1
|
Malik U, Pal D. Isoxazole compounds: Unveiling the synthetic strategy, in-silico SAR & toxicity studies and future perspective as PARP inhibitor in cancer therapy. Eur J Med Chem 2024; 279:116898. [PMID: 39353240 DOI: 10.1016/j.ejmech.2024.116898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
Latest developments in cancer treatment have shed a light on the crucial role of PARP inhibitors that enhance the treatment effectiveness by modifying abnormal repair pathways. PARP inhibitors, such as Olaparib, Rucaparib, Niraparib, and Talazoparib have been approved in a number of cancers including BRCA 1/BRCA2 associated malignancies although there are many difficulties as therapeutical resistance. Besides the conventional synthetic drugs, natural compounds such as flavones and flavonoids have been found to be PARP inhibitors but only in preclinical studies. Isoxazole is very important class of potential candidates for medicinal chemistry with anti-cancer and other pharmacological activities. At present, there are no approved PARP inhibitors of isoxazole origin but their ability to hit many pathways inside the cancer cells points out on its importance for future treatments design. In drug development, isoxazoles are helpful because of the molecular design flexibility that may be enhanced using various synthetic approaches. This review highlights the molecular mechanisms of PARP inhibition, importance of isoxazole compounds and present advances in their synthetic strategies that demonstrate promise for these agents as new anticancer drugs. It emphasizes that isoxazole-based PARP inhibitors compounds could be novel anti-cancer drugs. Through this review, we hope to grow a curiosity in additional explorations of isoxazole-based PARP inhibitors and their applications in the trends of novel insights towards precision cancer therapy.
Collapse
Affiliation(s)
- Udita Malik
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, C.G., 495009, India
| | - Dilipkumar Pal
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, C.G., 495009, India.
| |
Collapse
|
2
|
Zhu Y, Dai Z. HSP90: A promising target for NSCLC treatments. Eur J Pharmacol 2024; 967:176387. [PMID: 38311278 DOI: 10.1016/j.ejphar.2024.176387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/15/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
The emergence of targeted therapies and immunotherapies has improved the overall survival of patients with nonsmall cell lung cancer (NSCLC), but the 5-year survival rate remains low. New drugs are needed to overcome this dilemma. Moreover, the significant correlation between various client proteins of heat-shock protein (HSP) 90 and tumor occurrence, progression, and drug resistance suggests that HSP90 is a potential therapeutic target for NSCLC. However, the outcomes of clinical trials for HSP90 inhibitors have been disappointing, indicating significant toxicity of these drugs and that further screening of the beneficiary population is required. NSCLC patients with oncogenic-driven gene mutations or those at advanced stages who are resistant to multi-line treatments may benefit from HSP90 inhibitors. Enhancing the therapeutic efficacy and reducing the toxicity of HSP90 inhibitors can be achieved via the optimization of their drug structure, using them in combination therapies with low-dose HSP90 inhibitors and other drugs, and via targeted administration to tumor lesions. Here, we provide a review of the recent research on the role of HSP90 in NSCLC and summarize relevant studies of HSP90 inhibitors in NSCLC.
Collapse
Affiliation(s)
- Yue Zhu
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116021, Liaoning Province, China
| | - Zhaoxia Dai
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116021, Liaoning Province, China.
| |
Collapse
|
3
|
Kondrashov EV, Belovezhets LA, Shatokhina NS, Shilova AN, Kostyro YA, Markova YA, Borovskaya MK, Borovskii GB. Design of novel water-soluble isoxazole-based antimicrobial agents and evaluation of their cytotoxicity and acute toxicity. Bioorg Chem 2023; 138:106644. [PMID: 37302315 DOI: 10.1016/j.bioorg.2023.106644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/24/2023] [Accepted: 05/28/2023] [Indexed: 06/13/2023]
Abstract
Based on the readily available 3-organyl-5-(chloromethyl)isoxazoles, a number of previously unknown water-soluble conjugates of isoxazoles with thiourea, amino acids, some secondary and tertiary amines, and thioglycolic acid were synthesized. The bacteriostatic activity of aforementioned compounds has been studied against Enterococcus durans B-603, Bacillus subtilis B-407, Rhodococcus qingshengii Ac-2784D, and Escherichia coli B-1238 microorganisms (provided by All-Russian Collection of Microorganisms, VKM). The influence of the nature of the substituents in positions 3 and 5 of the isoxazole ring on the antimicrobial activity of the obtained compounds has been determined. It is found that the highest bacteriostatic effect is observed for compounds containing 4-methoxyphenyl or 5-nitrofuran-2-yl substituents in position 3 of the isoxazole ring as well as methylene group in position 5 bearing residues of l-proline or N-Ac-l-cysteine (5a-d, MIC 0.06-2.5 µg/ml). The leading compounds showed low cytotoxicity on normal human skin fibroblast cells (NAF1nor) and low acute toxicity on mice in comparison with the well-known isoxazole-containing antibiotic oxacillin.
