1
|
Iijima M, Otsuka Y, Ohba SI, Momose I. Inhibition of kynurenine production by N,O-substituted hydroxylamine derivatives. Bioorg Med Chem Lett 2024; 106:129731. [PMID: 38621594 DOI: 10.1016/j.bmcl.2024.129731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 04/17/2024]
Abstract
The inhibition of kynurenine production is considered a promising target for cancer immunotherapy. In this study, an amino acid derivative, compound 1 was discovered using a cell-based assay with our screening library. Compound 1 suppressed kynurenine production without inhibiting indoleamine 2,3-dioxygenase 1 (IDO1) activity. The activity of 1 was derived from the inhibition of IDO1 by a metabolite of 1, O-benzylhydroxylamine (OBHA, 2a). A series of N-substituted 2a derivatives that exhibit potent activity in cell-based assays may represent effective prodrugs. Therefore, we synthesized and evaluated novel N,O-substituted hydroxylamine derivatives. The structure-activity relationships revealed that N,O-substituted hydroxylamine 2c inhibits kynurenine production in a cell-based assay. We conducted an in vivo experiment with 2c, although the effectiveness of O-substituted hydroxylamine derivatives in vivo has not been previously reported. The results indicate that N,O-substituted hydroxylamine derivatives are promising IDO1 inhibitors.
Collapse
Affiliation(s)
- Masatomi Iijima
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, 18-24 Miyamoto, Numazu-shi, Shizuoka 410-0301, Japan.
| | - Yasunari Otsuka
- Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan.
| | - Shun-Ichi Ohba
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, 18-24 Miyamoto, Numazu-shi, Shizuoka 410-0301, Japan
| | - Isao Momose
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, 18-24 Miyamoto, Numazu-shi, Shizuoka 410-0301, Japan
| |
Collapse
|
2
|
Sgroi S, Romeo E, Fruscia PD, Porceddu PF, Russo D, Realini N, Albanesi E, Bandiera T, Bertozzi F, Reggiani A. Inhibition of N-acylethanolamine-hydrolyzing acid amidase reduces T cell infiltration in a mouse model of multiple sclerosis. Pharmacol Res 2021; 172:105816. [PMID: 34391933 DOI: 10.1016/j.phrs.2021.105816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 11/27/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is an animal model of multiple sclerosis (MS), in which myeloid cells sustain inflammation, take part in priming, differentiation, and reactivation of myelin-specific T cells, and cause direct myelin damage. N-Acylethanolamine-hydrolyzing acid amidase (NAAA) is a proinflammatory enzyme induced by phlogosis and overexpressed in macrophages and microglia of EAE mice. Targeting these cell populations by inhibiting NAAA may be a promising pharmacological strategy to modulate the inflammatory aspect of MS and manage disease progression. To address this goal, we used ARN16186, a small molecule specifically designed and synthesized as a pharmacological tool to inhibit NAAA. We assessed whether enzyme inhibition affected the severity of neurological symptoms and modulated immune cell infiltration into the central nervous system of EAE mice. We found that preventive chronic treatment with ARN16186 was efficacious in slowing disease progression and preserving locomotor activity in EAE mice. Furthermore, NAAA inhibition reduced the number of immune cells infiltrating the spinal cord and modulated the overactivation of NF-kB and STAT3 transcription factors, leading to less expansion of Th17 cells over the course of the disease.
Collapse
Affiliation(s)
- Stefania Sgroi
- D3-Validation, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Elisa Romeo
- D3-Validation, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Paolo Di Fruscia
- D3-PharmaChemistry, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | | | - Debora Russo
- D3-PharmaChemistry, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Natalia Realini
- D3-Validation, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Ennio Albanesi
- Department of Neuroscience and Brain Technologies, Neurofacility, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Tiziano Bandiera
- D3-PharmaChemistry, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Fabio Bertozzi
- D3-PharmaChemistry, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Angelo Reggiani
- D3-Validation, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy.
