1
|
Kaur N, Gupta S, Pal J, Bansal Y, Bansal G. Design of BBB permeable BACE-1 inhibitor as potential drug candidate for Alzheimer disease: 2D-QSAR, molecular docking, ADMET, molecular dynamics, MMGBSA. Comput Biol Chem 2025; 116:108371. [PMID: 39954613 DOI: 10.1016/j.compbiolchem.2025.108371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/17/2025]
Abstract
BACE-1 is a prime therapeutic target for treatment of Alzheimer disease as it cleaves the β-site of APP leading to formation of amyloid plaques. A dataset of 229 benzo-fused heterocyclic compounds reported as BACE-1 inhibitors was utilized to develop various QSAR models (regression and classification) utilizing Monte Carlo algorithm. The dataset was randomly split into different sets for generation of models. The IIC and CCC were calculated to increase the predictive ability of generated models. Among various models, split-1 of Model-1 demonstrated the highest robustness and predictive accuracy for pIC50 values. Internal and external validation was performed which further confirmed the reliability of this model. Structural features responsible for enhancing or reducing pIC50 values were identified and were utilized to design library of 255 compounds. Compounds having pIC50> 5.0 were further screened on the basis of BBB permeability predicted via ADMET lab 3.0. Total nineteen compounds were found to be BBB permeable which were then docked into PDB: 2WJO. Finally, four compounds with high docking scores were identified and compared with existing BACE-1 inhibitor. MD simulations and MMGBSA analysis were performed and results demonstrated minimal fluctuations throughout the simulation of 100 ns with good binding affinity. This study highlights development of robust QSAR model which assists to design new compounds and predicts them for anti β-secretase activity. Design of novel four molecules were proposed which exhibits good potency, BBB permeability, excellent binding affinity and stable conformations with BACE-1 making them promising candidates for further development.
Collapse
Affiliation(s)
- Navneet Kaur
- Drug Design & Synthesis Lab, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Saurabh Gupta
- Drug Design & Synthesis Lab, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Jatin Pal
- Drug Design & Synthesis Lab, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Yogita Bansal
- Drug Design & Synthesis Lab, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India.
| | - Gulshan Bansal
- Drug Design & Synthesis Lab, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| |
Collapse
|
2
|
Quang De T, Nguyen CQ, Le Dang Q, Nguyen Thi NY, Trong Tuan N, Hoon Suh D, Chu J, Bepary S, Lee GH, Kang NS, Cho H, Park WK, Lim HJ. Rational design of novel diaryl ether-linked benzimidazole derivatives as potent and selective BACE1 inhibitors. Biochem Biophys Res Commun 2024; 698:149538. [PMID: 38271836 DOI: 10.1016/j.bbrc.2024.149538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/14/2024] [Indexed: 01/27/2024]
Abstract
Due to the large size and high flexibility of the catalytic active site of BACE1 enzyme, the development of nonpeptide inhibitors with optimal pharmacological properties is still highly demanding. In this work, we have discovered 2-aminobenzimidazole-containg ether scaffolds having potent and selective inhibitory potentials against BACE1 enzyme. We have synthesized novel 29 compounds and optimization of aryl linker region resulted in highly potent BACE1 inhibitory activities with EC50 values of 0.05-2.71 μM. The aryloxy-phenyl analogs 20j showed the EC50 value as low as 0.07 μM in the enzyme assay, whereas, the benzyloxyphenyl dervative 24b was comparatively less effective in the enzyme assay. But interestingly the latter was more effective in the cell assay (EC50 value 1.2 μM). While comparing synthesized derivatives in the cell assay using PC12-APPSW cell, compound 27f appeared as the most potent BACE1 inhibitor having EC50 value 0.7 μM. This scaffold also showed high selectivity over BACE2 enzyme and cathepsin D. Furthermore, the research findings were bolstered through the incorporation of molecular docking, molecular dynamics, and DFT studies. We firmly believe that these discoveries will pave the way for the development of a novel class of small-molecule selective BACE1 inhibitors.