Collapse
Affiliation(s)
- Evgeniy V Kondrashov
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia.
| | - Lyudmila A Belovezhets
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia
| | - Nina S Shatokhina
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia
| | - Alexandra N Shilova
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia
| | - Yana A Kostyro
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia
| | - Yulia A Markova
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Brunch of the Russian Academy of Sciences, Lermontova st., 132, Irkutsk 664033, Russia
| | - Marina K Borovskaya
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Brunch of the Russian Academy of Sciences, Lermontova st., 132, Irkutsk 664033, Russia
| | - Gennadii B Borovskii
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Brunch of the Russian Academy of Sciences, Lermontova st., 132, Irkutsk 664033, Russia
| |
Collapse
|
4
|
Pattanayak P, Chatterjee T. Synthesis of (4-Trifluoromethyl)isoxazoles through a Tandem Trifluoromethyloximation/Cyclization/Elimination Reaction of α,β-Unsaturated Carbonyls. J Org Chem 2023; 88:5420-5430. [PMID: 36913616 DOI: 10.1021/acs.joc.2c03053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
We disclose a metal-free, cascade regio- and stereoselective trifluormethyloximation, cyclization, and elimination strategy with readily available α,β-unsaturated carbonyl compounds to access a wide variety of pharmaceutically potential heteroaromatics, i.e., 4-(trifluoromethyl)isoxazoles including a trifluoromethyl analogue of an anticancer agent. The transformation requires only a couple of commercially available and cheap reagents i.e., CF3SO2Na as the trifluoromethyl source, and tBuONO as an oxidant as well as a source of N and O. Notably, 5-alkenyl-4-(trifluoromethyl)isoxazoles were further synthetically diversified to a new class of biheteroaryls, i.e., 5-(3-pyrrolyl)-4-(trifluoromethyl)isoxazoles. Mechanistic studies revealed a radical pathway for the reaction.
Collapse
Affiliation(s)
- Paramita Pattanayak
- Department of Chemistry, Birla Institute of Technology and Science, Pilani (BITS Pilani), Hyderabad Campus, Jawahar Nagar, Hyderabad 500078, Telangana, India
| | - Tanmay Chatterjee
- Department of Chemistry, Birla Institute of Technology and Science, Pilani (BITS Pilani), Hyderabad Campus, Jawahar Nagar, Hyderabad 500078, Telangana, India
| |
Collapse
|
5
|
Gattu R, Ramesh SS, Nadigar S, D CG, Ramesh S. Conjugation as a Tool in Therapeutics: Role of Amino Acids/Peptides-Bioactive (Including Heterocycles) Hybrid Molecules in Treating Infectious Diseases. Antibiotics (Basel) 2023; 12:532. [PMID: 36978399 PMCID: PMC10044335 DOI: 10.3390/antibiotics12030532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Peptide-based drugs are gaining significant momentum in the modern drug discovery, which is witnessed by the approval of new drugs by the FDA in recent years. On the other hand, small molecules-based drugs are an integral part of drug development since the past several decades. Peptide-containing drugs are placed between small molecules and the biologics. Both the peptides as well as the small molecules (mainly heterocycles) pose several drawbacks as therapeutics despite their success in curing many diseases. This gap may be bridged by utilising the so called 'conjugation chemistry', in which both the partners are linked to one another through a stable chemical bond, and the resulting conjugates are found to possess attracting benefits, thus eliminating the stigma associated with the individual partners. Over the past decades, the field of molecular hybridisation has emerged to afford us new and efficient molecular architectures that have shown high promise in medicinal chemistry. Taking advantage of this and also considering our experience in this field, we present herein a review concerning the molecules obtained by the conjugation of peptides (amino acids) to small molecules (heterocycles as well as bioactive compounds). More than 125 examples of the conjugates citing nearly 100 references published during the period 2000 to 2022 having therapeutic applications in curing infectious diseases have been covered.