| |
Collapse
|
3
|
Di Fruscia P, Carbone A, Bottegoni G, Berti F, Giacomina F, Ponzano S, Pagliuca C, Fiasella A, Pizzirani D, Ortega JA, Nuzzi A, Tarozzo G, Mengatto L, Giampà R, Penna I, Russo D, Romeo E, Summa M, Bertorelli R, Armirotti A, Bertozzi SM, Reggiani A, Bandiera T, Bertozzi F. Discovery and SAR Evolution of Pyrazole Azabicyclo[3.2.1]octane Sulfonamides as a Novel Class of Non-Covalent N-Acylethanolamine-Hydrolyzing Acid Amidase (NAAA) Inhibitors for Oral Administration. J Med Chem 2021; 64:13327-13355. [PMID: 34469137 PMCID: PMC8474119 DOI: 10.1021/acs.jmedchem.1c00575] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Indexed: 12/30/2022]
Abstract
Inhibition of intracellular N-acylethanolamine-hydrolyzing acid amidase (NAAA) activity is a promising approach to manage the inflammatory response under disabling conditions. In fact, NAAA inhibition preserves endogenous palmitoylethanolamide (PEA) from degradation, thus increasing and prolonging its anti-inflammatory and analgesic efficacy at the inflamed site. In the present work, we report the identification of a potent, systemically available, novel class of NAAA inhibitors, featuring a pyrazole azabicyclo[3.2.1]octane structural core. After an initial screening campaign, a careful structure-activity relationship study led to the discovery of endo-ethoxymethyl-pyrazinyloxy-8-azabicyclo[3.2.1]octane-pyrazole sulfonamide 50 (ARN19689), which was found to inhibit human NAAA in the low nanomolar range (IC50 = 0.042 μM) with a non-covalent mechanism of action. In light of its favorable biochemical, in vitro and in vivo drug-like profile, sulfonamide 50 could be regarded as a promising pharmacological tool to be further investigated in the field of inflammatory conditions.
Collapse
Affiliation(s)
- Paolo Di Fruscia
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Anna Carbone
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
- Department
of Biological, Chemical and Pharmaceutical Sciences and Technologies
(STEBICEF), University of Palermo, 90123Palermo, Italy
| | - Giovanni Bottegoni
- Computational
and Chemical Biology, Istituto Italiano
di Tecnologia (IIT), 16163Genova, Italy
| | - Francesco Berti
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Francesca Giacomina
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Stefano Ponzano
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Chiara Pagliuca
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Annalisa Fiasella
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Daniela Pizzirani
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Jose Antonio Ortega
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Andrea Nuzzi
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Glauco Tarozzo
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Luisa Mengatto
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Roberta Giampà
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Ilaria Penna
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Debora Russo
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Elisa Romeo
- D3-Validation, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Maria Summa
- Analytical
Chemistry and Translational Pharmacology, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Rosalia Bertorelli
- Analytical
Chemistry and Translational Pharmacology, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Andrea Armirotti
- Analytical
Chemistry and Translational Pharmacology, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Sine Mandrup Bertozzi
- Analytical
Chemistry and Translational Pharmacology, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Angelo Reggiani
- D3-Validation, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Tiziano Bandiera
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Fabio Bertozzi
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| |
Collapse
|
4
|
Sio YY, Shi P, Say YH, Chew FT. Functional variants in the chromosome 4q21 locus contribute to allergic rhinitis risk by modulating the expression of N-acylethanolamine acid amidase. Clin Exp Allergy 2021; 52:127-136. [PMID: 33866639 DOI: 10.1111/cea.13883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/23/2021] [Accepted: 04/10/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Previous haplotype-based association studies identified chromosome 4q21 as an allergic rhinitis (AR) susceptibility locus; however, the functional role of 4q21 single nucleotide polymorphisms (SNPs) on AR risk remains unclear. OBJECTIVE To investigate the functional effect of 4q21 SNPs on AR risk by conducting cohort-based functional genomics and genetic association analyses. METHODS The associations between 4q21 SNPs and mRNA expression levels of three 4q21-associated genes (SDAD1, NAAA and CXCL9) in peripheral blood mononuclear cells (PBMCs) were assessed in a Singapore/Malaysia Chinese cohort (n = 291). Exon expression levels of these genes in PBMCs were tested against the tag-SNP genotypes in a Singapore Chinese cohort (n = 30). Serum protein levels of these genes were assessed with tag-SNP genotypes in a Singapore Chinese cohort (n = 193). SNP functions were characterized through luciferase assay. In a Singapore Chinese cohort (n = 1794), we confirmed the associations between functional SNPs and AR. RESULTS Forty SNPs in 4q21 showed significant associations with NAAA (but not SDAD1 or CXCL9) mRNA expression in PBMCs, of which were tagged by two tag-SNPs, rs17001237 and rs2242470. Both tag-SNPs rs2242470 and rs12648687 (a proxy for rs17001237) were also significantly associated with the expression level of NAAA exon 1. Tag-SNP rs12648687 was correlated with serum NAAA level. A four promoter SNPs-haplotype tagged by rs17001237 influenced the NAAA promoter activity in HEK293T cells. Lastly, individuals carrying the risk allele A of rs12648687 exhibited significantly higher AR risk in the Singapore Chinese population. CONCLUSIONS & CLINICAL RELEVANCE The rs17001237 linkage set SNPs in the 4q21 locus are associated with NAAA expression at both gene and protein levels ex vivo, have functional consequences in vitro and contribute to AR susceptibility in our study population. Our findings provided a better understanding of the genetic mechanism that contributes to AR pathogenesis.