Collapse
Affiliation(s)
- Tran Quang De
- Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology, 217 Gajeong-ro Yuseong-gu, Daejeon, 305-333, South Korea
| | - Cuong Quoc Nguyen
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho, 94000, Viet Nam; Analytical Techniques Lab (1.16-ATL), CTU High-tech Building, Can Tho University, Can Tho, 94000, Viet Nam.
| | - Quang Le Dang
- Institute for Tropical Technology, Vietnam Academy of Science and Technology, Hanoi, 10072, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 10072, Viet Nam
| | | | - Nguyen Trong Tuan
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho, 94000, Viet Nam
| | - Dong Hoon Suh
- Division of Drug Discovery Research, Korea Research Institute of Chemical Technology, P.O.Box 107, Yuseong-Gu, Daejeon, 305-600, South Korea
| | - Jeonghyun Chu
- Division of Drug Discovery Research, Korea Research Institute of Chemical Technology, P.O.Box 107, Yuseong-Gu, Daejeon, 305-600, South Korea
| | - Sukumar Bepary
- Division of Drug Discovery Research, Korea Research Institute of Chemical Technology, P.O.Box 107, Yuseong-Gu, Daejeon, 305-600, South Korea
| | - Ge Hyeong Lee
- Division of Drug Discovery Research, Korea Research Institute of Chemical Technology, P.O.Box 107, Yuseong-Gu, Daejeon, 305-600, South Korea
| | - Nam Sook Kang
- Division of Drug Discovery Research, Korea Research Institute of Chemical Technology, P.O.Box 107, Yuseong-Gu, Daejeon, 305-600, South Korea
| | - Heeyeong Cho
- Division of Drug Discovery Research, Korea Research Institute of Chemical Technology, P.O.Box 107, Yuseong-Gu, Daejeon, 305-600, South Korea
| | - Woo Kyu Park
- Division of Drug Discovery Research, Korea Research Institute of Chemical Technology, P.O.Box 107, Yuseong-Gu, Daejeon, 305-600, South Korea
| | - Hee-Jong Lim
- Division of Drug Discovery Research, Korea Research Institute of Chemical Technology, P.O.Box 107, Yuseong-Gu, Daejeon, 305-600, South Korea.
| |
Collapse
|
3
|
Adebambo K, Ojoh O(C. In Silico Investigation of Novel Compounds as Inhibitors of Acetylcholinesterase Enzyme for the Treatment of Alzheimer's Diseases. Int J Alzheimers Dis 2024; 2024:2988685. [PMID: 38371416 PMCID: PMC10869201 DOI: 10.1155/2024/2988685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/23/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
Alzheimer's disease (AD) is a "progressive, neurodegenerative disease that occurs when nerve cells in the brain die." There are only 4 drugs approved by the United States Food and Drug Administration (FDA). Three (donepezil, rivastigmine, and galantamine) out of these four drugs are anticholinesterase inhibitors, while the fourth one memantine is an N-methyl-D-aspartate (NMDA) receptor inhibitor. Currently, two immunotherapy drugs that target amyloid protein (donanemab and lecanemab) are being considered for the treatment of Alzheimer's disease at an early stage. All these drug molecules are still not the complete answer to the treatment of Alzheimer's disease. A recent report from the Office of National Statistics showed that AD is the leading cause of death in 2022. Therefore, there is an urgency to develop more drugs that can treat AD. Based on this urgency, we aim to investigate how bioactive and already approved drugs could be repurposed for inhibiting the anticholinesterase enzyme using computational studies. To achieve this, the data science tool-Python coding was compiled on Jupyter Notebook to mine bioactive compounds from the ChEMBL database. The most bioactive compounds obtained were further investigated using Molecular Operating Environment (MOE) software to carry out molecular docking and ligand analysis, and this was followed by molecular dynamics simulation production at 35 ns using GROMACS 2022.4 on Archer 2 machine. The molecular dynamic analysis was carried out using HeroMDanalysis software. Data mining of the ChEMBL database was carried out for lipase inhibitors, and this gave CHEMBL-ID 1240685, a peptide molecule, the most active compound at the time of data mining. Further literature studies gave Zoladex an FDA-approved drug for the treatment of breast cancer as another compound of interest. The in silico studies were carried out against the anticholinesterase enzyme using two FDA-approved drugs donepezil and galantamine as a template for comparing the in silico activities of the repurposed drugs. A very useful receptor for this study was PDB-1DX6, a cocrystallized galantamine inhibitor of acetylcholinesterase enzyme. The molecular docking analysis (using ligand interactions) and molecular dynamic analysis (root mean square deviation (RMSD) and root mean square fluctuation (RMSF)) showed that the two peptide molecules CHEMBL-1240685 and Zoladex gave the best binding energy and stability when compared to the FDA-approved drugs (donepezil and galantamine). Finally, further literature studies revealed that Zoladex affects memory reduction; therefore, it was dropped as a possible repurposed drug. Our research showed that CHEMBL-1240685 is a potential compound that could be investigated for the inhibition of anticholinesterase enzyme and might be another drug molecule that could be used to treat Alzheimer's disease.