Collapse
Affiliation(s)
- Rohith Gattu
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science, Ooty Road, Mysuru 570025, Karnataka, India
| | - Sanjay S. Ramesh
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science, Ooty Road, Mysuru 570025, Karnataka, India
| | - Siddaram Nadigar
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science, Ooty Road, Mysuru 570025, Karnataka, India
| | - Channe Gowda D
- Department of Studies in Chemistry, Manasagangotri, University of Mysore, Mysuru 570005, Karnataka, India
| | - Suhas Ramesh
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science, Ooty Road, Mysuru 570025, Karnataka, India
| |
Collapse
|
6
|
Piven YA, Yastrebova MA, Khamidullina AI, Scherbakov AM, Tatarskiy VV, Rusanova JA, Baranovsky AV, Zinovich VG, Khlebnicova TS, Lakhvich FA. Novel O-acylated (E)-3-aryl-6,7-dihydrobenzisoxazol-4(5H)-one oximes targeting HSP90-HER2 axis in breast cancer cells. Bioorg Med Chem 2022; 53:116521. [PMID: 34844036 DOI: 10.1016/j.bmc.2021.116521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/04/2023]
Abstract
Novel O-acylated (E)-3-aryl-6,7-dihydrobenzisoxazol-4(5H)-one oximes were designed as potential HSP90 inhibitors. A series of the compounds was synthesized by oximation of (E)-3-aryl-6,7-dihydrobenzisoxazol-4(5H)-ones followed by O-acylation with acylamidobenzoic acids. The obtained compounds showed an antiproliferative effect on three breast cancer cell lines (MCF7, MDA-MB-231 and HCC1954). Compound 16s exhibited high antiproliferative potency against HCC1954 breast cancer cells with the IC50 value of 6 µM was selected for in-depth evaluation. Compound 16s did not inhibit the growth of normal epithelial cells. We have demonstrated that the compound 16s can induce apoptosis in cancer cells via inhibition of HSP90 "client" proteins including a key oncogenic receptor, HER2/neu. Described here compounds can be considered for further basic and preclinical investigation as a part of HSP90/HER2-targeted therapies.
Collapse
Affiliation(s)
- Yuri A Piven
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Akad. Kuprevicha st. 5/2, Minsk 220141, Belarus
| | - Margarita A Yastrebova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Vavilova st. 34/5, Moscow 119334, Russian Federation
| | - Alvina I Khamidullina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Vavilova st. 34/5, Moscow 119334, Russian Federation
| | - Alexander M Scherbakov
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, Kashirskoye sh. 24, Moscow 115522, Russian Federation
| | - Victor V Tatarskiy
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Vavilova st. 34/5, Moscow 119334, Russian Federation
| | - Julia A Rusanova
- Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska str., Kyiv 01601, Ukraine
| | - Alexander V Baranovsky
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Akad. Kuprevicha st. 5/2, Minsk 220141, Belarus
| | - Veronica G Zinovich
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Akad. Kuprevicha st. 5/2, Minsk 220141, Belarus
| | - Tatyana S Khlebnicova
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Akad. Kuprevicha st. 5/2, Minsk 220141, Belarus
| | - Fedor A Lakhvich
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Akad. Kuprevicha st. 5/2, Minsk 220141, Belarus
| |
Collapse
|
7
|
Lugiņina J, Linden M, Bazulis M, Kumpiņš V, Mishnev A, Popov SA, Golubeva TS, Waldvogel SR, Shults EE, Turks M. Electrosynthesis of Stable Betulin‐Derived Nitrile Oxides and their Application in Synthesis of Cytostatic Lupane‐Type Triterpenoid‐Isoxazole Conjugates. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jevgeņija Lugiņina
