a novel biaryl, indole-pyrazole series of irreversible mechanism-based inhibitors of MPO. Derived from an indole-containing high-throughput screen hit, optimization efforts resulted in potent and selective 6-substituted indoles with good oral bioavailability and in vivo activity.
Collapse
Affiliation(s)
- Anup Patnaik
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, United States.
| | - Laura Axford
- Cardiovascular and Metabolic Diseases, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, United States
| | - Lin Deng
- PK Sciences, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, United States
| | - Evan Cohick
- Cardiovascular and Metabolic Diseases, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, United States
| | - Xianglin Ren
- Cardiovascular and Metabolic Diseases, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, United States
| | - Sally Loi
- Cardiovascular and Metabolic Diseases, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, United States
| | - Sam Kecman
- Cardiovascular and Metabolic Diseases, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, United States
| | - Micah Hollis-Symynkywicz
- Cardiovascular and Metabolic Diseases, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, United States
| | - Tyler J Harrison
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, United States
| | - Julien P N Papillon
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, United States
| | - Natalie Dales
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, United States
| | - Lawrence G Hamann
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, United States
| | - Lac Lee
- Cardiovascular and Metabolic Diseases, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, United States
| | - Jean B Regard
- Cardiovascular and Metabolic Diseases, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, United States
| | - Jovita Marcinkeviciene
- Cardiovascular and Metabolic Diseases, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, United States
| | - Martin L Marro
- Cardiovascular and Metabolic Diseases, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, United States
| | - Andrew W Patterson
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, United States.
| |
Collapse
|
12
|
Franck T, Aldib I, Zouaoui Boudjeltia K, Furtmüller PG, Obinger C, Neven P, Prévost M, Soubhye J, Van Antwerpen P, Mouithys-Mickalad A, Serteyn D. The soluble curcumin derivative NDS27 inhibits superoxide anion production by neutrophils and acts as substrate and reversible inhibitor of myeloperoxidase. Chem Biol Interact 2018; 297:34-43. [PMID: 30342014 DOI: 10.1016/j.cbi.2018.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/10/2018] [Accepted: 10/17/2018] [Indexed: 01/17/2023]
Abstract
A water-soluble curcumin lysinate incorporated into hydroxypropyl-β-cyclodextrin (NDS27) has been developed and shown anti-inflammatory properties but no comparative study has been made in parallel with its parent molecule, curcumin on polymorphonuclear neutrophils (PMNs) and myeloperoxidase (MPO) involved in inflammation. The effect of NDS27, its excipients (hydroxypropyl-β-cyclodextrin and lysine), curcumin lysinate and curcumin were compared on the release of superoxide anion by PMNs using a chemiluminescence assay and on the enzymatic activity of MPO. It was shown that curcumin and NDS27 exhibit similar inhibition activities on superoxide anion release by stimulated PMNs but also on MPO peroxidase and halogenation activities. The action mechanism of curcumin and NDS27 on the MPO activity was refined by stopped-flow and docking analyses. We demonstrate that both curcumin and NDS27 are reversible inhibitors of MPO by acting as excellent electron donors for redox intermediate Compound I (∼107 M-1 s-1) but not for Compound II (∼103 M-1 s-1) in the peroxidase cycle of the enzyme, thereby trapping the enzyme in the Compound II state. Docking calculations show that curcumin is able to enter the enzymatic pocket of MPO and bind to the heme cavity by π-stacking and formation of hydrogen bonds involving substituents from both aromatic rings. Hydroxypropyl-β-cyclodextrin is too bulky to enter MPO channel leading to the binding site suggesting a full release of curcumin from the cyclodextrin thereby allowing its full access to the active site of MPO. In conclusion, the hydroxypropyl-β-cyclodextrin of NDS27 enhances curcumin solubilization without affecting its antioxidant capacity and inhibitory activity on MPO.
Collapse
Affiliation(s)
- Thierry Franck
- Department of Clinical Sciences, Anesthesiology and Equine Surgery, Faculty of Veterinary Medicine, B 41, University of Liege, Sart Tilman, Liège, Belgium; Centre of Oxygen, Research and Development-CIRM, Institute of Chemistry B 6a, University of Liege, Sart Tilman, Liège, Belgium.