Collapse
Affiliation(s)
- Kassim Adebambo
- Department of Clinical Pharmaceutical and Biological Science, University of Hertfordshire, Hatfield, UK
| | | |
Collapse
|
4
|
Monteiro KLC, Dos Santos Alcântara MG, Freire NML, Brandão EM, do Nascimento VL, Dos Santos Viana LM, de Aquino TM, da Silva-Júnior EF. BACE-1 Inhibitors Targeting Alzheimer's Disease. Curr Alzheimer Res 2023; 20:131-148. [PMID: 37309767 DOI: 10.2174/1567205020666230612155953] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/27/2023] [Accepted: 05/25/2023] [Indexed: 06/14/2023]
Abstract
The accumulation of amyloid-β (Aβ) is the main event related to Alzheimer's disease (AD) progression. Over the years, several disease-modulating approaches have been reported, but without clinical success. The amyloid cascade hypothesis evolved and proposed essential targets such as tau protein aggregation and modulation of β-secretase (β-site amyloid precursor protein cleaving enzyme 1 - BACE-1) and γ-secretase proteases. BACE-1 cuts the amyloid precursor protein (APP) to release the C99 fragment, giving rise to several Aβ peptide species during the subsequent γ-secretase cleavage. In this way, BACE-1 has emerged as a clinically validated and attractive target in medicinal chemistry, as it plays a crucial role in the rate of Aβ generation. In this review, we report the main results of candidates in clinical trials such as E2609, MK8931, and AZD-3293, in addition to highlighting the pharmacokinetic and pharmacodynamic-related effects of the inhibitors already reported. The current status of developing new peptidomimetic, non-peptidomimetic, naturally occurring, and other class inhibitors are demonstrated, considering their main limitations and lessons learned. The goal is to provide a broad and complete approach to the subject, exploring new chemical classes and perspectives.
Collapse
Affiliation(s)
- Kadja Luana Chagas Monteiro
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, 57072-970, Maceió, Alagoas, Brazil
| | - Marcone Gomes Dos Santos Alcântara
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, 57072-970, Maceió, Alagoas, Brazil
| | - Nathalia Monteiro Lins Freire
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, 57072-970, Maceió, Alagoas, Brazil
| | - Esaú Marques Brandão
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, 57072-970, Maceió, Alagoas, Brazil
| | - Vanessa Lima do Nascimento
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, 57072-970, Maceió, Alagoas, Brazil
| | - Líbni Maísa Dos Santos Viana
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, 57072-970, Maceió, Alagoas, Brazil
| | - Thiago Mendonça de Aquino
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, 57072-970, Maceió, Alagoas, Brazil
| | - Edeildo Ferreira da Silva-Júnior
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, 57072-970, Maceió, Alagoas, Brazil
| |
Collapse
|
5
|
Bao J, Liang Z, Gong X, Zhao Y, Wu M, Liu W, Tu C, Wang X, Shu X. Tangeretin Inhibits BACE1 Activity and Attenuates Cognitive Impairments in AD Model Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1536-1546. [PMID: 35084179 DOI: 10.1021/acs.jafc.1c07241] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tangeretin (TAN) exhibits many bioactivities, including neuroprotective effects. However, the efficacy of TAN in Alzheimer's disease (AD) has not been sufficiently investigated. In the present study, we integrated behavioral tests, pathology assessment, and biochemical analyses to elucidate the antidementia activity of TAN in APPswe/PSEN1dE9 transgenic (Tg) mice. At supplementation levels of 100 mg/kg body weight per day, TAN significantly attenuated the cognitive impairment of Tg mice in behavioral tests. These effects were associated with less synaptic impairments and fewer β-amyloid accumulations after TAN administration. Furthermore, our study revealed that TAN possessed powerful inhibitory activity against β-secretase both in vitro and in vivo, which played a crucial role in the process of Aβ generation. These findings indicate that TAN is a potential drug for preventing AD pathology. The key mechanism underlying the antidementia effect of TAN may include its inhibitory activity against β-secretase.