- Faculty of Materials Science and Applied Chemistry RigaTechnical University P. Valdena Str.3 Riga 1007 Latvia
| | - Martin Linden
- Department of Chemistry Johannes Gutenberg University Mainz Duesbergweg 10–14 Mainz 55128 Germany
| | - Māris Bazulis
- Faculty of Materials Science and Applied Chemistry RigaTechnical University P. Valdena Str.3 Riga 1007 Latvia
| | - Viktors Kumpiņš
- Faculty of Materials Science and Applied Chemistry RigaTechnical University P. Valdena Str.3 Riga 1007 Latvia
| | - Anatoly Mishnev
- Latvian Institute of Organic Synthesis Aizkraukles Str. 21 Riga 1006 Latvia
| | - Sergey A. Popov
- Novosibirsk Institute of Organic Chemistry Academician Lavrentjev Ave. 9 Novosibirsk 630090 Russia
| | - Tatiana S. Golubeva
- The Federal Research Center Institute of Cytology and Genetics Acad. Lavrentyev Ave., 10 Novosibirsk 630090 Russia
| | - Siegfried R. Waldvogel
- Department of Chemistry Johannes Gutenberg University Mainz Duesbergweg 10–14 Mainz 55128 Germany
| | - Elvira E. Shults
- Novosibirsk Institute of Organic Chemistry Academician Lavrentjev Ave. 9 Novosibirsk 630090 Russia
| | - Māris Turks
- Faculty of Materials Science and Applied Chemistry RigaTechnical University P. Valdena Str.3 Riga 1007 Latvia
| |
Collapse
|
8
|
Arya GC, Kaur K, Jaitak V. Isoxazole derivatives as anticancer agent: A review on synthetic strategies, mechanism of action and SAR studies. Eur J Med Chem 2021; 221:113511. [PMID: 34000484 DOI: 10.1016/j.ejmech.2021.113511] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/16/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022]
Abstract
Breast cancer is the second most leading cause of death among women. Multiple drugs have been approved by FDA for the treatment of BC. The major drawbacks of existing drugs are the development of resistance, toxicity, selectivity problem. The other therapies like hormonal therapy, surgery, radiotherapy, and immune therapy are in use but showed many side effects like bioavailability issues, non-selectivity, pharmacokinetic-pharmacodynamic problems. Therefore, there is an urgent need to develop new moieties that are nonviolent and more effective in the treatment of cancer. Isoxazole derivatives have gain popularity in recent years due to anticancer potential with the least side effects. These derivatives act as an anticancer agent with different mechanisms like inducing apoptosis, aromatase inhibition, disturbing tubulin congregation, topoisomerase inhibition, HDAC inhibition, and ERα inhibition. In this article, we have explored the synthetic strategies, anticancer mechanism of action along with SAR studies of isoxazole derivatives.
Collapse
Affiliation(s)
- Girish Chandra Arya
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghhudha, Bathinda, Pb, 151401, India
| | - Kamalpreet Kaur
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghhudha, Bathinda, Pb, 151401, India
| | - Vikas Jaitak
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghhudha, Bathinda, Pb, 151401, India.
| |
Collapse
|
9
|
Ge J, Ding Q, Long X, Liu X, Peng Y. Copper(II)-Catalyzed Domino Synthesis of 4-Benzenesulfonyl Isoxazoles from 2-Nitro-1,3-enynes, Amines, and Sodium Benzenesulfinate. J Org Chem 2020; 85:13886-13894. [PMID: 33084339 DOI: 10.1021/acs.joc.0c01964] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A simple and effective method for the synthesis of fully substituted 4-benzenesulfonyl isoxazoles through a copper(II)-catalyzed three-component reaction of 2-nitro-1,3-enynes, amines, and sodium benzenesulfinate is described. The reaction proceeds smoothly under mild conditions and provides the benzenesulfonyl isoxazoles with high chemoselectivity.
