1
|
Zang ZL, Wang YX, Battini N, Gao WW, Zhou CH. Synthesis and antibacterial medicinal evaluation of carbothioamido hydrazonyl thiazolylquinolone with multitargeting antimicrobial potential to combat increasingly global resistance. Eur J Med Chem 2024; 275:116626. [PMID: 38944934 DOI: 10.1016/j.ejmech.2024.116626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
The global microbial resistance is a serious threat to human health, and multitargeting compounds are considered to be promising to combat microbial resistance. In this work, a series of new thiazolylquinolones with multitargeting antimicrobial potential were developed through multi-step reactions using triethoxymethane and substituted anilines as start materials. Their structures were confirmed by 1H NMR, 13C NMR and HRMS spectra. Antimicrobial evaluation revealed that some of the target compounds could effectively inhibit microbial growth. Especially, carbothioamido hydrazonyl aminothiazolyl quinolone 8a showed strong inhibitory activity toward drug-resistant Staphylococcus aureus with MIC value of 0.0047 mM, which was 5-fold more active than that of norfloxacin. The highly active compound 8a exhibited negligible hemolysis, no significant toxicity in vitro and in vivo, low drug resistance, as well as rapidly bactericidal effects, which suggested its favorable druggability. Furthermore, compound 8a was able to effectively disrupt the integrity of the bacterial membrane, intercalate into DNA and inhibit the activity of topoisomerase IV, suggesting multitargeting mechanism of action. Compound 8a could form hydrogen bonds and hydrophobic interactions with DNA-topoisomerase IV complex, indicating the insertion of aminothiazolyl moiety was beneficial to improve antibacterial efficiency. These findings indicated that the active carbothioamido hydrazonyl aminothiazolyl quinolone 8a as a chemical therapeutic candidate demonstrated immense potential to tackle drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Zhong-Lin Zang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yi-Xin Wang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Narsaiah Battini
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Wei-Wei Gao
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
2
|
Zang ZL, Gao WW, Zhou CH. Unique aminothiazolyl coumarins as potential DNA and membrane disruptors towards Enterococcus faecalis. Bioorg Chem 2024; 148:107451. [PMID: 38759357 DOI: 10.1016/j.bioorg.2024.107451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
Aminothiazolyl coumarins as potentially new antimicrobial agents were designed and synthesized in an effort to overcome drug resistance. Biological activity assay revealed that some target compounds exhibited significantly inhibitory efficiencies toward bacteria and fungi including drug-resistant pathogens. Especially, aminothiazolyl 7-propyl coumarin 8b and 4-dichlorobenzyl derivative 11b exhibited bactericidal potential (MBC/MIC = 2) toward clinically drug-resistant Enterococcus faecalis with low cytotoxicity to human lung adenocarcinoma A549 cells, rapidly bactericidal effects and no obvious bacterial resistance development against E. faecalis. The preliminary antibacterial action mechanism studies suggested that compound 11b was able to disturb E. faecalis membrane effectively, and interact with bacterial DNA isolated from resistant E. faecalis through noncovalent bonds to cleave DNA, thus inhibiting the growth of E. faecalis strain. Further molecular modeling indicated that compounds 8b and 11b could bind with SER-1084 and ASP-1083 residues of gyrase-DNA complex through hydrogen bonds and hydrophobic interactions. Moreover, compound 11b showed low hemolysis and in vivo toxicity. These findings of aminothiazolyl coumarins as unique structural scaffolds might hold a large promise for the treatments of drug-resistant bacterial infection.
Collapse
Affiliation(s)
- Zhong-Lin Zang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Wei-Wei Gao
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
3
|
Hu YG, Battini N, Fang B, Zhou CH. Discovery of indolylacryloyl-derived oxacins as novel potential broad-spectrum antibacterial candidates. Eur J Med Chem 2024; 270:116392. [PMID: 38608408 DOI: 10.1016/j.ejmech.2024.116392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
The emergence of serious bacterial resistance towards clinical oxacins poses a considerable threat to global public health, necessitating the development of novel structural antibacterial agents. Seven types of novel indolylacryloyl-derived oxacins (IDOs) were designed and synthesized for the first time from commercial 3,4-difluoroaniline via an eight-step procedure. The synthesized compounds were characterized by modern spectroscopic techniques. All target molecules were evaluated for antimicrobial activities. Most of the prepared IDOs showed a broad antibacterial spectrum and strong activities against the tested strains, especially ethoxycarbonyl IDO 10d (0.25-0.5 μg/mL) and hydroxyethyl IDO 10e (0.25-1 μg/mL) exhibited much superior antibacterial efficacies to reference drug norfloxacin. These highly active IDOs also displayed low hemolysis, cytotoxicity and resistance, as well as rapid bactericidal capacity. Further investigations indicated that ethoxycarbonyl IDO 10d and hydroxyethyl IDO 10e could effectively reduce the exopolysaccharide content and eradicate the formed biofilm, which might delay the development of drug resistance. Preliminary exploration of the antibacterial mechanism revealed that active IDOs could not only destroy membrane integrity, resulting in changes in membrane permeability, but also promote the accumulation of reactive oxygen species, leading to the production of malondialdehyde and decreased bacterial metabolism. Moreover, they exhibited the capability to bind with DNA and DNA gyrase, forming supramolecular complexes through various noncovalent interactions, thereby inhibiting DNA replication and causing bacterial death. All the above results suggested that the newly developed indolylacryloyl-derived oxacins should hold great promise as potential multitargeting broad-spectrum antibacterial candidates to overcome drug resistance.
Collapse
Affiliation(s)
- Yue-Gao Hu
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Narsaiah Battini
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Bo Fang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators As Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
4
|
Li W, Yang X, Ahmad N, Zhang SL, Zhou CH. Novel aminothiazoximone-corbelled ethoxycarbonylpyrimidones with antibiofilm activity to conquer Gram-negative bacteria through potential multitargeting effects. Eur J Med Chem 2024; 268:116219. [PMID: 38368710 DOI: 10.1016/j.ejmech.2024.116219] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/20/2024]
Abstract
The emergence of drug-resistant microorganisms threatens human health, and it is usually exacerbated by the formation of biofilm, which forces the development of new antibacterial agents with antibiofilm activity. In this work, a novel category of aminothiazoximone-corbelled ethoxycarbonylpyrimidones (ACEs) was designed and synthesized, and some of the prepared ACEs showed potent bioactivity against the tested bacteria. In particular, imidazolyl ACE 6c showed better inhibitory activity towards Acinetobacter baumannii and Escherichia coli with MIC values both of 0.0066 mmol/L than norfloxacin. It was also revealed that imidazolyl ACE 6c not only possessed inconspicuous hemolytic rate and cytotoxicity, low drug resistance and no risk of penetrating the blood-brain barrier, but also exhibited obvious biofilm inhibition and eradication activities. The preliminary mechanism research suggested that imidazolyl ACE 6c could induce metabolic dysfunction by deactivating lactate dehydrogenase and promote the accumulation of reactive oxygen species to decrease the reduced glutathione and ultimately cause oxidative damage in bacteria. Furthermore, ACE 6c was also found that could insert into DNA to form the supramolecular complex of 6c-DNA and trigger cell death. The multidimensional effect might promote bacterial cell rupture, leading to the leakage of intracellular content. These findings manifested that novel imidazolyl ACE 6c as a potential multitargeting antibacterial agent with potent antibiofilm activity could provide new possibility for the treatment of refractory biofilm-intensified bacterial infections.
Collapse
Affiliation(s)
- Wei Li
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Xi Yang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Nisar Ahmad
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing, 401331, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
5
|
Liu H, Xu T, Xue Z, Huang M, Wang T, Zhang M, Yang R, Guo Y. Current Development of Thiazole-Containing Compounds as Potential Antibacterials against Methicillin-Resistant Staphylococcus aureus. ACS Infect Dis 2024; 10:350-370. [PMID: 38232301 DOI: 10.1021/acsinfecdis.3c00647] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The emergence of multi-drug-resistant bacteria is threatening to human health and life around the world. In particular, methicillin-resistant Staphylococcus aureus (MRSA) causes fatal injuries to human beings and serious economic losses to animal husbandry due to its easy transmission and difficult treatment. Currently, the development of novel, highly effective, and low-toxicity antimicrobials is important to combat MRSA infections. Thiazole-containing compounds with good biological activity are widely used in clinical practice, and appropriate structural modifications make it possible to develop new antimicrobials. Here, we review thiazole-containing compounds and their antibacterial effects against MRSA reported in the past two decades and discuss their structure-activity relationships as well as the corresponding antimicrobial mechanisms. Some thiazole-containing compounds exhibit potent antibacterial efficacy in vitro and in vivo after appropriate structural modifications and could be used as antibacterial candidates. This Review provides insights into the development of thiazole-containing compounds as antimicrobials to combat MRSA infections.