Collapse
Affiliation(s)
- Yang Yie Sio
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Ping Shi
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Yee-How Say
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.,Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR) Kampar Campus, Kampar, Malaysia
| | - Fook Tim Chew
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
5
|
Yang L, Ji C, Li Y, Hu F, Zhang F, Zhang H, Li L, Ren J, Wang Z, Qiu Y. Natural Potent NAAA Inhibitor Atractylodin Counteracts LPS-Induced Microglial Activation. Front Pharmacol 2020; 11:577319. [PMID: 33117168 PMCID: PMC7565389 DOI: 10.3389/fphar.2020.577319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022] Open
Abstract
N-acylethanolamine-hydrolyzing acid amidase (NAAA) is a lysosomal enzyme that inhibits the degradation of palmitoylethanolamide (PEA), an endogenous lipid that induces analgesic, anti-inflammation, and anti-multiple sclerosis through PPARα activation. Only a few potent NAAA inhibitors have been reported to date, which is mainly due to the restricted substrate-binding site of NAAA. Here, we established a high-throughput fluorescence-based assay for NAAA inhibitor screening. Several new classes of NAAA inhibitors were discovered from a small library of natural products. One of these is atractylodin, a polyethylene alkyne compound from the root of Atractylodes lancea (Thunb) DC., which significantly inhibits NAAA activity and has an IC50 of 2.81 µM. Kinetic analyses and dialysis assays suggested that atractylodin engages in competitive inhibition via reversible reaction to the enzyme. Docking assays revealed that atractylodin occupies the catalytic cavity of NAAA, where the atractylodin furan head group has a hydrophobic-related interaction with the backbone of the Trp181 and Leu152 residues of human NAAA. Further investigation indicated that atractylodin significantly increases PEA and OEA levels and dose-dependently inhibits LPS-induced nitrate, TNF-α, IL-1β, and IL-6 pro-inflammatory cytokine release in BV-2 microglia. Our results show that atractylodin elevates cellular PEA levels and inhibits microglial activation by inhibiting NAAA activity, which in turn could contribute to NAAA functional research.
Collapse
Affiliation(s)
- Longhe Yang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Chunyan Ji
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Yitian Li
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Fan Hu
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Fang Zhang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Haiping Zhang
- Center for High Performance Computing, Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Long Li
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Jie Ren
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Zhaokai Wang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Yan Qiu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
6
|
Scalvini L, Ghidini A, Lodola A, Callegari D, Rivara S, Piomelli D, Mor M. N-Acylethanolamine Acid Amidase (NAAA): Mechanism of Palmitoylethanolamide Hydrolysis Revealed by Mechanistic Simulations. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Laura Scalvini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle scienze 27/A, I-43124 Parma, Italy
| | - Andrea Ghidini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle scienze 27/A, I-43124 Parma, Italy
| | - Alessio Lodola
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle scienze 27/A, I-43124 Parma, Italy
| | - Donatella Callegari
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle scienze 27/A, I-43124 Parma, Italy
| | - Silvia Rivara
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle scienze 27/A, I-43124 Parma, Italy
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697-4625, United States
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-4625, United States
- Department of Biological Chemistry and Molecular Biology, University of California, Irvine, California 92697-4625, United States
| | - Marco Mor
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle scienze 27/A, I-43124 Parma, Italy
| |
Collapse
|
7
|
Piomelli D, Scalvini L, Fotio Y, Lodola A, Spadoni G, Tarzia G, Mor M. N-Acylethanolamine Acid Amidase (NAAA): Structure, Function, and Inhibition. J Med Chem 2020; 63:7475-7490. [PMID: 32191459 DOI: 10.1021/acs.jmedchem.0c00191] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
N-Acylethanolamine acid amidase (NAAA) is an N-terminal cysteine hydrolase primarily found in the endosomal-lysosomal compartment of innate and adaptive immune cells. NAAA catalyzes the hydrolytic deactivation of palmitoylethanolamide (PEA), a lipid-derived peroxisome proliferator-activated receptor-α (PPAR-α) agonist that exerts profound anti-inflammatory effects in animal models. Emerging evidence points to NAAA-regulated PEA signaling at PPAR-α as a critical control point for the induction and the resolution of inflammation and to NAAA itself as a target for anti-inflammatory medicines. The present Perspective discusses three key aspects of this hypothesis: the role of NAAA in controlling the signaling activity of PEA; the structural bases for NAAA function and inhibition by covalent and noncovalent agents; and finally, the potential value of NAAA-targeting drugs in the treatment of human inflammatory disorders.