Collapse
Affiliation(s)
- Junying Ge
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Key Laboratory of Green Chemistry, and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.,Institute of Coordination Catalysis, Engineering Center of Jiangxi, University for Lithium Energy and Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, Yichun University, Yichun, Jiangxi 336000, China
| | - Qiuping Ding
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Key Laboratory of Green Chemistry, and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Xujing Long
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Key Laboratory of Green Chemistry, and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Xuan Liu
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Key Laboratory of Green Chemistry, and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yiyuan Peng
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Key Laboratory of Green Chemistry, and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| |
Collapse
|
10
|
Zia M, Hameed S, Ahmad I, Tabassum N, Yousuf S. Regio-isomeric isoxazole sulfonates: Synthesis, characterization, electrochemical studies and DNA binding activity. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Joksimović N, Janković N, Davidović G, Bugarčić Z. 2,4-Diketo esters: Crucial intermediates for drug discovery. Bioorg Chem 2020; 105:104343. [PMID: 33086180 DOI: 10.1016/j.bioorg.2020.104343] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/26/2020] [Accepted: 10/01/2020] [Indexed: 12/20/2022]
Abstract
Convenient structures such as 2,4-diketo esters have been widely used as an effective pattern in medicinal chemistry and pharmacology for drug discovery. 2,4-Diketonate is a common scaffold that can be found in many biologically active and naturally occurring compounds. Also, many 2,4-diketo ester derivatives have been prepared due to their suitable synthesis. These synthetic drugs and natural products have shown numerous interesting biological properties with clinical potential as a cure for the broad specter of diseases. This review aims to highlight the important evidence of 2,4-diketo esters as a privileged scaffold in medicinal chemistry and pharmacology. Herein, numerous aspects of 2,4-diketo esters will be summarized, including synthesis and isolation of their derivatives, development of novel synthetic methodologies, the evaluation of their biological properties as well as the mechanisms of action of the diketo ester derivates. This paperwork is expected to be a comprehensive, trustworthy, and critical review of the 2,4-diketo ester intermediate to the chemistry community.
Collapse
Affiliation(s)
- Nenad Joksimović
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| | - Nenad Janković
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Sciences, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Goran Davidović
- University of Kragujevac, Faculty of Medical Sciences, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Zorica Bugarčić
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| |
Collapse
|
12
|
Chiacchio MA, Lanza G, Chiacchio U, Giofrè SV, Romeo R, Iannazzo D, Legnani L. Oxazole-Based Compounds As Anticancer Agents. Curr Med Chem 2020; 26:7337-7371. [PMID: 30501590 DOI: 10.2174/0929867326666181203130402] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/22/2018] [Accepted: 11/15/2018] [Indexed: 11/22/2022]
Abstract
Heterocyclic compounds represent a significant target for anti-cancer research and drug discovery, due to their structural and chemical diversity. Oxazoles, with oxygen and nitrogen atoms present in the core structure, enable various types of interactions with different enzymes and receptors, favoring the discovery of new drugs. Aim of this review is to describe the most recent reports on the use of oxazole-based compounds in anticancer research, with reference to the newly discovered iso/oxazole-based drugs, to their synthesis and to the evaluation of the most biologically active derivatives. The corresponding dehydrogenated derivatives, i.e. iso/oxazolines and iso/oxazolidines, are also reported.