Collapse
Affiliation(s)
- Hang Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Ting Xu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
| | - Zihan Xue
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Meijuan Huang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Tingting Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Miaomiao Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Ruige Yang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Yong Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| |
Collapse
|
6
|
Lavekar AG, Thakare R, Saima, Equbal D, Chopra S, Sinha AK. Indole-based aryl sulfides target the cell wall of Staphylococcus aureus without detectable resistance. Drug Dev Res 2024; 85:e22123. [PMID: 37840429 DOI: 10.1002/ddr.22123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/05/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023]
Abstract
Sulfur-containing classes of the scaffold "Arylthioindoles" have been evaluated for antibacterial activity; they demonstrated excellent potency against methicillin-resistant Staphylococcus aureus (MRSA) as well as against vancomycin-resistant strains and a panel of clinical isolates of resistant strains. In this study, we have elucidated the mechanism of action of lead compounds, wherein they target the cell wall of S. aureus. Further, S. aureus failed to develop resistance against two lead compounds tested in a serial passage experiment in the presence of the compounds over a period of 40 days. Both the compounds demonstrated comparable in vivo efficacy with vancomycin in a neutropenic mice thigh infection model. The results of these antibacterial activities emphasize the excellent potential of thioethers for developing novel antibiotics and may fill in as a target for the adjustment of accessible molecules to develop new powerful antibacterial agents with fewer side effects.
Collapse
Affiliation(s)
- Aditya G Lavekar
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Ritesh Thakare
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Department of Cell and Cancer Biology, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Saima
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- School of Advanced Chemical Sciences, Solan, Himachal Pradesh, India
| | - Danish Equbal
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Sidharth Chopra
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Arun K Sinha
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
- Ranchi University, Ranchi, Jharkhand, India
| |
Collapse
|
7
|
Li SR, Zeng CM, Peng XM, Chen JP, Li S, Zhou CH. Benzopyrone-mediated quinolones as potential multitargeting antibacterial agents. Eur J Med Chem 2023; 262:115878. [PMID: 37866337 DOI: 10.1016/j.ejmech.2023.115878] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
A new type of benzopyrone-mediated quinolones (BMQs) was rationally designed and efficiently synthesized as novel potential antibacterial molecules to overcome the global increasingly serious drug resistance. Some synthesized BMQs effectively suppressed the growth of the tested strains, outperforming clinical drugs. Notably, ethylidene-derived BMQ 17a exhibited superior antibacterial potential with low MICs of 0.5-2 μg/mL to clinical drugs norfloxacin, it not only displayed rapid bactericidal performance and inhibited bacterial biofilm formation, but also showed low toxicity toward human red blood cells and normal MDA-kb2 cells. Mechanistic investigation demonstrated that BMQ 17a could effectually induce bacterial metabolic disorders and promote the enhancement of reactive oxygen species to disrupt the bacterial antioxidant defense system. It was found that the active molecule BMQ 17a could not only form supramolecular complex with lactate dehydrogenase, which disturbed the biological functions, but also effectively embed into calf thymus DNA, thus affecting the normal function of DNA and achieving cell death. This work would provide an insight into developing new molecules to reduce drug resistance and expand antibacterial spectrum.
Collapse
Affiliation(s)
- Shu-Rui Li
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Chun-Mei Zeng
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Xin-Mei Peng
- School of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, Duyun, 558000, China.
| | - Jin-Ping Chen
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Shuo Li
- School of Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
8
|
Gupta S, Paul K. Membrane-active substituted triazines as antibacterial agents against Staphylococcus aureus with potential for low drug resistance and broad activity. Eur J Med Chem 2023; 258:115551. [PMID: 37348297 DOI: 10.1016/j.ejmech.2023.115551] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
A library of new naphthalimide-triazine analogues was synthesized as broad-spectrum antibacterial agents to overcome drug resistance. Bioactivity assay reveals that derivative 8e, with benzylamine in its structure, exhibits strong antibacterial properties against multi-drug resistance Staphylococcus aureus at a concentration of 1.56 μg/ml. It was also found to be better than chloromycin and amoxicillin. The active compound 8e efficiently inhibits the development of drug resistance within 11 passages. In addition, compound 8e inhibits the formation of biofilms in S. aureus and acts rapidly in bactericidal efficacy. Furthermore, mechanistic studies reveal that compound 8e effectively destroys the cytoplasmic membrane of bacteria, leading to leakage of intercellular protein content and loss in metabolic activity. Compound 8e binds to HSA readily with a binding constant of 1.32 × 105 M-1, indicating that the compound could be delivered to the target site effectively. Compound 8e can also form a supramolecular complex with DNA to obstruct DNA replications. These results suggest that analogue 8e could be further developed as a potential antibacterial agent. Furthermore, the cytotoxicity of all the synthesized compounds was evaluated against 60 human cancer cell lines to test their potential for anticancer agents.
Collapse
Affiliation(s)
- Saurabh Gupta
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147001, India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147001, India.
| |
Collapse
|
9
|
Li SR, Tan YM, Zhang L, Zhou CH. Comprehensive Insights into Medicinal Research on Imidazole-Based Supramolecular Complexes. Pharmaceutics 2023; 15:1348. [PMID: 37242590 PMCID: PMC10222694 DOI: 10.3390/pharmaceutics15051348] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
The electron-rich five-membered aromatic aza-heterocyclic imidazole, which contains two nitrogen atoms, is an important functional fragment widely present in a large number of biomolecules and medicinal drugs; its unique structure is beneficial to easily bind with various inorganic or organic ions and molecules through noncovalent interactions to form a variety of supramolecular complexes with broad medicinal potential, which is being paid an increasing amount of attention regarding more and more contributions to imidazole-based supramolecular complexes for possible medicinal application. This work gives systematical and comprehensive insights into medicinal research on imidazole-based supramolecular complexes, including anticancer, antibacterial, antifungal, antiparasitic, antidiabetic, antihypertensive, and anti-inflammatory aspects as well as ion receptors, imaging agents, and pathologic probes. The new trend of the foreseeable research in the near future toward imidazole-based supramolecular medicinal chemistry is also prospected. It is hoped that this work provides beneficial help for the rational design of imidazole-based drug molecules and supramolecular medicinal agents and more effective diagnostic agents and pathological probes.
Collapse
Affiliation(s)
- Shu-Rui Li
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yi-Min Tan
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ling Zhang
- School of Chemical Technology, Shijiazhuang University, Shijiazhuang 050035, China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
10
|
Zhang J, Battini N, Ou JM, Zhang SL, Zhang L, Zhou CH. New Efforts toward Aminothiazolylquinolones with Multitargeting Antibacterial Potential. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2322-2332. [PMID: 36700862 DOI: 10.1021/acs.jafc.2c08293] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
New antibacterial 3-(aminothiazolyl)quinolones (ATQs) were designed and efficiently synthesized to counteract the growing multidrug resistance in animal husbandry. Bioactive assays manifested that N,N-dicyclohexylaminocarbonyl ATQ 10e and methyl ATQ 17a, respectively, showed better antibacterial behavior against Staphylococcus aureus ATCC 29213 and Pseudomonas aeruginosa than reference drug norfloxacin. Notably, highly active ATQ 17a with low hemolysis, negligible mammalian cytotoxicity, and good pharmacokinetic properties displayed low trends to induce resistance and synergistic combinations with norfloxacin. Preliminary mechanism exploration implied that representative ATQ 17a could inhibit the formation of biofilms and destroy bacterial membrane integrity, further binding to intracellular DNA and DNA gyrase to hinder bacterial DNA replication. ATQ 17a could also induce the production of excess reactive oxygen species and reduce bacterial metabolism to accelerate bacterial death. These results provided a promise for 3-(aminothiazolyl)quinolones as new potential multitargeting antibacterial agents to treat bacterial infection of animals.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Narsaiah Battini
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jia-Ming Ou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Ling Zhang
- School of Chemical Technology, Shijiazhuang University, Shijiazhuang 050035, P. R. China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
11
|
Tan YM, Li D, Li FF, Fawad Ansari M, Fang B, Zhou CH. Pyrimidine-conjugated fluoroquinolones as new potential broad-spectrum antibacterial agents. Bioorg Med Chem Lett 2022; 73:128885. [PMID: 35835379 DOI: 10.1016/j.bmcl.2022.128885] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/26/2022] [Accepted: 07/07/2022] [Indexed: 12/24/2022]
Abstract
Pyrimidine-conjugated fluoroquinolones were constructed to cope with the dreadful resistance. Most of the target pyrimidine derivatives effectively suppressed the growth of the tested strains, especially, 4-aminopyrimidinyl compound 1c showed a broad antibacterial spectrum and low cytotoxicity and exhibited superior antibacterial potency against Enterococcus faecalis with a low MIC of 0.25 μg/mL to norfloxacin and ciprofloxacin. The active compound 1c with fast bactericidal potency could inhibit the formation of biofilms and showed much lower trend for the development of drug-resistance than norfloxacin and ciprofloxacin. Further exploration revealed that compound 1c could prompt ROS accumulations in bacterial cells and interact with DNA to form a DNA-1c complex, thus facilitating bacterial death. ADME analysis indicated that compound 1c possessed favorable drug-likeness and promising pharmacokinetic properties. These results demonstrated that pyrimidine-conjugated fluoroquinolones held hope as potential antibacterial candidates and deserve further study.