Collapse
Affiliation(s)
- Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697-4625, United States.,Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-4625, United States.,Department of Biological Chemistry and Molecular Biology, University of California, Irvine, California 92697-4625, United States
| | - Laura Scalvini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I- 43124 Parma, Italy
| | - Yannick Fotio
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697-4625, United States
| | - Alessio Lodola
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I- 43124 Parma, Italy
| | - Gilberto Spadoni
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Piazza Rinascimento 6, I-61029 Urbino, Italy
| | - Giorgio Tarzia
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Piazza Rinascimento 6, I-61029 Urbino, Italy
| | - Marco Mor
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I- 43124 Parma, Italy
| |
Collapse
|
8
|
Dražić T, Kopf S, Corridan J, Leuthold MM, Bertoša B, Klein CD. Peptide-β-lactam Inhibitors of Dengue and West Nile Virus NS2B-NS3 Protease Display Two Distinct Binding Modes. J Med Chem 2019; 63:140-156. [DOI: 10.1021/acs.jmedchem.9b00759] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tonko Dražić
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Sara Kopf
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - James Corridan
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Mila M. Leuthold
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Branimir Bertoša
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10 000 Zagreb, Croatia
| | - Christian D. Klein
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| |
Collapse
|
9
|
Malamas MS, Farah SI, Lamani M, Pelekoudas DN, Perry NT, Rajarshi G, Miyabe CY, Chandrashekhar H, West J, Pavlopoulos S, Makriyannis A. Design and synthesis of cyanamides as potent and selective N-acylethanolamine acid amidase inhibitors. Bioorg Med Chem 2019; 28:115195. [PMID: 31761726 DOI: 10.1016/j.bmc.2019.115195] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 10/25/2022]
Abstract
N-acylethanolamine acid amidase (NAAA) inhibition represents an exciting novel approach to treat inflammation and pain. NAAA is a cysteine amidase which preferentially hydrolyzes the endogenous biolipids palmitoylethanolamide (PEA) and oleoylethanolamide (OEA). PEA is an endogenous agonist of the nuclear peroxisome proliferator-activated receptor-α (PPAR-α), which is a key regulator of inflammation and pain. Thus, blocking the degradation of PEA with NAAA inhibitors results in augmentation of the PEA/PPAR-α signaling pathway and regulation of inflammatory and pain processes. We have prepared a new series of NAAA inhibitors exploring the azetidine-nitrile (cyanamide) pharmacophore that led to the discovery of highly potent and selective compounds. Key analogs demonstrated single-digit nanomolar potency for hNAAA and showed >100-fold selectivity against serine hydrolases FAAH, MGL and ABHD6, and cysteine protease cathepsin K. Additionally, we have identified potent and selective dual NAAA-FAAH inhibitors to investigate a potential synergism between two distinct anti-inflammatory molecular pathways, the PEA/PPAR-α anti-inflammatory signaling pathway,1-4 and the cannabinoid receptors CB1 and CB2 pathways which are known for their antiinflammatory and antinociceptive properties.5-8 Our ligand design strategy followed a traditional structure-activity relationship (SAR) approach and was supported by molecular modeling studies of reported X-ray structures of hNAAA. Several inhibitors were evaluated in stability assays and demonstrated very good plasma stability (t1/2 > 2 h; human and rodents). The disclosed cyanamides represent promising new pharmacological tools to investigate the potential role of NAAA inhibitors and dual NAAA-FAAH inhibitors as therapeutic agents for the treatment of inflammation and pain.