Collapse
Affiliation(s)
- Jian Bao
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, China; Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Zheng Liang
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Xiaokang Gong
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Yanna Zhao
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, China; Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Mengjuan Wu
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, China; Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Wei Liu
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, China; Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Chenyu Tu
- School of Medicine, Jianghan University, Wuhan 430056, China
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiji Shu
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, China; Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
| |
Collapse
|
6
|
Verma A, Kumar Waiker D, Bhardwaj B, Saraf P, Shrivastava SK. The molecular mechanism, targets, and novel molecules in the treatment of Alzheimer's disease. Bioorg Chem 2021; 119:105562. [PMID: 34952243 DOI: 10.1016/j.bioorg.2021.105562] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/27/2021] [Accepted: 12/12/2021] [Indexed: 11/19/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurological illness that causes dementia mainly in the elderly. The challenging obstacles related to AD has freaked global healthcare system to encourage scientists in developing novel therapeutic startegies to overcome with the fatal disease. The current treatment therapy of AD provides only symptomatic relief and to some extent disease-modifying effects. The current approach for AD treatment involves designing of cholinergic inhibitors, Aβ disaggregation inducing agents, tau inhibitors and several antioxidants. Hence, extensive research on AD therapy urgently requires a deep understanding of its pathophysiology and exploration of various chemical scaffolds to design and develop a potential drug candidate for the treatment. Various issues linked between disease and therapy need to be considered such as BBB penetration capability, clinical failure and multifaceted pathophisiology requires a proper attention to develop a lead candidate. This review article covers all probable mechanisms including one of the recent areas for investigation i.e., lipid dyshomeostasis, pathogenic involvement of P. gingivalis and neurovascular dysfunction, recently reported molecules and drugs under clinical investigations and approved by FDA for AD treatment. Our summarized information on AD will attract the researchers to understand and explore current status and structural modifications of the recently reported heterocyclic derivatives in drug development for AD therapy.
Collapse
Affiliation(s)
- Akash Verma
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Digambar Kumar Waiker
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Bhagwati Bhardwaj
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Poorvi Saraf
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Sushant K Shrivastava
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India.
| |
Collapse
|
7
|
El-Awady R, Saleh E, Hamoudi R, Ramadan WS, Mazitschek R, Nael MA, Elokely KM, Abou-Gharbia M, Childers WE, Srinivasulu V, Aloum L, Menon V, Al-Tel TH. Discovery of novel class of histone deacetylase inhibitors as potential anticancer agents. Bioorg Med Chem 2021; 42:116251. [PMID: 34116381 DOI: 10.1016/j.bmc.2021.116251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/12/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022]
Abstract
Selective inhibition of histone deacetylases (HDACs) is an important strategy in the field of anticancer drug discovery. However, lack of inhibitors that possess high selectivity toward certain HDACs isozymes is associated with adverse side effects that limits their clinical applications. We have initiated a collaborative initiatives between multi-institutions aimed at the discovery of novel and selective HDACs inhibitors. To this end, a phenotypic screening of an in-house pilot library of about 70 small molecules against various HDAC isozymes led to the discovery of five compounds that displayed varying degrees of HDAC isozyme selectivity. The anticancer activities of these molecules were validated using various biological assays including transcriptomic studies. Compounds 15, 14, and 19 possessed selective inhibitory activity against HDAC5, while 28 displayed selective inhibition of HDAC1 and HDAC2. Compound 22 was found to be a selective inhibitor for HDAC3 and HDAC9. Importantly, we discovered a none-hydroxamate based HDAC inhibitor, compound 28, representing a distinct chemical probe of HDAC inhibitors. It contains a trifluoromethyloxadiazolyl moiety (TFMO) as a non-chelating metal-binding group. The new compounds showed potent anti-proliferative activity when tested against MCF7 breast cancer cell line, as well as increased acetylation of histones and induce cells apoptosis. The new compounds apoptotic effects were validated through the upregulation of proapoptotic proteins caspases3 and 7 and downregulation of the antiapoptotic biomarkers C-MYC, BCL2, BCL3 and NFĸB genes. Furthermore, the new compounds arrested cell cycle at different phases, which was confirmed through downregulation of the CDK1, 2, 4, 6, E2F1 and RB1 proteins. Taken together, our findings provide the foundation for the development of new chemical probes as potential lead drug candidates for the treatment of cancer.