Collapse
Affiliation(s)
- Yi-Min Tan
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Di Li
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Fen-Fen Li
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Bo Fang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, PR China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
12
|
Novel metronidazole-derived three-component hybrids as promising broad-spectrum agents to combat oppressive bacterial resistance. Bioorg Chem 2022; 122:105718. [DOI: 10.1016/j.bioorg.2022.105718] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/21/2022] [Accepted: 03/01/2022] [Indexed: 12/11/2022]
|
13
|
Hu Y, Zhang L, Huang J, Wang T, Zhang J, Yu C, Pan G, Zhang L, Zhu Z, Zhang J. Novel Schiff Base‐conjugated
para
‐Aminobenzenesulfonamide Indole Hybrids as Potentially Muti‐targeting Blockers against
Staphylococcus aureus. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yuanyuan Hu
- Sauvage Laboratory for Smart Materials Harbin Institute of Technology (Shenzhen) Shenzhen 518055 P. R. China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology School of Materials Science and Engineering Harbin Institute of Technology Shenzhen 518055 P. R. China
| | - Ling Zhang
- School of Science Harbin Institute of Technology Shenzhen 518055 P. R. China
| | - Jinxu Huang
- Sauvage Laboratory for Smart Materials Harbin Institute of Technology (Shenzhen) Shenzhen 518055 P. R. China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology School of Materials Science and Engineering Harbin Institute of Technology Shenzhen 518055 P. R. China
| | - Tiansheng Wang
- Sauvage Laboratory for Smart Materials Harbin Institute of Technology (Shenzhen) Shenzhen 518055 P. R. China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology School of Materials Science and Engineering Harbin Institute of Technology Shenzhen 518055 P. R. China
| | - Jichuan Zhang
- Department of Chemistry University of Idaho Moscow Idaho 83844-2324 USA
| | - Congwei Yu
- College of Science China Agricultural University Beijing 100193 P. R. China
| | - Guangxing Pan
- Sauvage Laboratory for Smart Materials Harbin Institute of Technology (Shenzhen) Shenzhen 518055 P. R. China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology School of Materials Science and Engineering Harbin Institute of Technology Shenzhen 518055 P. R. China
| | - Ling Zhang
- School of Chemical Technology Shijiazhuang University Shijiazhuang Hebei 050035 P. R. China
| | - Zhenye Zhu
- Sauvage Laboratory for Smart Materials Harbin Institute of Technology (Shenzhen) Shenzhen 518055 P. R. China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology School of Materials Science and Engineering Harbin Institute of Technology Shenzhen 518055 P. R. China
| | - Jiaheng Zhang
- Sauvage Laboratory for Smart Materials Harbin Institute of Technology (Shenzhen) Shenzhen 518055 P. R. China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology School of Materials Science and Engineering Harbin Institute of Technology Shenzhen 518055 P. R. China
| |
Collapse
|
14
|
Zhang PL, Gopala L, Zhang SL, Cai GX, Zhou CH. An unanticipated discovery towards novel naphthalimide corbelled aminothiazoximes as potential anti-MRSA agents and allosteric modulators for PBP2a. Eur J Med Chem 2021; 229:114050. [PMID: 34922190 DOI: 10.1016/j.ejmech.2021.114050] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/26/2021] [Accepted: 12/09/2021] [Indexed: 12/14/2022]
Abstract
Available therapeutic strategies are urgently needed to conquer multidrug resistance of MRSA. A visible effort was guided towards the advancement of novel antibacterial framework of naphthalimide corbelled aminothiazoximes, and desired to assert some insight on the conjunction of individual pharmacophore with distinct biological activities and unique action mechanism. Preliminary assessment displayed that dimethylenediamine derivative 13d presented a wonderful inhibition on MRSA (MIC = 0.5 μg/mL), and showed excellent membrane selectivity (HC50 > 200 μg/mL) from an electrostatic distinction of the electronegative bacterial membranes and the electroneutral mammalian membranes. Moreover, 13d could effectually relieve the development of MRSA resistance. Investigations into explaining the mechanism of anti-MRSA disclosed that 13d displayed strong lipase affinity, which facilitated its permeation into cell membrane, causing membrane depolarization, leakage of cytoplasmic contents and lactate dehydrogenase (LDH) inhibition. Meanwhile, 13d could exert interaction with DNA to hinder biological function of DNA, and disrupt the antioxidant defense system of MRSA through up-regulation of ROS subjected the strain to oxidative stress. In particular, the unanticipated mechanism for naphthalimide corbelled aminothiazoximes that 13d could suppress the expression of PBP2a by inducing allosteric modulation of PBP2a and triggering the open of the active site, was discovered for the first time. These findings of naphthalimide corbelled aminothiazoximes as a small-molecule class of anti-MRSA agents held promise in strategies for treatment of MRSA infections.
Collapse
Affiliation(s)
- Peng-Li Zhang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Lavanya Gopala
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing, 401331, China.
| | - Gui-Xin Cai
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
15
|
Alzahrani AY, Ammar YA, Salem MA, Abu-Elghait M, Ragab A. Design, synthesis, molecular modeling, and antimicrobial potential of novel 3-[(1H-pyrazol-3-yl)imino]indolin-2-one derivatives as DNA gyrase inhibitors. Arch Pharm (Weinheim) 2021; 355:e2100266. [PMID: 34747519 DOI: 10.1002/ardp.202100266] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022]
Abstract
A series of 3-[(1H-pyrazol-3-yl)imino]indolin-2-one derivatives were designed using the molecular hybridization method, characterized using different spectroscopic techniques, and evaluated for their in vitro antimicrobial activity. Most of the target compounds demonstrated good to moderate antimicrobial activity compared with ciprofloxacin and fluconazole. Four compounds (8b, 9a, 9c, and 10a) showed encouraging results, with minimal inhibitory concentration (MIC) values (53.45-258.32 µM) comparable to those of norfloxacin (100.31-200.63 µM) and ciprofloxacin (48.33-96.68 µM). Noticeably, the four derivatives revealed excellent bactericidal and fungicidal activities, except for the bacteriostatic potential of compounds 8b and 9a against Escherichia coli and Staphylococcus aureus, respectively. The time-killing kinetic study against S. aureus confirmed the efficacy of these derivatives. Furthermore, two of the four promising derivatives, 9a and 10a, could prevent the formation of biofilms of S. aureus without affecting the bacterial growth at low concentrations. A combination study with seven commercial antibiotics against the multidrug-resistant bacterium P. aeruginosa showed a notable reduction in the antibiotic MIC values, represented mainly through a synergistic or additive effect. The enzymatic assay implied that the most active derivatives had inhibition potency against DNA gyrase comparable to that of ciprofloxacin. Molecular docking and density functional theory calculations were performed to explore the binding mode and study the reactivity of the promising compounds.
Collapse
Affiliation(s)
- Abdullah Y Alzahrani
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail, Assir, Saudi Arabia
| | - Yousry A Ammar
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Mohamed A Salem
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail, Assir, Saudi Arabia.,Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Mohammed Abu-Elghait
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ahmed Ragab
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
16
|
Identification of a novel antifungal backbone of naphthalimide thiazoles with synergistic potential for chemical and dynamic treatment. Future Med Chem 2021; 13:2047-2067. [PMID: 34672778 DOI: 10.4155/fmc-2021-0162] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: The high incidence and prevalence of fungal infections call for new antifungal drugs. This work was to develop naphthalimide thiazoles as potential antifungal agents. Results & methodology: These compounds showed significant antifungal potency toward some tested fungi. Especially, naphthalimide thiazole 4h with excellent anti-Candida tropicalis efficacy possessed good hemolysis level, low toxicity and no obvious resistance. Deciphering the mechanism showed that 4h interacted with DNA and disrupted the antioxidant defense system of C. tropicalis. Compound 4h also triggered membrane depolarization, leakage of cytoplasmic contents and LDH inhibition. Simultaneously, 4h rendered metabolic inactivation and eradicated the formed biofilms of C. tropicalis. Conclusion: The multifaceted synergistic effect initiated by naphthalimide thiazoles is a reasonable treatment window for prospective development.