Collapse
Affiliation(s)
- Michael S Malamas
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States.
| | - Shrouq I Farah
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States
| | - Manjunath Lamani
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States
| | - Dimitrios N Pelekoudas
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States
| | - Nicholas Thomas Perry
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States
| | - Girija Rajarshi
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States
| | - Christina Yume Miyabe
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States
| | - Honrao Chandrashekhar
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States
| | - Jay West
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States
| | - Spiro Pavlopoulos
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States
| | - Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States
| |
Collapse
|
10
|
Zhou P, Xiang L, Yang Y, Wu Y, Hu T, Liu X, Lin F, Xiu Y, Wu K, Lu C, Ren J, Qiu Y, Li Y. N-Acylethanolamine acid amidase (NAAA) inhibitor F215 as a novel therapeutic agent for osteoarthritis. Pharmacol Res 2019; 145:104264. [PMID: 31063807 DOI: 10.1016/j.phrs.2019.104264] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/22/2019] [Accepted: 05/03/2019] [Indexed: 12/15/2022]
Abstract
Osteoarthritis (OA), characterized by cartilage damage, synovitis inflammation and chronic pain, is a common degenerative joint disease that may lead to physical disability. In the present study, we first explored the association between N-Acylethanolamine acid amidase (NAAA) and OA progression, and then examined the capability of the NAAA inhibitor F215 to attenuate osteoarthritis. Increased NAAA expressions and decreased PEA levels in synovial membrane and lumbar spinal cord were observed in MIA induced osteoarthritic rats. F215 (i.a., and i.p.) significantly protected against cartilage damage and synovial inflammation by directly increasing PEA levels in joints, or normalization of PEA levels and resolution of inflammation in spinal cord. Moreover, F215 also markedly alleviated osteoarthritic pain in rats, and the therapeutic effects of F215 were blocked by the PPAR-α antagonist MK886. The results revealed that NAAA may has been implicated in OA progression, and treatment with NAAA inhibitor F215 alleviated OA development by preventing cartilage damage, reducing inflammation, and alleviating pain. Our study suggested that NAAA inhibitor might be a novel therapeutic agent for OA treatment.
Collapse
Affiliation(s)
- Pan Zhou
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, 361102, China; Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, 361102, China
| | - Lei Xiang
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Yulong Yang
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Yuezhou Wu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Ting Hu
- Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences, Fujian, 361005, China
| | - Xiaolong Liu
- Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences, Fujian, 361005, China
| | - Feitai Lin
- Department of Joint, Xiamen University Affiliated Second Hospital of Fuzhou, Fujian, 361000, China
| | - Yanghui Xiu
- Xiamen University affiliated Xiamen Eye Center, Xiamen, 361005, China
| | - Kangni Wu
- The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Canzhong Lu
- Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences, Fujian, 361005, China
| | - Jie Ren
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, 361102, China; Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, 361102, China
| | - Yan Qiu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, 361102, China; Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, 361102, China.
| | - Yuhang Li
- Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences, Fujian, 361005, China.
| |
Collapse
|
11
|
Molecular mechanism of activation of the immunoregulatory amidase NAAA. Proc Natl Acad Sci U S A 2018; 115:E10032-E10040. [PMID: 30301806 DOI: 10.1073/pnas.1811759115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Palmitoylethanolamide is a bioactive lipid that strongly alleviates pain and inflammation in animal models and in humans. Its signaling activity is terminated through degradation by N-acylethanolamine acid amidase (NAAA), a cysteine hydrolase expressed at high levels in immune cells. Pharmacological inhibitors of NAAA activity exert profound analgesic and antiinflammatory effects in rodent models, pointing to this protein as a potential target for therapeutic drug discovery. To facilitate these efforts and to better understand the molecular mechanism of action of NAAA, we determined crystal structures of this enzyme in various activation states and in complex with several ligands, including both a covalent and a reversible inhibitor. Self-proteolysis exposes the otherwise buried active site of NAAA to allow catalysis. Formation of a stable substrate- or inhibitor-binding site appears to be conformationally coupled to the interaction of a pair of hydrophobic helices in the enzyme with lipid membranes, resulting in the creation of a linear hydrophobic cavity near the active site that accommodates the ligand's acyl chain.