Collapse
Affiliation(s)
- Raafat El-Awady
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Ekram Saleh
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Rifat Hamoudi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Wafaa S Ramadan
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ralph Mazitschek
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, United states
| | - Manal A Nael
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; Institute for Computational Molecular Science, and Department of Chemistry, Temple University, Philadelphia, PA 19122, United States
| | - Khaled M Elokely
- Institute for Computational Molecular Science, and Department of Chemistry, Temple University, Philadelphia, PA 19122, United States
| | - Magid Abou-Gharbia
- Moulder Center for Drug Discovery Research, Department of Pharmaceutical Sciences, School of Pharmacy, Temple University, Phialadelphia, PA 19122, United States
| | - Wayne E Childers
- Moulder Center for Drug Discovery Research, Department of Pharmaceutical Sciences, School of Pharmacy, Temple University, Phialadelphia, PA 19122, United States
| | - Vunnam Srinivasulu
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Lujain Aloum
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Varsha Menon
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Taleb H Al-Tel
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
8
|
Iraji A, Khoshneviszadeh M, Firuzi O, Khoshneviszadeh M, Edraki N. Novel small molecule therapeutic agents for Alzheimer disease: Focusing on BACE1 and multi-target directed ligands. Bioorg Chem 2020; 97:103649. [PMID: 32101780 DOI: 10.1016/j.bioorg.2020.103649] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/05/2020] [Accepted: 02/03/2020] [Indexed: 12/17/2022]
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disorder that effects 50 million people worldwide. In this review, AD pathology and the development of novel therapeutic agents targeting AD were fully discussed. In particular, common approaches to prevent Aβ production and/or accumulation in the brain including α-secretase activators, specific γ-secretase modulators and small molecules BACE1 inhibitors were reviewed. Additionally, natural-origin bioactive compounds that provide AD therapeutic advances have been introduced. Considering AD is a multifactorial disease, the therapeutic potential of diverse multi target-directed ligands (MTDLs) that combine the efficacy of cholinesterase (ChE) inhibitors, MAO (monoamine oxidase) inhibitors, BACE1 inhibitors, phosphodiesterase 4D (PDE4D) inhibitors, for the treatment of AD are also reviewed. This article also highlights descriptions on the regulator of serotonin receptor (5-HT), metal chelators, anti-aggregants, antioxidants and neuroprotective agents targeting AD. Finally, current computational methods for evaluating the structure-activity relationships (SAR) and virtual screening (VS) of AD drugs are discussed and evaluated.
Collapse
Affiliation(s)
- Aida Iraji
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsima Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
9
|
de Oliveira Viana J, Monteiro AFM, Filho JMB, Scotti L, Scotti MT. The Azoles in Pharmacochemistry: Perspectives on the Synthesis of New Compounds and Chemoinformatic Contributions. Curr Pharm Des 2020; 25:4702-4716. [DOI: 10.2174/1381612825666191125090700] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022]
Abstract
:
Due to their versatile biological activity, Azoles are widely studied in pharmacochemistry. It is possible
to use them in many applications and in studies aimed at discovering antiparasitic, antineoplastic, antiviral,
antimicrobial compounds; and in the production of materials for treatment of varied pathologies. Based on their
biological activity, our review presents several studies that involve this class of organic compounds. A bibliographic
survey of this type can effectively contribute to pharmaceutical sciences, stimulating the discovery of new
compounds, and structural improvements to biological profiles of interest. In this review, articles are discussed
involving the synthesis of new compounds and chemoinformatic contributions. Current applications of azoles in
both the pharmaceutical and agri-business sectors are well known, yet as this research highlights, azole compounds
can also bring important contributions to the fight against many diseases. Among the heterocyclics, azoles
are increasingly studied by research groups around the world for application against tuberculosis, HIV, fungal and
bacterial infections; and against parasites such as leishmaniasis and trypanosomiasis. Our hope is that this work
will help arouse the interest of research groups planning to develop new bioactives to fight against these and
other diseases.
Collapse
Affiliation(s)
- Jéssika de Oliveira Viana
- Natural and Synthetic Bioactive Products Program (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa- PB, Brazil
| | - Alex France Messias Monteiro
- Natural and Synthetic Bioactive Products Program (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa- PB, Brazil
| | - José Maria Barbosa Filho
- Natural and Synthetic Bioactive Products Program (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa- PB, Brazil
| | - Luciana Scotti
- Natural and Synthetic Bioactive Products Program (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa- PB, Brazil
| | - Marcus Tullius Scotti
- Natural and Synthetic Bioactive Products Program (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa- PB, Brazil
| |
Collapse
|
10
|
Moussa-Pacha NM, Abdin SM, Omar HA, Alniss H, Al-Tel TH. BACE1 inhibitors: Current status and future directions in treating Alzheimer's disease. Med Res Rev 2019; 40:339-384. [PMID: 31347728 DOI: 10.1002/med.21622] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/22/2019] [Accepted: 06/13/2019] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD) is an irreversible, progressive neurodegenerative brain disorder with no current cure. One of the important therapeutic approaches of AD is the inhibition of β-site APP cleaving enzyme-1 (BACE1), which is involved in the rate-limiting step of the cleavage process of the amyloid precursor protein (APP) leading to the generation of the neurotoxic amyloid β (Aβ) protein after the γ-secretase completes its function. The produced insoluble Aβ aggregates lead to plaques deposition and neurodegeneration. BACE1 is, therefore, one of the attractive targets for the treatment of AD. This approach led to the development of potent BACE1 inhibitors, many of which were advanced to late stages in clinical trials. Nonetheless, the high failure rate of lead drug candidates targeting BACE1 brought to the forefront the need for finding new targets to uncover the mystery behind AD. In this review, we aim to discuss the most promising classes of BACE1 inhibitors with a description and analysis of their pharmacodynamic and pharmacokinetic parameters, with more focus on the lead drug candidates that reached late stages of clinical trials, such as MK8931, AZD-3293, JNJ-54861911, E2609, and CNP520. In addition, the manuscript discusses the safety concerns and insignificant physiological effects, which were highlighted for the most successful BACE1 inhibitors. Furthermore, the review demonstrates with increasing evidence that despite tremendous efforts and promising results conceived with BACE1 inhibitors, the latest studies suggest that their clinical use for treating Alzheimer's disease should be reconsidered. Finally, the review sheds light on alternative therapeutic options for targeting AD.