Collapse
|
17
|
Hu Y, Hu S, Pan G, Wu D, Wang T, Yu C, Fawad Ansari M, Yadav Bheemanaboina RR, Cheng Y, Bai L, Zhou C, Zhang J. Potential antibacterial ethanol-bridged purine azole hybrids as dual-targeting inhibitors of MRSA. Bioorg Chem 2021; 114:105096. [PMID: 34147878 DOI: 10.1016/j.bioorg.2021.105096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 11/30/2022]
Abstract
A new class of antibacterial ethanol-bridged purine azole hybrids as potential dual-targeting inhibitors was developed. Bioactivity evaluation showed that some of the target compounds had prominent antibacterial activity against the tested bacteria, notably, metronidazole hybrid 3a displayed significant inhibitory activity against MRSA (MIC = 6 μM), and had no obvious toxicity on normal mammalian cells (RAW 264.7). In addition, compound 3a also did not induce drug resistance of MRSA obviously, even after fifteen passages. Molecular modeling studies showed that the highly active molecule 3a could insert into the base pairs of topoisomerase IA-DNA as well as topoisomerase IV-DNA through hydrogen bonding. Furthermore, a preliminary study on the antibacterial mechanism revealed that the active molecule 3a could rupture the bacterial membrane of MRSA and insert into MRSA DNA to block its replication, thus possibly exhibiting strong antibacterial activity. These results strongly indicated that the highly active hybrid 3a could be used as a potential dual-targeting inhibitor of MRSA for further development of valuable antimicrobials.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055 China
| | - Shunyou Hu
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055 China
| | - Guangxing Pan
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055 China
| | - Dong Wu
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055 China
| | - Tiansheng Wang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055 China
| | - Congwei Yu
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055 China
| | - Mohammad Fawad Ansari
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Rammohan R Yadav Bheemanaboina
- Sokol Institute for Pharmaceutical Life Sciences, Department of Chemistry and Biochemistry, Montclair State University, New Jersey 07043, USA
| | - Yu Cheng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Ligang Bai
- School of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Chenghe Zhou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Jiaheng Zhang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055 China.
| |
Collapse
|
18
|
Novel chalcone-conjugated, multi-flexible end-group coumarin thiazole hybrids as potential antibacterial repressors against methicillin-resistant Staphylococcus aureus. Eur J Med Chem 2021; 222:113628. [PMID: 34139627 DOI: 10.1016/j.ejmech.2021.113628] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 12/22/2022]
Abstract
The increasing resistance of methicillin-resistant Staphylococcus aureus (MRSA) to antibiotics has led to a growing effort to design and synthesize novel structural candidates of chalcone-conjugated, multi-flexible end-group coumarin thiazole hybrids with outstanding bacteriostatic potential. Bioactivity screening showed that hybrid 5i, which was modified with methoxybenzene, exerted a significant inhibitory activity against MRSA (MIC = 0.004 mM), which was 6 times better than the anti-MRSA activity of the reference drug norfloxacin (MIC = 0.025 mM). Compound 5i neither conferred apparent resistance onto MRSA strains even after multiple passages nor triggered evident toxicity to human hepatocyte LO2 cells and normal mammalian cells (RAW 264.7). Molecular docking showed that highly active molecule 5i might bind to DNA gyrase by forming stable hydrogen bonds. In addition, molecular electrostatic potential surfaces were developed to explain the high antibacterial activity of the target compounds. Furthermore, preliminary mechanism studies suggested that hybrid 5i could disrupt the bacterial membrane of MRSA and insert itself into MRSA DNA to impede its replication, thus possibly becoming a potential antibacterial repressor against MRSA.
Collapse
|
19
|
Liang XY, Battini N, Sui YF, Ansari MF, Gan LL, Zhou CH. Aloe-emodin derived azoles as a new structural type of potential antibacterial agents: design, synthesis, and evaluation of the action on membrane, DNA, and MRSA DNA isomerase. RSC Med Chem 2021; 12:602-608. [PMID: 34046631 PMCID: PMC8128066 DOI: 10.1039/d0md00429d] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/25/2021] [Indexed: 12/30/2022] Open
Abstract
As serious global drug resistance motivated the exploration of new structural drugs, we developed a type of novel structural aloe-emodin azoles as potential antibacterial agents in this work. Some target aloe-emodin azoles displayed effective activity against the tested strains, especially tetrazolyl aloe-emodin 4b showed a low MIC value of 2 μg mL-1 towards MRSA, being more efficient than the reference drug norfloxacin (MIC = 8 μg mL-1). Also, the active molecule 4b exhibited low cytotoxicity against LO2 cells with no distinct tendency to induce the concerned resistance towards MRSA. The tetrazolyl derivative 4b was preliminarily investigated for the possible mechanism; it was revealed that tetrazolyl derivative 4b could both disrupt the integrity of MRSA membrane and form 4b-DNA supramolecular complex by intercalating into DNA. Moreover, tetrazolyl aloe-emodin 4b could bind with MRSA DNA isomerase at multiple sites through hydrogen bonds in molecular simulation.
Collapse
Affiliation(s)
- Xin-Yuan Liang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 PR China +86 23 68254967 +86 23 68254967
| | - Narsaiah Battini
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 PR China +86 23 68254967 +86 23 68254967
| | - Yan-Fei Sui
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 PR China +86 23 68254967 +86 23 68254967
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 PR China +86 23 68254967 +86 23 68254967
| | - Lin-Ling Gan
- Chongqing Engineering Research Center of Pharmaceutical Sciences, School of Pharmacy, Chongqing Medical and Pharmaceutical College Chongqing 401331 PR China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 PR China +86 23 68254967 +86 23 68254967
| |
Collapse
|
20
|
Chen JP, Battini N, Ansari MF, Zhou CH. Membrane active 7-thiazoxime quinolones as novel DNA binding agents to decrease the genes expression and exert potent anti-methicillin-resistant Staphylococcus aureus activity. Eur J Med Chem 2021; 217:113340. [PMID: 33725630 DOI: 10.1016/j.ejmech.2021.113340] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/30/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022]
Abstract
A novel class of 7-thiazoxime quinolones was developed as potential antimicrobial agents for the sake of bypassing resistance of quinolones. Biological assays revealed that some constructed 7-thiazoxime quinolones possessed effective antibacterial efficiency. Methyl acetate oxime derivative 6l exhibited 32-fold more active than ciprofloxacin against MRSA, which also possessed rapidly bactericidal ability and low toxicity towards mammalian cells. The combination use of 7-thiazoxime quinolone 6l and ciprofloxacin was able to improve antibacterial potency and effectively alleviate bacterial resistance. The preliminarily mechanism exploration revealed that compound 6l could destroy the cell membrane and insert into MRSA DNA to bind with DNA gyrase, then decrease the expression of gyrB and femB genes. The above results strongly suggested that methyl acetate oxime derivative 6l held a promise for combating MRSA infection.
Collapse
Affiliation(s)
- Jin-Ping Chen
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Narsaiah Battini
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
21
|
Farouk Elsadek M, Mohamed Ahmed B, Fawzi Farahat M. An Overview on Synthetic 2-Aminothiazole-Based Compounds Associated with Four Biological Activities. Molecules 2021; 26:1449. [PMID: 33800023 PMCID: PMC7962134 DOI: 10.3390/molecules26051449] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022] Open
Abstract
Amongst sulfur- and nitrogen-containing heterocyclic compounds, the 2-aminothiazole scaffold is one of the characteristic structures in drug development as this essential revelation has several biological activities abiding it to act as an anticancer, antioxidant, antimicrobial and anti-inflammatory agent, among other things. Additionally, various 2-aminothiazole-based derivatives as medical drugs have been broadly used to remedy different kinds of diseases with high therapeutic influence, which has led to their wide innovations. Owing to their wide scale of biological activities, their structural variations have produced attention amongst medicinal chemists. The present review highlights the recently synthesized 2-aminothiazole-containing compounds in the last thirteen years (2008-2020). The originality of this proposal is based on the synthetic strategies developed to access the novel 2-aminothiazole derivatives (N-substituted, 3-substituted, 4-substituted, multi-substituted, aryl/alkyl substituents or acyl/other substituents). The literature reports many synthetic pathways of these 2-aminothiazoles associated with four different biological activities (anticancer, antioxidant, antimicrobial and anti-inflammatory activities). It is wished that this review will be accommodating for new views in the expedition for rationalistic designs of 2-aminothiazole-based medical synthetic pathways.