Collapse
|
12
|
Bottemanne P, Muccioli GG, Alhouayek M. N-acylethanolamine hydrolyzing acid amidase inhibition: tools and potential therapeutic opportunities. Drug Discov Today 2018; 23:1520-1529. [PMID: 29567427 DOI: 10.1016/j.drudis.2018.03.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/06/2018] [Accepted: 03/15/2018] [Indexed: 01/12/2023]
Abstract
N-acylethanolamines (NAEs) (e.g., N-palmitoylethanolamine, N-arachidonoylethanolamine, N-oleoylethanolamine) are bioactive lipids involved in many physiological processes including pain, inflammation, anxiety, cognition and food intake. Two enzymes are responsible for the hydrolysis of NAEs and therefore regulate their endogenous levels and effects: fatty acid amide hydrolase (FAAH) and N-acylethanolamine-hydrolyzing acid amidase (NAAA). As discussed here, extensive biochemical characterization of NAAA was carried out over the years that contributed to a better understanding of NAAA enzymology. An increasing number of studies describe the synthesis and pharmacological characterization of NAAA inhibitors. Recent medicinal chemistry efforts have led to the development of potent and stable inhibitors that enable studying the effects of NAAA inhibition in preclinical disease models, notably in the context of pain and inflammation.
Collapse
Affiliation(s)
- Pauline Bottemanne
- BPBL Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Av. E. Mounier 72, B1.72.01, B-1200 Bruxelles, Belgium
| | - Giulio G Muccioli
- BPBL Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Av. E. Mounier 72, B1.72.01, B-1200 Bruxelles, Belgium
| | - Mireille Alhouayek
- BPBL Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Av. E. Mounier 72, B1.72.01, B-1200 Bruxelles, Belgium.
| |
Collapse
|
13
|
Li Y, Chen Q, Yang L, Li Y, Zhang Y, Qiu Y, Ren J, Lu C. Identification of highly potent N -acylethanolamine acid amidase (NAAA) inhibitors: Optimization of the terminal phenyl moiety of oxazolidone derivatives. Eur J Med Chem 2017; 139:214-221. [DOI: 10.1016/j.ejmech.2017.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/24/2017] [Accepted: 08/02/2017] [Indexed: 12/30/2022]
|
14
|
Petracca R, Romeo E, Baggelaar MP, Artola M, Pontis S, Ponzano S, Overkleeft HS, van der Stelt M, Piomelli D. Novel activity-based probes for N-acylethanolamine acid amidase. Chem Commun (Camb) 2017; 53:11810-11813. [DOI: 10.1039/c7cc06838g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Two NAAA activity-based probes were generated as tool for the identification of new inhibitors and the investigation of NAAA physiology.
Collapse
Affiliation(s)
- Rita Petracca
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)
- Trinity College Dublin
- The University of Dublin
- Dublin 2
- Ireland
| | - Elisa Romeo
- Drug Discovery and Development
- Istituto Italiano di Tecnologia
- Italy
| | - Marc P. Baggelaar
- Department of Molecular Physiology
- Leiden Institute of Chemistry
- Leiden University
- Leiden
- The Netherlands
| | - Marta Artola
- Department of Bio-organic Synthesis
- Leiden Institute of Chemistry
- Leiden University
- Leiden
- The Netherlands
| | - Silvia Pontis
- Drug Discovery and Development
- Istituto Italiano di Tecnologia
- Italy
| | - Stefano Ponzano
- Drug Discovery and Development
- Istituto Italiano di Tecnologia
- Italy
| | - Herman S. Overkleeft
- Department of Bio-organic Synthesis
- Leiden Institute of Chemistry
- Leiden University
- Leiden
- The Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology
- Leiden Institute of Chemistry
- Leiden University
- Leiden
- The Netherlands
| | - Daniele Piomelli
- Departments of Anatomy and Neurobiology
- Pharmacology and Biological Chemistry
- University of California
- Irvine
- USA
| |
Collapse
|