Collapse
Affiliation(s)
- Nour M Moussa-Pacha
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Shifaa M Abdin
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Hany A Omar
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,College of Pharmacy and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Hasan Alniss
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,College of Pharmacy and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Taleb H Al-Tel
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,College of Pharmacy and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
11
|
Ganeshpurkar A, Swetha R, Kumar D, Gangaram GP, Singh R, Gutti G, Jana S, Kumar D, Kumar A, Singh SK. Protein-Protein Interactions and Aggregation Inhibitors in Alzheimer's Disease. Curr Top Med Chem 2019; 19:501-533. [PMID: 30836921 DOI: 10.2174/1568026619666190304153353] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/31/2018] [Accepted: 11/20/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Alzheimer's Disease (AD), a multifaceted disorder, involves complex pathophysiology and plethora of protein-protein interactions. Thus such interactions can be exploited to develop anti-AD drugs. OBJECTIVE The interaction of dynamin-related protein 1, cellular prion protein, phosphoprotein phosphatase 2A and Mint 2 with amyloid β, etc., studied recently, may have critical role in progression of the disease. Our objective has been to review such studies and their implications in design and development of drugs against the Alzheimer's disease. METHODS Such studies have been reviewed and critically assessed. RESULTS Review has led to show how such studies are useful to develop anti-AD drugs. CONCLUSION There are several PPIs which are current topics of research including Drp1, Aβ interactions with various targets including PrPC, Fyn kinase, NMDAR and mGluR5 and interaction of Mint2 with PDZ domain, etc., and thus have potential role in neurodegeneration and AD. Finally, the multi-targeted approach in AD may be fruitful and opens a new vista for identification and targeting of PPIs in various cellular pathways to find a cure for the disease.
Collapse
Affiliation(s)
- Ankit Ganeshpurkar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Rayala Swetha
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Devendra Kumar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Gore P Gangaram
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ravi Singh
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Gopichand Gutti
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Srabanti Jana
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Dileep Kumar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ashok Kumar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Sushil K Singh
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| |
Collapse
|
12
|
Murtaza S, Mir KZ, Tatheer A, Ullah RS. Synthesis and Evaluation of Chalcone and its Derivatives as Potential Anticholinergic Agents. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180815666180523085436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background: Structural similarity in Chalcone and Pyrazoline brought our intention for
the analysis of such compounds. This study involved the synthesis of chalcones and their pyrazoline
derivatives and their screening as cholinesterase inhibitors. The newly synthesized compounds were
also investigated for their antioxidant potential.
</P><P>
Methods: Chalcones were synthesized by well-established methods of synthesis and their structural
elucidation was carried out by H-NMR, 13C-NMR, Mass spectrometry and FTIR. For the determination
of inhibition potency of synthesized compounds, spectrophotometric method was applied
whereas, DPPH free radical scavenging method was used to check the antioxidant ability.
</P><P>
Results: Chalcones and their pyrazoline derivatives were synthesized and characterised by 1HNMR,
13C-NMR, Mass spectrometry and FTIR. The compounds were screened for their anti-
Alzheimer activity, which exhibited that compounds 1g, 1c and 1h, 1g showed strong inhibitory
potency against acetylcholinesterase and butyrylcholinesterase, respectively. DPPH radical scavenging
method was applied to check anti-oxidant potential of synthesized compounds and results
explored that among all the synthesized compounds only compounds 1c and 1b showed strong
scavenging potential.