Collapse
Affiliation(s)
- Mohamed Farouk Elsadek
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia; (B.M.A.); (M.F.F.)
- Nutrition and Food Science Department, Faculty of Home Economics, Helwan University, P.O. Box 11795, Cairo 11511, Egypt
| | - Badreldin Mohamed Ahmed
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia; (B.M.A.); (M.F.F.)
| | - Mohamed Fawzi Farahat
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia; (B.M.A.); (M.F.F.)
| |
Collapse
|
22
|
Hu Y, Pan G, Yang Z, Li T, Wang J, Ansari MF, Hu C, Yadav Bheemanaboina RR, Cheng Y, Zhou C, Zhang J. Novel Schiff base-bridged multi-component sulfonamide imidazole hybrids as potentially highly selective DNA-targeting membrane active repressors against methicillin-resistant Staphylococcus aureus. Bioorg Chem 2020; 107:104575. [PMID: 33385978 DOI: 10.1016/j.bioorg.2020.104575] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/08/2020] [Accepted: 12/17/2020] [Indexed: 01/12/2023]
Abstract
A new type of Schiff base-bridged multi-component sulfonamide imidazole hybrids with antimicrobial potential was developed. Some target compounds showed significant antibacterial potency. Observably, butylene hybrids 4h exhibited remarkable inhibitory efficacy against clinical MRSA (MIC = 1 µg/mL), but had no significant toxic effect on normal mammalian cells (RAW 264.7). The highly active molecule 4h was revealed by molecular modeling study that it could insert into the base-pairs of DNA hexamer duplex and bind with the ASN-62 residue of human carbonic anhydrase isozyme II through hydrogen bonding. Furthermore, further preliminary antibacterial mechanism experiments confirmed that compound 4h could effectively interfere with MRSA membrane and insert into bacterial DNA isolated from clinical MRSA strains through non-covalent bonding to produce a supramolecular complex, thus exerting its strong antibacterial efficacy by impeding DNA replication. These findings strongly implied that the highly active hybrid 4h could be used as a potential DNA-targeting template for the development of valuable antimicrobial agent.
Collapse
Affiliation(s)
- Yuanyuan Hu
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, China; Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Guangxing Pan
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, China; Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Zhixiong Yang
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, China; Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Tiejun Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Juan Wang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Mohammad Fawad Ansari
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Chunfang Hu
- Dongguan School Affiliated to South China Normal University, Dongguan 523755, China
| | - Rammohan R Yadav Bheemanaboina
- Sokol Institute for Pharmaceutical Life Sciences, Department of Chemistry and Biochemistry, Montclair State University, NJ 07043, USA
| | - Yu Cheng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Chenghe Zhou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jiaheng Zhang
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, China; Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
23
|
Jamshaid F, Dai J, Yang LX. New Development of Novel Berberine Derivatives against Bacteria. Mini Rev Med Chem 2020; 20:716-724. [PMID: 31902359 DOI: 10.2174/1389557520666200103115124] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 08/02/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023]
Abstract
Many berberine derivatives have been synthesized for their antibacterial activity in the past years. In order to elucidate their new Structural Activity Relationship (SAR), the recently synthesized berberine derivatives are reviewed. The newly synthesized berberine derivatives are reported in this review with novel modifications on the berberine structure at various positions. It is hoped that this article would help scientists to design and synthesize new berberine derivatives with high potency and a broad spectrum of antimicrobial activities, more effectiveness and lower toxicity for improved antimicrobial therapy. These berberine derivatives could be developed as novel antibacterial agents to treat patients with infectious diseases, especially caused by resistant bacteria.
Collapse
Affiliation(s)
- Faisal Jamshaid
- Shanghai Jiao Tong University, 800 Dongchuan RD. Minhang District, Shanghai, PC 200240, China.,Changzhou FangYuan Pharmaceutical Co. Ltd. Changzhou, Jiangsu, China
| | - Jun Dai
- Shanghai Jiao Tong University, 800 Dongchuan RD. Minhang District, Shanghai, PC 200240, China.,Changzhou FangYuan Pharmaceutical Co. Ltd. Changzhou, Jiangsu, China
| | - Li Xi Yang
- Changzhou FangYuan Pharmaceutical Co. Ltd. Changzhou, Jiangsu, China
| |
Collapse
|
24
|
An unexpected discovery toward novel membrane active sulfonyl thiazoles as potential MRSA DNA intercalators. Future Med Chem 2020; 12:1709-1727. [DOI: 10.4155/fmc-2019-0303] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: With the increasing emergence of drug-resistant bacteria, the need for new antimicrobial agents has become extremely urgent. This work was to develop sulfonyl thiazoles as potential antibacterial agents. Results & methodology: Novel hybrids of sulfonyl thiazoles were developed from commercial acetanilide and acetylthiazole. Hybrids 6e and 6f displayed excellent inhibitory efficacy against clinical methicillin-resistant Staphylococcus aureus (MRSA) (minimum inhibitory concentration = 1 μg/ml) without obvious toxicity toward normal mammalian cells (RAW 264.7). The combination uses were found to improve the antimicrobial ability. Further preliminary antibacterial mechanism experiments showed that the active molecule 6f could effectively interfere with MRSA membrane and insert into MRSA DNA. Conclusion: Compounds 6e and 6f could serve as potential DNA-targeting templates toward the development of promising antimicrobial agents.
Collapse
|
25
|
Jaswal S, Nehra B, Kumar S, Monga V. Recent advancements in the medicinal chemistry of bacterial type II topoisomerase inhibitors. Bioorg Chem 2020; 104:104266. [PMID: 33142421 DOI: 10.1016/j.bioorg.2020.104266] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/14/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
Abstract
Replication proteins are sought as a potential targets for antimicrobial agents. Despite their promising target characteristics, only topoisomerase II inhibitors targeting DNA gyrase and/or topoisomerase IV have reached clinical use. Topoisomerases are the enzymes that are essential for cellular functions and various biological activities. A wide range of natural and synthetic compounds have been identified as potential topoisomerase inhibitors but the resistance is most commonly found in these drugs. The emergence of FQ resistance has increased the need for the development of novel topoisomerase inhibitors with efficacy and high potency against FQ-resistant strains. Besides structural modifications of existing FQ scaffolds, novel non-quinolone topoisomerase II inhibitors, known as novel bacterial topoisomerase inhibitors, have been developed which showed remarkable inhibitory activity against DNA gyrase/topoisomerase IV or both with an improved spectrum of antibacterial potency including drug-resistant strains. This review aims to summarize various recent advancements in the medicinal chemistry of topoisomerase inhibitors with the following objectives: (1) To represent inclusive data on types of topoisomerases and various marketed topoisomerase inhibitors as drugs; (2) To discuss the recent advances in the medicinal chemistry of various topoisomerase inhibitors (DNA gyrase and topo IV) belonging to different structural classes as potential antibacterial agents; (3) To summarizes the structure activity relationship (SAR) including in silico and mechanistic studies to afford ideas and to provide focused direction for the development of new chemical entities which are effective against drug-resistant bacterial pathogens and biofilms.