Collapse
Affiliation(s)
- Maria A Chiacchio
- Dipartimento di Scienze del Farmaco, University of Catania, V.le Doria 6, 95125 Catania, Italy
| | - Giuseppe Lanza
- Dipartimento di Scienze del Farmaco, University of Catania, V.le Doria 6, 95125 Catania, Italy
| | - Ugo Chiacchio
- Dipartimento di Scienze del Farmaco, University of Catania, V.le Doria 6, 95125 Catania, Italy
| | - Salvatore V Giofrè
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, University of Messina, Via S.S. Annunziata, 98168 Messina, Italy
| | - Roberto Romeo
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, University of Messina, Via S.S. Annunziata, 98168 Messina, Italy
| | - Daniela Iannazzo
- Dipartimento di Ingegneria, University of Messina, Contrada Di Dio, 98166 Messina, Italy
| | - Laura Legnani
- Dipartimento di Scienze del Farmaco, University of Catania, V.le Doria 6, 95125 Catania, Italy.,Dipartimento di Chimica, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
13
|
Marzi M, Pourshamsian K, Hatamjafari F, Shiroudi A, Oliaey AR. Synthesis of New N-Benzoyl-N'-Triazine Thiourea Derivatives and Their Antibacterial Activity. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s106816201905008x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Barak DS, Dahatonde DJ, Batra S. Microwave‐Assisted Metal‐Free Decarboxylative Iodination/Bromination of Isoxazole‐4‐carboxylic Acids. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900572] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Dinesh S. Barak
- Medicinal and Process Chemistry DivisionCSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension Sitapur Road Lucknow 226031, Uttar Pradesh India
| | - Dipak J. Dahatonde
- Medicinal and Process Chemistry DivisionCSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension Sitapur Road Lucknow 226031, Uttar Pradesh India
| | - Sanjay Batra
- Medicinal and Process Chemistry DivisionCSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension Sitapur Road Lucknow 226031, Uttar Pradesh India
- Academy of Scientific and Innovative ResearchCSIR- Human Resource Development Centre (CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar Ghaziabad- 201002, Uttar Pradesh India
| |
Collapse
|
15
|
Qin F, Wang Y, Jiang X, Wang Y, Zhang N, Wen X, Wang L, Jiang Q, He G. Design, synthesis and molecular mechanisms of novel dual inhibitors of heat shock protein 90/phosphoinositide 3-kinase alpha (Hsp90/PI3Kα) against cutaneous melanoma. J Enzyme Inhib Med Chem 2019; 34:909-926. [PMID: 30957641 PMCID: PMC8853710 DOI: 10.1080/14756366.2019.1596903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Overexpression of heat shock protein 90 (Hsp90) is common in various types of cancer. In cutaneous melanoma, a cancer with one of the high levels of Hsp90 overexpression, such expression was correlated with a panel of protein kinases, thus offering an opportunity to identify Hsp90-based multi-kinase inhibitors for novel cancer therapies. Towards this goal, we utilized a 2,4-dihydroxy-5-isopropylbenzate-based Hsp90 inhibitor scaffold and thieno[2,3-d]pyrimidine-based kinase inhibitor scaffold to develop a Hsp90-inhibiting compound library. Our inhibitory compound named 8m inhibited Hsp90 and PI3Kα with an IC50 value of 38.6 nM and 48.4 nM, respectively; it displayed improved cellular activity which could effectively induce cell cycle arrest and apoptosis in melanoma cells and lead to the inhibition of cell proliferation, colony formation, migration and invasion. Our results demonstrated 8m to be a promising lead compound for further therapeutic potential assessment of Hsp90/PI3Kα dual inhibitors in melanoma targeted therapy.
Collapse
Affiliation(s)
- Feifei Qin
- a Department of Dermatology, State Key Laboratory of Biotherapy , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China.,b Department of Cardiology , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China
| | - Yali Wang
- a Department of Dermatology, State Key Laboratory of Biotherapy , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China.,b Department of Cardiology , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China
| | - Xian Jiang
- a Department of Dermatology, State Key Laboratory of Biotherapy , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China.,b Department of Cardiology , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China
| | - Yujia Wang
- a Department of Dermatology, State Key Laboratory of Biotherapy , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China.,b Department of Cardiology , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China
| | - Nan Zhang
- a Department of Dermatology, State Key Laboratory of Biotherapy , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China.,b Department of Cardiology , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China
| | - Xiang Wen
- a Department of Dermatology, State Key Laboratory of Biotherapy , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China.,b Department of Cardiology , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China
| | - Lian Wang
- a Department of Dermatology, State Key Laboratory of Biotherapy , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China.,b Department of Cardiology , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China
| | - Qinglin Jiang
- c School of Pharmacy and Sichuan Province College Key Laboratory of Structure-Specific Small Molecule Drugs, Chengdu Medical College , Chengdu , China
| | - Gu He
- a Department of Dermatology, State Key Laboratory of Biotherapy , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China.,b Department of Cardiology , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China
| |
Collapse
|
16
|
Arshad F, Khan MF, Akhtar W, Alam MM, Nainwal LM, Kaushik SK, Akhter M, Parvez S, Hasan SM, Shaquiquzzaman M. Revealing quinquennial anticancer journey of morpholine: A SAR based review. Eur J Med Chem 2019; 167:324-356. [PMID: 30776694 DOI: 10.1016/j.ejmech.2019.02.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/24/2019] [Accepted: 02/04/2019] [Indexed: 02/07/2023]
Abstract
Morpholine, a six-membered heterocycle containing one nitrogen and one oxygen atom, is a moiety of great significance. It forms an important intermediate in many industrial and organic syntheses. Morpholine containing drugs are of high therapeutic value. Its wide array of pharmacological activity includes anti-diabetic, anti-emetic, growth stimulant, anti-depressant, bronchodilator and anticancer. Multi-drug resistance in cancer cases have emerged in the last few years and have led to the failure of many chemotherapeutic drugs. Newer treatment methods and drugs are being developed to overcome this problem. Target based drug discovery is an effective method to develop novel anticancer drugs. To develop newer drugs, previously reported work needs to be studied. Keeping this in mind, last five year's literature on morpholine used as anticancer agents has been reviewed and summarized in the paper herein.