| | - Iyas Aldib
- Laboratory of Pharmaceutical Chemistry & Analytical Platform of the Faculty of Pharmacy, Faculty of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium
| | - Karim Zouaoui Boudjeltia
- Laboratory of Experimental Medicine, Université Libre de Bruxelles (ULB 222), CHU de Charleroi, Hôpital Vésale, Montigny-le-Tilleul, Belgium
| | - Paul G Furtmüller
- Department of Chemistry, Division of Biochemistry, BOKU, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Christian Obinger
- Department of Chemistry, Division of Biochemistry, BOKU, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Philippe Neven
- Laboratory of Medicinal Chemistry-CIRM, Faculty of Pharmacy, B36, CHU Liège, Liège, Belgium
| | - Martine Prévost
- Structure and Function of Biological Membranes, Faculty of Sciences, Université Libre de Bruxelles, Brussels, Belgium
| | - Jalal Soubhye
- Laboratory of Pharmaceutical Chemistry & Analytical Platform of the Faculty of Pharmacy, Faculty of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium
| | - Pierre Van Antwerpen
- Laboratory of Pharmaceutical Chemistry & Analytical Platform of the Faculty of Pharmacy, Faculty of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium
| | - Ange Mouithys-Mickalad
- Centre of Oxygen, Research and Development-CIRM, Institute of Chemistry B 6a, University of Liege, Sart Tilman, Liège, Belgium
| | - Didier Serteyn
- Department of Clinical Sciences, Anesthesiology and Equine Surgery, Faculty of Veterinary Medicine, B 41, University of Liege, Sart Tilman, Liège, Belgium; Centre of Oxygen, Research and Development-CIRM, Institute of Chemistry B 6a, University of Liege, Sart Tilman, Liège, Belgium
| |
Collapse
|
13
|
Nyssen P, Mouithys-Mickalad A, Minguet G, Sauvage E, Wouters J, Franck T, Hoebeke M. Morphine, a potential inhibitor of myeloperoxidase activity. Biochim Biophys Acta Gen Subj 2018; 1862:2236-2244. [DOI: 10.1016/j.bbagen.2018.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 12/22/2022]
|
14
|
Zhang Y, Feng H, Liu X, Huang L. A Highly Chemoselective Synthesis of Cyclic Divalent Propargylamines by Copper-Catalyzed Annulation/Double A3
-Couplings. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800393] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yazhen Zhang
- College of Chemistry and Chemical Engineering; Shanghai University of Engineering Science; 333 Longteng Road 201620 Shanghai China
| | - Huangdi Feng
- College of Chemistry and Chemical Engineering; Shanghai University of Engineering Science; 333 Longteng Road 201620 Shanghai China
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road 200032 Shanghai China
| | - Xiaohui Liu
- College of Chemistry and Chemical Engineering; Shanghai University of Engineering Science; 333 Longteng Road 201620 Shanghai China
| | - Liliang Huang
- College of Chemistry and Chemical Engineering; Shanghai University of Engineering Science; 333 Longteng Road 201620 Shanghai China
| |
Collapse
|
15
|
de Ruyck J, Roos G, Krammer EM, Prévost M, Lensink MF, Bouckaert J. Molecular Mechanisms of Drug Action: X-ray Crystallography at the Basis of Structure-based and Ligand-based Drug Design. BIOPHYSICAL TECHNIQUES IN DRUG DISCOVERY 2017. [DOI: 10.1039/9781788010016-00067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Biological systems are recognized for their complexity and diversity and yet we sometimes manage to cure disease via the administration of small chemical drug molecules. At first, active ingredients were found accidentally and at that time there did not seem a need to understand the molecular mechanism of drug functioning. However, the urge to develop new drugs, the discovery of multipurpose characteristics of some drugs, and the necessity to remove unwanted secondary drug effects, incited the pharmaceutical sector to rationalize drug design. This did not deliver success in the years directly following its conception, but it drove the evolution of biochemical and biophysical techniques to enable the characterization of molecular mechanisms of drug action. Functional and structural data generated by biochemists and structural biologists became a valuable input for computational biologists, chemists and bioinformaticians who could extrapolate in silico, based on variations in the structural aspects of the drug molecules and their target. This opened up new avenues with much improved predictive power because of a clearer perception of the role and impact of structural elements in the intrinsic affinity and specificity of the drug for its target. In this chapter, we review how crystal structures can initiate structure-based drug design in general.
Collapse
Affiliation(s)
- J. de Ruyck
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille 50 Avenue de Halley 59658 Villeneuve d'Ascq France
| | - G. Roos
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille 50 Avenue de Halley 59658 Villeneuve d'Ascq France
- Université Libre de Bruxelles (ULB), Structure and Function of Biological Membranes CP 206/2, Boulevard du Triomphe, 1050 Brussels Belgium
| | - E.-M. Krammer
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille 50 Avenue de Halley 59658 Villeneuve d'Ascq France
- Université Libre de Bruxelles (ULB), Structure and Function of Biological Membranes CP 206/2, Boulevard du Triomphe, 1050 Brussels Belgium
| | - M. Prévost
- Université Libre de Bruxelles (ULB), Structure and Function of Biological Membranes CP 206/2, Boulevard du Triomphe, 1050 Brussels Belgium
| | - M. F. Lensink
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille 50 Avenue de Halley 59658 Villeneuve d'Ascq France
| | - J. Bouckaert
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille 50 Avenue de Halley 59658 Villeneuve d'Ascq France
| |
Collapse
|