Collapse
Affiliation(s)
- Shalini Jaswal
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Bhupender Nehra
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Shubham Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India.
| |
Collapse
|
26
|
Recent advances in DNA gyrase-targeted antimicrobial agents. Eur J Med Chem 2020; 199:112326. [DOI: 10.1016/j.ejmech.2020.112326] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/16/2022]
|
27
|
Sui YF, Li D, Wang J, Bheemanaboina RRY, Ansari MF, Gan LL, Zhou CH. Design and biological evaluation of a novel type of potential multi-targeting antimicrobial sulfanilamide hybrids in combination of pyrimidine and azoles. Bioorg Med Chem Lett 2020; 30:126982. [DOI: 10.1016/j.bmcl.2020.126982] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/03/2020] [Accepted: 01/17/2020] [Indexed: 12/12/2022]
|
28
|
Mancy A, Abutaleb NS, Elsebaei MM, Saad AY, Kotb A, Ali AO, Abdel-Aleem JA, Mohammad H, Seleem MN, Mayhoub AS. Balancing Physicochemical Properties of Phenylthiazole Compounds with Antibacterial Potency by Modifying the Lipophilic Side Chain. ACS Infect Dis 2020; 6:80-90. [PMID: 31718144 DOI: 10.1021/acsinfecdis.9b00211] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bacterial resistance to antibiotics is presently one of the most pressing healthcare challenges and necessitates the discovery of new antibacterials with unique chemical scaffolds. However, the determination of the optimal balance between structural requirements for pharmacological action and pharmacokinetic properties of novel antibacterial compounds is a significant challenge in drug development. The incorporation of lipophilic moieties within a compound's core structure can enhance biological activity but have a deleterious effect on drug-like properties. In this Article, the lipophilicity of alkynylphenylthiazoles, previously identified as novel antibacterial agents, was reduced by introducing cyclic amines to the lipophilic side chain. In this regard, substitution with methylpiperidine (compounds 14-16) and thiomorpholine (compound 19) substituents significantly enhanced the aqueous solubility profile of the new compounds more than 150-fold compared to the first-generation lead compound 1b. Consequently, the pharmacokinetic profile of compound 15 was significantly enhanced with a notable improvement in both half-life and the time the compound's plasma concentration remained above its minimum inhibitory concentration (MIC) against methicillin-resistant Staphylococcus aureus (MRSA). In addition, compounds 14-16 and 19 were found to exert a bactericidal mode of action against MRSA and were not susceptible to resistance formation after 14 serial passages. Moreover, these compounds (at 2× MIC) were superior to the antibiotic vancomycin in the disruption of the mature MRSA biofilm. The modifications to the alkynylphenylthiazoles reported herein successfully improved the pharmacokinetic profile of this new series while maintaining the compounds' biological activity against MRSA.
Collapse
Affiliation(s)
- Ahmed Mancy
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, 1-Elmokhayem Eldaem Street, Cairo 11884, Egypt
| | - Nader S. Abutaleb
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 725 Harrison Street, West Lafayette, Indiana 47907, United States
| | - Mohamed M. Elsebaei
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, 1-Elmokhayem Eldaem Street, Cairo 11884, Egypt
| | - Abdullah Y. Saad
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, 1-Elmokhayem Eldaem Street, Cairo 11884, Egypt
| | - Ahmed Kotb
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, 1-Elmokhayem Eldaem Street, Cairo 11884, Egypt
| | - Alsagher O. Ali
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 725 Harrison Street, West Lafayette, Indiana 47907, United States
- Division of Infectious Diseases, Animal Medicine Department, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Jelan A. Abdel-Aleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 725 Harrison Street, West Lafayette, Indiana 47907, United States
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Haroon Mohammad
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 725 Harrison Street, West Lafayette, Indiana 47907, United States
| | - Mohamed N. Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 725 Harrison Street, West Lafayette, Indiana 47907, United States
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, Indiana 47907, United States
| | - Abdelrahman S. Mayhoub
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, 1-Elmokhayem Eldaem Street, Cairo 11884, Egypt
- University of Science and Technology, Nanoscience Program, Zewail City of Science and Technology, Ahmed Zewail Street, October Gardens, 6th of October, Giza 12578, Egypt
| |
Collapse
|
29
|
Hu CF, Zhang PL, Sui YF, Lv JS, Ansari MF, Battini N, Li S, Zhou CH, Geng RX. Ethylenic conjugated coumarin thiazolidinediones as new efficient antimicrobial modulators against clinical methicillin-resistant Staphylococcus aureus. Bioorg Chem 2020; 94:103434. [DOI: 10.1016/j.bioorg.2019.103434] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/30/2019] [Accepted: 11/11/2019] [Indexed: 12/18/2022]
|
30
|
Thiazole-containing compounds as therapeutic targets for cancer therapy. Eur J Med Chem 2019; 188:112016. [PMID: 31926469 DOI: 10.1016/j.ejmech.2019.112016] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/20/2019] [Accepted: 12/26/2019] [Indexed: 12/13/2022]
Abstract
In the last few decades, considerable progress has been made in anticancer agents development, and several new anticancer agents of natural and synthetic origin have been produced. Among heterocyclic compounds, thiazole, a 5-membered unique heterocyclic motif containing sulphur and nitrogen atoms, serves as an essential core scaffold in several medicinally important compounds. Thiazole nucleus is a fundamental part of some clinically applied anticancer drugs, such as dasatinib, dabrafenib, ixabepilone, patellamide A, and epothilone. Recently, thiazole-containing compounds have been successfully developed as possible inhibitors of several biological targets, including enzyme-linked receptor(s) located on the cell membrane, (i.e., polymerase inhibitors) and the cell cycle (i.e., microtubular inhibitors). Moreover, these compounds have been proven to exhibit high effectiveness, potent anticancer activity, and less toxicity. This review presents current research on thiazoles and elucidates their biological importance in anticancer drug discovery. The findings may aid researchers in the rational design of more potent and bio-target specific anticancer drug molecules.
Collapse
|
31
|
Wang LL, Battini N, Bheemanaboina RRY, Ansari MF, Chen JP, Xie YP, Cai GX, Zhang SL, Zhou CH. A new exploration towards aminothiazolquinolone oximes as potentially multi-targeting antibacterial agents: Design, synthesis and evaluation acting on microbes, DNA, HSA and topoisomerase IV. Eur J Med Chem 2019; 179:166-181. [PMID: 31254919 DOI: 10.1016/j.ejmech.2019.06.046] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/15/2019] [Accepted: 06/16/2019] [Indexed: 01/26/2023]
Abstract
This work did a new exploration towards aminothiazolquinolone oximes as potentially multi-targeting antimicrobial agents. A class of novel hybrids of quinolone, aminothiazole, piperazine and oxime fragments were designed for the first time, conveniently synthesized as well as characterized by 1H NMR, 13C NMR and HRMS spectra. Biological activity showed that some of the synthesized compounds exhibited good antimicrobial activities in comparison with the reference drugs. Especially, O-methyl oxime derivative 10b displayed excellent inhibitory efficacy against MRSA and S. aureus 25923 with MIC values of 0.009 and 0.017 mM, respectively. Further studies indicated that the highly active compound 10b showed low toxicity toward BEAS-2B and A549 cell lines and no obvious propensity to trigger the development of bacterial resistance. Quantum chemical studies have also been conducted and rationally explained the structural features essential for activity. The preliminarily mechanism exploration revealed that compound 10b could not only exert efficient membrane permeability by interfering with the integrity of cells, bind with topoisomerase IV-DNA complex through hydrogen bonds and π-π stacking, but also form a steady biosupramolecular complex by intercalating into DNA to exert the efficient antibacterial activity. The supramolecular interaction between compound 10b and human serum albumin (HSA) was a static quenching, and the binding process was spontaneous, where hydrogen bonds and van der Waals force played vital roles in the supramolecular transportation of the active compound 10b by HSA.
Collapse
Affiliation(s)
- Liang-Liang Wang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Narsaiah Battini
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Rammohan R Yadav Bheemanaboina
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Jin-Ping Chen
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yun-Peng Xie
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Gui-Xin Cai
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing, 401331, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
32
|
Synthesis, Characterization and Biological Evaluations of New Imidazo[4,5-a]Acridines as Potential Antibacterial Agents. Pharm Chem J 2019. [DOI: 10.1007/s11094-019-01955-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Wang LL, Battini N, Bheemanaboina RRY, Zhang SL, Zhou CH. Design and synthesis of aminothiazolyl norfloxacin analogues as potential antimicrobial agents and their biological evaluation. Eur J Med Chem 2019; 167:105-123. [PMID: 30769240 DOI: 10.1016/j.ejmech.2019.01.072] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/21/2019] [Accepted: 01/28/2019] [Indexed: 10/27/2022]
Abstract
A series of aminothiazolyl norfloxacin analogues as a new type of potential antimicrobial agents were synthesized and screened for their antimicrobial activities. Most of the prepared compounds exhibited excellent inhibitory efficiencies. Especially, norfloxacin analogue II-c displayed superior antimicrobial activities against K. pneumoniae and C. albicans with MIC values of 0.005 and 0.010 mM to reference drugs, respectively. This compound not only showed broad antimicrobial spectrum, rapid bactericidal efficacy and strong enzymes inhibitory potency including DNA gyrase and chitin synthase (CHS), low toxicity against mammalian cells and no obvious propensity to trigger the development of bacterial resistance, but also exerted efficient membrane permeability, and could effectively intercalate into K. pneumoniae DNA to form a steady supramolecular complex, which might block DNA replication to exhibit their powerful antimicrobial activity. Quantum chemical studies were also performed to explain the high antimicrobial activities. Molecular docking showed that compound II-c could bind with gyrase-DNA and topoisomerase IV-DNA through hydrogen bonds and π-π stacking.