</P><P>
Conclusion: Chalcone and their pyrazoline derivatives were synthesized and screened for their
anti-Alzheimer and antioxidant potential. The experimental results of anti-Alzheimer activity were
compared with molecular docking studies, which showed that compounds 1g, 1c and 1h, 1g were
active against AChE and BChE, respectively. Among the synthesized compounds 1c and 1b were
found to be most potent antioxidants. These results suggest that compound 1b, 1c, 1g and 1h may
further be explored for further developments.
Collapse
Affiliation(s)
- Shahzad Murtaza
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Pakistan
| | - Khoula Zubair Mir
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Pakistan
| | - Adina Tatheer
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Pakistan
| | - Raja Summe Ullah
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Pakistan
| |
Collapse
|
13
|
Schaduangrat N, Prachayasittikul V, Choomwattana S, Wongchitrat P, Phopin K, Suwanjang W, Malik AA, Vincent B, Nantasenamat C. Multidisciplinary approaches for targeting the secretase protein family as a therapeutic route for Alzheimer's disease. Med Res Rev 2019; 39:1730-1778. [PMID: 30628099 DOI: 10.1002/med.21563] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/21/2018] [Accepted: 12/24/2018] [Indexed: 12/27/2022]
Abstract
The continual increase of the aging population worldwide renders Alzheimer's disease (AD) a global prime concern. Several attempts have been focused on understanding the intricate complexity of the disease's development along with the on- andgoing search for novel therapeutic strategies. Incapability of existing AD drugs to effectively modulate the pathogenesis or to delay the progression of the disease leads to a shift in the paradigm of AD drug discovery. Efforts aimed at identifying AD drugs have mostly focused on the development of disease-modifying agents in which effects are believed to be long lasting. Of particular note, the secretase enzymes, a group of proteases responsible for the metabolism of the β-amyloid precursor protein (βAPP) and β-amyloid (Aβ) peptides production, have been underlined for their promising therapeutic potential. This review article attempts to comprehensively cover aspects related to the identification and use of drugs targeting the secretase enzymes. Particularly, the roles of secretases in the pathogenesis of AD and their therapeutic modulation are provided herein. Moreover, an overview of the drug development process and the contribution of computational (in silico) approaches for facilitating successful drug discovery are also highlighted along with examples of relevant computational works. Promising chemical scaffolds, inhibitors, and modulators against each class of secretases are also summarized herein. Additionally, multitarget secretase modulators are also taken into consideration in light of the current growing interest in the polypharmacology of complex diseases. Finally, challenging issues and future outlook relevant to the discovery of drugs targeting secretases are also discussed.
Collapse
Affiliation(s)
- Nalini Schaduangrat
- Faculty of Medical Technology, Center of Data Mining and Biomedical Informatics, Mahidol University, Bangkok, Thailand
| | - Veda Prachayasittikul
- Faculty of Medical Technology, Center of Data Mining and Biomedical Informatics, Mahidol University, Bangkok, Thailand
| | - Saowapak Choomwattana
- Faculty of Medical Technology, Center of Data Mining and Biomedical Informatics, Mahidol University, Bangkok, Thailand
| | - Prapimpun Wongchitrat
- Faculty of Medical Technology, Center for Research and Innovation, Mahidol University, Bangkok, Thailand
| | - Kamonrat Phopin
- Faculty of Medical Technology, Center for Research and Innovation, Mahidol University, Bangkok, Thailand
| | - Wilasinee Suwanjang
- Faculty of Medical Technology, Center for Research and Innovation, Mahidol University, Bangkok, Thailand
| | - Aijaz Ahmad Malik
- Faculty of Medical Technology, Center of Data Mining and Biomedical Informatics, Mahidol University, Bangkok, Thailand
| | - Bruno Vincent
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand.,Centre National de la Recherche Scientifique, Paris, France
| | - Chanin Nantasenamat
- Faculty of Medical Technology, Center of Data Mining and Biomedical Informatics, Mahidol University, Bangkok, Thailand
| |
Collapse
|
14
|
Sciú ML, Sebastián-Pérez V, Martinez-Gonzalez L, Benitez R, Perez DI, Pérez C, Campillo NE, Martinez A, Moyano EL. Computer-aided molecular design of pyrazolotriazines targeting glycogen synthase kinase 3. J Enzyme Inhib Med Chem 2018; 34:87-96. [PMID: 30362380 PMCID: PMC6211276 DOI: 10.1080/14756366.2018.1530223] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Numerous studies have highlighted the implications of the glycogen synthase kinase 3 (GSK-3) in several processes associated with Alzheimer's disease (AD). Therefore, GSK-3 has become a crucial therapeutic target for the treatment of this neurodegenerative disorder. Hereby, we report the design and multistep synthesis of ethyl 4-oxo-pyrazolo[4,3-d][1-3]triazine-7-carboxylates and their biological evaluation as GSK-3 inhibitors. Molecular modelling studies allow us to develop this new scaffold optimising the chemical structure. Potential binding mode determination in the enzyme and the analysis of the key features in the catalytic site are also described. Furthermore, the ability of pyrazolotriazinones to cross the blood-brain barrier (BBB) was evaluated by passive diffusion and those who showed great GSK-3 inhibition and permeation to the central nervous system (CNS) showed neuroprotective properties against tau hyperphosphorylation in a cell-based model. These new brain permeable pyrazolotriazinones may be used for key in vivo studies and may be considered as new leads for further optimisation for the treatment of AD.