Collapse
Affiliation(s)
- Fatima Arshad
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohemmed Faraz Khan
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Wasim Akhtar
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Mumtaz Alam
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Lalit Mohan Nainwal
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Sumit Kumar Kaushik
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mymoona Akhter
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | | | - Mohammad Shaquiquzzaman
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
17
|
Synthesis, structures, drug-likeness, in vitro evaluation and in silico docking on novel N-benzoyl-N′-phenyl thiourea derivatives. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.08.069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Shevtsov M, Multhoff G. Therapeutic Implications of Heat Shock Proteins in Cancer. HEAT SHOCK PROTEINS 2019. [DOI: 10.1007/978-3-030-02254-9_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Sepehri B, Rezaei M, Ghavami R. The in silico identification of potent anti-cancer agents by targeting the ATP binding site of the N-domain of HSP90. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2018; 29:551-565. [PMID: 30058412 DOI: 10.1080/1062936x.2018.1494626] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Indexed: 06/08/2023]
Abstract
To identify new HSP90 inhibitors, the ATP binding site of the N-domain of HSP90 was targeted by molecular docking of a library of 23,129,083 compounds (from the ZINC database) to the ATP binding site of the N-domain of HSP90. Structure-based virtual screen (SBVS) was performed using idock software on the istar web platform. Based on idock binding energies, 40 molecules were considered as HSP90 inhibitors. In the next step, the 40 molecules and the compound AT13387 (Onalespib) were docked to the XJX binding site using AutoDock Vina software. By comparing the binding energies of the 40 molecules selected with compound AT13387, 26 molecules were selected. By applying the rule of five, eight molecules were selected as hit compounds. The interactions of these eight compounds with the XJX binding site were obtained and investigated, and two-dimensional interaction maps were provided for the others. Finally, computing the toxicity of these compounds with the ProTox-II webserver shows that three compounds, namely ZINC89453765, ZINC23918431 and ZINC12414793, can be considered as good HSP90 inhibitors. These compounds are inactive for nuclear receptor signalling and stress response pathways including heat shock response, so do not have the limitations of common HSP90 inhibitors. They are also inactive for hepatotoxicity, carcinogenicity, immunotoxicity, mutagenicity and cytotoxicity.
Collapse
Affiliation(s)
- B Sepehri
- a Department of Chemistry, Faculty of Science , University of Kurdistan , Sanandaj , Iran
| | - M Rezaei
- a Department of Chemistry, Faculty of Science , University of Kurdistan , Sanandaj , Iran
| | - R Ghavami
- a Department of Chemistry, Faculty of Science , University of Kurdistan , Sanandaj , Iran
| |
Collapse
|
20
|
Zhu J, Mo J, Lin HZ, Chen Y, Sun HP. The recent progress of isoxazole in medicinal chemistry. Bioorg Med Chem 2018; 26:3065-3075. [DOI: 10.1016/j.bmc.2018.05.013] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/06/2018] [Accepted: 05/10/2018] [Indexed: 11/15/2022]
|
21
|
Design, synthesis and pharmacological evaluation of ALK and Hsp90 dual inhibitors bearing resorcinol and 2,4-diaminopyrimidine motifs. Eur J Med Chem 2018; 152:76-86. [DOI: 10.1016/j.ejmech.2018.04.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 01/21/2023]
|
22
|
Agrawal N, Mishra P. The synthetic and therapeutic expedition of isoxazole and its analogs. Med Chem Res 2018; 27:1309-1344. [PMID: 32214770 PMCID: PMC7079875 DOI: 10.1007/s00044-018-2152-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/01/2018] [Indexed: 11/28/2022]
Abstract
Isoxazole, constituting an important family of five-membered heterocycles with one oxygen atom and one nitrogen atom at adjacent positions is of immense importance because of its wide spectrum of biological activities and therapeutic potential. It is, therefore, of prime importance that the development of new synthetic strategies and designing of new isoxazole derivatives should be based on the most recent knowledge emerging from the latest research. This review is an endeavor to highlight the progress in the chemistry and biological activity of isoxazole derivatives which could provide a low-height flying bird's eye view of isoxazole derivatives to the medicinal chemists for the development of clinically viable drugs using this information.