Collapse
Affiliation(s)
- Liang-Liang Wang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Narsaiah Battini
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Rammohan R Yadav Bheemanaboina
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing, 401331, PR China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
34
|
Sun H, Ansari MF, Battini N, Bheemanaboina RRY, Zhou CH. Novel potential artificial MRSA DNA intercalators: synthesis and biological evaluation of berberine-derived thiazolidinediones. Org Chem Front 2019. [DOI: 10.1039/c8qo01180j] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Novel berberine-derived thiazolidinediones as potential artificial DNA intercalators were synthesized, and the preliminary mechanism suggested that active compound 6b could intercalate into MRSA DNA.
Collapse
Affiliation(s)
- Hang Sun
- Institute of Bioorganic & Medicinal Chemistry
- Key Laboratory of Applied Chemistry of Chongqing Municipality
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry
- Key Laboratory of Applied Chemistry of Chongqing Municipality
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Narsaiah Battini
- Institute of Bioorganic & Medicinal Chemistry
- Key Laboratory of Applied Chemistry of Chongqing Municipality
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Rammohan R. Yadav Bheemanaboina
- Institute of Bioorganic & Medicinal Chemistry
- Key Laboratory of Applied Chemistry of Chongqing Municipality
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry
- Key Laboratory of Applied Chemistry of Chongqing Municipality
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| |
Collapse
|
35
|
Basoglu Ozdemir S, Demirbas N, Demirbas A, Ayaz FA, Çolak N. Microwave‐Assisted Synthesis, Antioxidant, and Antimicrobial Evaluation of Piperazine‐Azole‐Fluoroquinolone Based 1,2,4‐Triazole Derivatives. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3336] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Serap Basoglu Ozdemir
- Department of Chemistry, Faculty of ScienceKaradeniz Technical University Trabzon Turkey
| | - Neslihan Demirbas
- Department of Chemistry, Faculty of ScienceKaradeniz Technical University Trabzon Turkey
| | - Ahmet Demirbas
- Department of Chemistry, Faculty of ScienceKaradeniz Technical University Trabzon Turkey
| | - Faik Ahmet Ayaz
- Department of Biology, Faculty of ScienceKaradeniz Technical University Trabzon Turkey
| | - Nesrin Çolak
- Department of Biology, Faculty of ScienceKaradeniz Technical University Trabzon Turkey
| |
Collapse
|
36
|
Gao F, Wang P, Yang H, Miao Q, Ma L, Lu G. Recent developments of quinolone-based derivatives and their activities against Escherichia coli. Eur J Med Chem 2018; 157:1223-1248. [DOI: 10.1016/j.ejmech.2018.08.095] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 12/14/2022]
|
37
|
Gao C, Fan YL, Zhao F, Ren QC, Wu X, Chang L, Gao F. Quinolone derivatives and their activities against methicillin-resistant Staphylococcus aureus (MRSA). Eur J Med Chem 2018; 157:1081-1095. [PMID: 30179746 DOI: 10.1016/j.ejmech.2018.08.061] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 01/10/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is the most common pathogen both in hospital and community settings, and is capable of causing serious and even fatal infections. Several antibiotics have been approved for the treatment of infections caused by MRSA, but MRSA has already developed resistance to them. More than ever, it's imperative to develop novel, high effective and fast acting anti-MRSA agents. Quinolones are one of the most common antibiotics in clinical practice used to treat various bacterial infections, and some of them displayed excellent in vitro and in vivo anti-MRSA activities, so quinolone derivatives are one of the most promising candidates. This review summarizes the recent developments of quinolone derivatives with potential activity against MRSA, and the structure-activity relationship is also discussed.
Collapse
Affiliation(s)
- Chuan Gao
- WuXi AppTec (Wuhan), Hubei, PR China
| | - Yi-Lei Fan
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Zhejiang Police College, Hangzhou, PR China
| | - Feng Zhao
- WuXi AppTec (Wuhan), Hubei, PR China
| | | | - Xiang Wu
- WuXi AppTec (Wuhan), Hubei, PR China.
| | - Le Chang
- WuXi AppTec (Wuhan), Hubei, PR China.
| | - Feng Gao
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada.
| |
Collapse
|
38
|
Maddili SK, Li ZZ, Kannekanti VK, Bheemanaboina RRY, Tuniki B, Tangadanchu VKR, Zhou CH. Azoalkyl ether imidazo[2,1- b ]benzothiazoles as potentially antimicrobial agents with novel structural skeleton. Bioorg Med Chem Lett 2018; 28:2426-2431. [DOI: 10.1016/j.bmcl.2018.06.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/08/2018] [Accepted: 06/10/2018] [Indexed: 12/30/2022]
|
39
|
Li D, Bheemanaboina RRY, Battini N, Tangadanchu VKR, Fang XF, Zhou CH. Novel organophosphorus aminopyrimidines as unique structural DNA-targeting membrane active inhibitors towards drug-resistant methicillin-resistant Staphylococcus aureus. MEDCHEMCOMM 2018; 9:1529-1537. [PMID: 30288226 DOI: 10.1039/c8md00301g] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/29/2018] [Indexed: 12/18/2022]
Abstract
A series of novel unique structural organophosphorus aminopyrimidines were developed as potential DNA-targeting membrane active inhibitors through an efficient one-pot procedure from aldehydes, phosphonate and aminopyrimidine. The biological assay revealed that some of the prepared compounds displayed antibacterial activities. In particular, imidazole derivative 2c exhibited more potent inhibitory activity against MRSA with an MIC value of 4 μg mL-1 in comparison with the clinical drugs chloromycin and norfloxacin. Experiments revealed that the active molecule 2c had the ability to rapidly kill the tested strains without obviously triggering the development of bacterial resistance, showed low toxicity to L929 cells and could disturb the cell membrane. The molecular docking study discovered that compound 2c could bind with DNA gyrase via hydrogen bonds and other weak interactions. Further exploration disclosed that the active molecule 2c could also effectively intercalate into MRSA DNA and form a steady 2c-DNA supramolecular complex, which might further block DNA replication to exert powerful antibacterial effects.
Collapse
Affiliation(s)
- Di Li
- Institute of Bioorganic & Medicinal Chemistry , Key Laboratory of Applied Chemistry of Chongqing Municipality , School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China . ; ; Tel: +86 23 68254967
| | - Rammohan R Yadav Bheemanaboina
- Institute of Bioorganic & Medicinal Chemistry , Key Laboratory of Applied Chemistry of Chongqing Municipality , School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China . ; ; Tel: +86 23 68254967
| | - Narsaiah Battini
- Institute of Bioorganic & Medicinal Chemistry , Key Laboratory of Applied Chemistry of Chongqing Municipality , School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China . ; ; Tel: +86 23 68254967
| | - Vijai Kumar Reddy Tangadanchu
- Institute of Bioorganic & Medicinal Chemistry , Key Laboratory of Applied Chemistry of Chongqing Municipality , School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China . ; ; Tel: +86 23 68254967
| | - Xian-Fu Fang
- Institute of Bioorganic & Medicinal Chemistry , Key Laboratory of Applied Chemistry of Chongqing Municipality , School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China . ; ; Tel: +86 23 68254967
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry , Key Laboratory of Applied Chemistry of Chongqing Municipality , School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China . ; ; Tel: +86 23 68254967
| |
Collapse
|
40
|
Jiang D. 4-Quinolone Derivatives and Their Activities Against Gram-negative Pathogens. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3244] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Dan Jiang
- School of Nuclear Technology and Chemistry & Biology; Hubei University of Science and Technology; Xianning Hubei China
| |
Collapse
|
41
|
Novel carbazole-triazole conjugates as DNA-targeting membrane active potentiators against clinical isolated fungi. Eur J Med Chem 2018; 155:579-589. [DOI: 10.1016/j.ejmech.2018.06.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/09/2018] [Accepted: 06/08/2018] [Indexed: 11/20/2022]
|
42
|
Free radical rearrangement synthesis and microbiological evaluation of novel 2-sulfoether-4-quinolone scaffolds as potential antibacterial agents. Eur J Med Chem 2018; 154:144-154. [DOI: 10.1016/j.ejmech.2018.05.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/07/2018] [Accepted: 05/14/2018] [Indexed: 11/23/2022]
|
43
|
Wang YN, Bheemanaboina RRY, Cai GX, Zhou CH. Novel purine benzimidazoles as antimicrobial agents by regulating ROS generation and targeting clinically resistant Staphylococcus aureus DNA groove. Bioorg Med Chem Lett 2018; 28:1621-1628. [DOI: 10.1016/j.bmcl.2018.03.046] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/28/2018] [Accepted: 03/17/2018] [Indexed: 01/19/2023]
|
44
|
Wang YN, Bheemanaboina RRY, Gao WW, Kang J, Cai GX, Zhou CH. Discovery of Benzimidazole-Quinolone Hybrids as New Cleaving Agents toward Drug-Resistant Pseudomonas aeruginosa DNA. ChemMedChem 2018. [PMID: 29512892 DOI: 10.1002/cmdc.201700739] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A series of benzimidazole-quinolone hybrids as new potential antimicrobial agents were designed and synthesized. Bioactive assays indicated that some of the prepared compounds exhibited potent antibacterial and antifungal activities. Notably, 2-fluorobenzyl derivative 5 b (ethyl 7-chloro-6-fluoro-1-[[1-[(2-fluorophenyl)methyl]benzimidazol-2-yl]methyl]-4-oxo-quinoline-3-carboxylate) showed remarkable antimicrobial activity against resistant Pseudomonas aeruginosa and Candida tropicalis isolated from infected patients. Active molecule 5 b could not only rapidly kill the tested strains, but also exhibit low toxicity toward Hep-2 cells. It was more difficult to trigger the development of bacterial resistance of P. aeruginosa against 5 b than that against norfloxacin. Molecular docking demonstrated that 5 b could effectively bind with topoisomerase IV-DNA complexes, and quantum chemical studies theoretically elucidated the good antimicrobial activity of compound 5 b. Preliminary experimental reaction mechanism exploration suggested that derivative 5 b could not intercalate into DNA isolated from drug-resistant P. aeruginosa, but was able to cleave DNA effectively, which might further block DNA replication to exert powerful bioactivities. In addition, compound 5 b is a promising antibacterial agent with membrane disruption abilities.