Collapse
Affiliation(s)
- M Lourdes Sciú
- a Department of Chemical and Physical Biology , Centro de Investigaciones Biológicas (CIB, CSIC) Ramiro de Maeztu , Madrid , Spain.,b INFIQC- Department of Organic Chemistry, School of Chemical Sciences , National University of Córdoba , Córdoba , Argentine
| | - Victor Sebastián-Pérez
- a Department of Chemical and Physical Biology , Centro de Investigaciones Biológicas (CIB, CSIC) Ramiro de Maeztu , Madrid , Spain
| | - Loreto Martinez-Gonzalez
- a Department of Chemical and Physical Biology , Centro de Investigaciones Biológicas (CIB, CSIC) Ramiro de Maeztu , Madrid , Spain
| | - Rocio Benitez
- a Department of Chemical and Physical Biology , Centro de Investigaciones Biológicas (CIB, CSIC) Ramiro de Maeztu , Madrid , Spain
| | - Daniel I Perez
- a Department of Chemical and Physical Biology , Centro de Investigaciones Biológicas (CIB, CSIC) Ramiro de Maeztu , Madrid , Spain
| | | | - Nuria E Campillo
- a Department of Chemical and Physical Biology , Centro de Investigaciones Biológicas (CIB, CSIC) Ramiro de Maeztu , Madrid , Spain
| | - Ana Martinez
- a Department of Chemical and Physical Biology , Centro de Investigaciones Biológicas (CIB, CSIC) Ramiro de Maeztu , Madrid , Spain
| | - E Laura Moyano
- b INFIQC- Department of Organic Chemistry, School of Chemical Sciences , National University of Córdoba , Córdoba , Argentine
| |
Collapse
|
15
|
Borowiecki P, Justyniak I, Ochal Z. Lipase-catalyzed kinetic resolution approach toward enantiomerically enriched 1-(β-hydroxypropyl)indoles. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.tetasy.2017.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
16
|
Omar HA, Zaher DM, Srinivasulu V, Hersi F, Tarazi H, Al-Tel TH. Design, synthesis and biological evaluation of new pyrrolidine carboxamide analogues as potential chemotherapeutic agents for hepatocellular carcinoma. Eur J Med Chem 2017; 139:804-814. [PMID: 28865276 DOI: 10.1016/j.ejmech.2017.08.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 12/16/2022]
Abstract
The successful targeting of different malignancies by OSU-2S, encouraged us to design and synthesize a novel series of pyrrolidine aryl carboxamide derivatives. In this context, we found that, the amide nature and tether length were found to be key determinant elements for the anticancer activity of these new and rigid analogues of OSU-2S. The most effective analogues induced apoptosis in cancer cells by a similar mechanism to that of OSU-2S, possibly via the activation of PKCδ in addition to their ability to induce cell cycle arrest and inhibition of cancer cell migration. Compound 10m, possesses anticancer potency comparable to that of OSU-2S when tested against cancer cell lines under study, and was found to be safer on normal cells. Furthermore, compound 10m, was found to be about 2-folds more potent than the anticancer drug Sorafenib in hepatocellular carcinoma (HCC). The newly developed compounds represent a therapeutically promising approach for the treatment of HCC.
Collapse
Affiliation(s)
- Hany A Omar
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Dana M Zaher
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Vunnam Srinivasulu
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Fatema Hersi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hamadeh Tarazi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Taleb H Al-Tel
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
17
|
Srinivasulu V, Janda KD, Abu-Yousef IA, O'Connor MJ, Al-Tel TH. A modular CuI-L-proline catalyzed one-pot route for the rapid access of constrained and privileged hetero-atom-linked medium-sized ring systems. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.02.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|