Collapse
Affiliation(s)
- Neetu Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P. India
| | - Pradeep Mishra
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P. India
| |
Collapse
|
23
|
Recent advance in oxazole-based medicinal chemistry. Eur J Med Chem 2018; 144:444-492. [DOI: 10.1016/j.ejmech.2017.12.044] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/04/2017] [Accepted: 12/13/2017] [Indexed: 01/09/2023]
|
24
|
Park SY, Oh YJ, Lho Y, Jeong JH, Liu KH, Song J, Kim SH, Ha E, Seo YH. Design, synthesis, and biological evaluation of a series of resorcinol-based N-benzyl benzamide derivatives as potent Hsp90 inhibitors. Eur J Med Chem 2017; 143:390-401. [PMID: 29202402 DOI: 10.1016/j.ejmech.2017.11.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/19/2017] [Accepted: 11/20/2017] [Indexed: 12/12/2022]
Abstract
Heat shock protein 90 (Hsp90) is a ubiquitous molecular chaperone that is responsible for the stabilization and maturation of many oncogenic proteins. Therefore, Hsp90 has emerged as an attractive target in the field of cancer chemotherapy. In this study, we report the design, synthesis, and biological evaluation of a series of Hsp90 inhibitors. In particular, compound 30f shows a significant Hsp90α inhibitory activity with IC50 value of 5.3 nM and an excellent growth inhibition with GI50 value of 0.42 μM against non-small cell lung cancer cells, H1975. Compound 30f effectively reduces the expression levels of Hsp90 client proteins including Her2, EGFR, Met, Akt, and c-Raf. Consequently, compound 30f promotes substantial cleavages of PARP, Caspase 3, and Caspase 8, indicating that 30f induces cancer cell death via apoptotic pathway. Moreover, cytochrome P450 assay indicates that compound 30f has weak inhibitory effect on the activities of five major P450 isoforms (IC50 > 5 μM for 1A2, 2C9, 2C19, 2D6, and 3A), suggesting that clinical interactions between 30f and the substrate drugs of the five major P450 isoforms are not expected. Compound 30f also inhibits the tumor growth in a mouse xenograft model bearing subcutaneous H1975 without noticeable abnormal behavior and body weight changes. The immunostaining and western immunoblot analysis of EGFR, Met, Akt in xenograft tissue sections of tumor further demonstrate a good agreement with the in vitro results.
Collapse
Affiliation(s)
- Sun You Park
- College of Pharmacy, Keimyung University, Daegu 704-701, South Korea
| | - Yong Jin Oh
- College of Pharmacy, Keimyung University, Daegu 704-701, South Korea
| | - Yunmee Lho
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu 704-701, South Korea
| | - Ju Hui Jeong
- College of Pharmacy, Keimyung University, Daegu 704-701, South Korea
| | - Kwang-Hyeon Liu
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, South Korea
| | - Jaeyoung Song
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, South Korea
| | - Soong-Hyun Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, South Korea
| | - Eunyoung Ha
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu 704-701, South Korea.
| | - Young Ho Seo
- College of Pharmacy, Keimyung University, Daegu 704-701, South Korea.
| |
Collapse
|
25
|
Synthesis of 3,4-diaryl-5-carboxy-4,5-dihydroisoxazole 2-oxides as valuable synthons for anticancer molecules. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.10.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|