Collapse
Affiliation(s)
- Ya-Nan Wang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P.R. China
| | - Rammohan R Yadav Bheemanaboina
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P.R. China
| | - Wei-Wei Gao
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P.R. China
| | - Jie Kang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P.R. China
| | - Gui-Xin Cai
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P.R. China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P.R. China
| |
Collapse
|
45
|
Novel naphthalimide nitroimidazoles as multitargeting antibacterial agents against resistant Acinetobacter baumannii. Future Med Chem 2018; 10:711-724. [DOI: 10.4155/fmc-2017-0160] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: The increasing emergence of resistant bacteria imposed an urgent request to discover novel antibacterial agents. This work was to develop naphthalimide nitroimidazoles as potentially antibacterial agents. Results/methodology: Compound 9e showed the strong antibacterial activity (minimal inhibitory concentration = 0.013 μmol/ml) against resistant Acinetobacter baumannii (A. baumannii) with rapid killing effect and no obvious triggering of the development of resistance. Its combination use with chloromycin, norfloxacin or clinafloxacin improved the antibacterial potency. It could not only effectively permeate membrane of resistant A. baumannii bacteria, but also intercalate into resistant A. baumannii DNA to form 9e–DNA complex. The interaction with bacterial DNA gyrase B was driven by hydrogen bonds. Conclusion: Compound 9e should be a potentially multitargeting antibacterial agent against resistant A. baumannii.
Collapse
|
46
|
Mohammad H, Elghazawy NH, Eldesouky HE, Hegazy YA, Younis W, Avrimova L, Hazbun T, Arafa RK, Seleem MN. Discovery of a Novel Dibromoquinoline Compound Exhibiting Potent Antifungal and Antivirulence Activity That Targets Metal Ion Homeostasis. ACS Infect Dis 2018; 4:403-414. [PMID: 29370698 DOI: 10.1021/acsinfecdis.7b00215] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Globally, invasive fungal infections pose a significant challenge to modern human medicine due to the limited number of antifungal drugs and the rise in resistance to current antifungal agents. A vast majority of invasive fungal infections are caused by species of Candida, Cryptococcus, and Aspergillus. Novel antifungal molecules consisting of unexploited chemical scaffolds with a unique mechanism are a pressing need. The present study identifies a dibromoquinoline compound (4b) with broad-spectrum antifungal activity that inhibits the growth of pertinent species of Candida (chiefly C. albicans), Cryptococcus, and Aspergillus at a concentration of as low as 0.5 μg/mL. Furthermore, 4b, at a subinhibitory concentration, interfered with the expression of two key virulence factors (hyphae and biofilm formation) involved in C. albicans pathogenesis. Three yeast deletion strains ( cox17Δ, ssa1Δ, and aft2Δ) related to metal ion homeostasis were found to be highly sensitive to 4b in growth assays, indicating that the compound exerts its antifungal effect through a unique, previously unexploited mechanism. Supplementing the media with either copper or iron ions reversed the strain sensitivity to 4b, further corroborating that the compound targets metal ion homeostasis. 4b's potent antifungal activity was validated in vivo, as the compound enhanced the survival of Caenorhabditis elegans infected with fluconazole-resistant C. albicans. The present study indicates that 4b warrants further investigation as a novel antifungal agent.
Collapse
Affiliation(s)
- Haroon Mohammad
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, Indiana 47907, United States
| | - Nehal H. Elghazawy
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Sheikh Zayed District, Sixth of October City, Cairo, Egypt 12588
| | - Hassan E. Eldesouky
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, Indiana 47907, United States
| | - Youssef A. Hegazy
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, Indiana 47907, United States
| | - Waleed Younis
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, Indiana 47907, United States
| | - Larisa Avrimova
- Bindley Bioscience Center, Purdue University, 1201 W State Street, West Lafayette, Indiana 47907, United States
| | - Tony Hazbun
- Bindley Bioscience Center, Purdue University, 1201 W State Street, West Lafayette, Indiana 47907, United States
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Reem K. Arafa
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Sheikh Zayed District, Sixth of October City, Cairo, Egypt 12588
| | - Mohamed N. Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, Indiana 47907, United States
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, 610 Purdue Mall, West Lafayette, Indiana 47907, United States
| |
Collapse
|
47
|
Zhang Y, Tangadanchu VKR, Cheng Y, Yang RG, Lin JM, Zhou CH. Potential Antimicrobial Isopropanol-Conjugated Carbazole Azoles as Dual Targeting Inhibitors of Enterococcus faecalis. ACS Med Chem Lett 2018. [PMID: 29541368 DOI: 10.1021/acsmedchemlett.7b00514] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A series of isopropanol-bridged carbazole azoles as potential antimicrobial agents were designed and synthesized from commercial carbazoles. Bioassay revealed that 3,6-dichlorocarbazolyl triazole 3f could effectively inhibit the growth of E. faecalis with minimal inhibitory concentration of 2 μg/mL. The active molecule 3f showed lower propensity to trigger the development of resistance in bacteria than norfloxacin and exerted rapidly bactericidal ability. Compound 3f also exhibited low cytotoxicity to normal mammalian RAW264.7 cells. Further mechanism exploration indicated that conjugate 3f was membrane active against E. faecalis and could form 3f-DNA complex by intercalating into DNA of resistant E. faecalis, which might be responsible for its antimicrobial action. Molecular docking showed an efficient binding of triazole derivative 3f with DNA gyrase enzyme through noncovalent interactions.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Vijai Kumar Reddy Tangadanchu
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yu Cheng
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ren-Guo Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Jian-Mei Lin
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
48
|
Discovery of 2-aminothiazolyl berberine derivatives as effectively antibacterial agents toward clinically drug-resistant Gram-negative Acinetobacter baumanii. Eur J Med Chem 2018; 146:15-37. [DOI: 10.1016/j.ejmech.2018.01.038] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 01/01/2023]
|
49
|
Varrica MG, Zagni C, Mineo PG, Floresta G, Monciino G, Pistarà V, Abbadessa A, Nicosia A, Castilho RM, Amata E, Rescifina A. DNA intercalators based on (1,10-phenanthrolin-2-yl)isoxazolidin-5-yl core with better growth inhibition and selectivity than cisplatin upon head and neck squamous cells carcinoma. Eur J Med Chem 2018; 143:583-590. [DOI: 10.1016/j.ejmech.2017.11.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 02/04/2023]
|
50
|
Novel aminopyrimidinyl benzimidazoles as potentially antimicrobial agents: Design, synthesis and biological evaluation. Eur J Med Chem 2018; 143:66-84. [DOI: 10.1016/j.ejmech.2017.11.027] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 10/26/2017] [Accepted: 11/08/2017] [Indexed: 11/24/2022]
|