1
|
Ma L, Tang J, Chen F, Liu Q, Huang J, Liu X, Zhou Z, Yi W. Structure-based screening, optimization and biological evaluation of novel chrysin-based derivatives as selective PPARγ modulators for the treatment of T2DM and hepatic steatosis. Eur J Med Chem 2024; 276:116728. [PMID: 39089002 DOI: 10.1016/j.ejmech.2024.116728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/03/2024]
Abstract
In consideration of several serious side effects induced by the classical AF-2 involved "lock" mechanism, recently disclosed PPARγ-Ser273 phosphorylation mode of action has become an alternative and mainstream mechanism for currently PPARγ-based drug discovery and development with an improved therapeutic index. In this study, by virtue of structure-based virtual high throughput screening (SB-VHTS), structurally chemical optimization by targeting the inhibition of the PPARγ-Ser273 phosphorylation as well as in vitro biological evaluation, which led to the final identification of a chrysin-based potential hit (YGT-31) as a novel selective PPARγ modulator with potent binding affinity and partial agonism. Further in vivo evaluation demonstrated that YGT-31 possessed potent glucose-lowering and relieved hepatic steatosis effects without involving the TZD-associated side effects. Mechanistically, YGT-31 presented such desired therapeutic index, mainly because it effectively inhibited the CDK5-mediated PPARγ-Ser273 phosphorylation, selectively elevated the level of insulin sensitivity-related Glut4 and adiponectin but decreased the expression of insulin-resistance-associated genes PTP1B and SOCS3 as well as inflammation-linked genes IL-6, IL-1β and TNFα. Finally, the molecular docking study was also conducted to uncover an interesting hydrogen-bonding network of YGT-31 with PPARγ-Ser273 phosphorylation-related key residues Ser342 and Glu343, which not only gave a clear verification for our targeting modification but also provided a proof of concept for the abovementioned molecular mechanism.
Collapse
Affiliation(s)
- Lei Ma
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Junyuan Tang
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China; Department of Food and Chemical Engineering, Shaoyang University, Shao Shui Xi Road, Shaoyang, 422100, China
| | - Fangyuan Chen
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Qingmei Liu
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Junjun Huang
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Xiawen Liu
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.
| | - Zhi Zhou
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.
| | - Wei Yi
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.
| |
Collapse
|
2
|
Rayner MLD, Kellaway SC, Kingston I, Guillemot-Legris O, Gregory H, Healy J, Phillips JB. Exploring the Nerve Regenerative Capacity of Compounds with Differing Affinity for PPARγ In Vitro and In Vivo. Cells 2022; 12:cells12010042. [PMID: 36611836 PMCID: PMC9818498 DOI: 10.3390/cells12010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022] Open
Abstract
Damage to peripheral nerves can cause debilitating consequences for patients such as lifelong pain and disability. At present, no drug treatments are routinely given in the clinic following a peripheral nerve injury (PNI) to improve regeneration and remyelination of damaged nerves. Appropriately targeted therapeutic agents have the potential to be used at different stages following nerve damage, e.g., to maintain Schwann cell viability, induce and sustain a repair phenotype to support axonal growth, or promote remyelination. The development of therapies to promote nerve regeneration is currently of high interest to researchers, however, translation to the clinic of drug therapies for PNI is still lacking. Studying the effect of PPARγ agonists for treatment of peripheral nerve injures has demonstrated significant benefits. Ibuprofen, a non-steroidal anti-inflammatory drug (NSAID), has reproducibly demonstrated benefits in vitro and in vivo, suggested to be due to its agonist action on PPARγ. Other NSAIDs have demonstrated differing levels of PPARγ activation based upon their affinity. Therefore, it was of interest to determine whether affinity for PPARγ of selected drugs corresponded to an increase in regeneration. A 3D co-culture in vitro model identified some correlation between these two properties. However, when the drug treatments were screened in vivo, in a crush injury model in a rat sciatic nerve, the same correlation was not apparent. Further differences were observed between capacity to increase axon number and improvement in functional recovery. Despite there not being a clear correlation between affinity and size of effect on regeneration, all selected PPARγ agonists improved regeneration, providing a panel of compounds that could be explored for use in the treatment of PNI.
Collapse
Affiliation(s)
- Melissa L. D. Rayner
- Department of Pharmacology, School of Pharmacy, University College London, London WC1N 1AX, UK
- Centre for Nerve Engineering, University College London, London WC1N 6BT, UK
- Correspondence:
| | - Simon C. Kellaway
- Department of Pharmacology, School of Pharmacy, University College London, London WC1N 1AX, UK
- Centre for Nerve Engineering, University College London, London WC1N 6BT, UK
| | - Isabel Kingston
- Department of Pharmacology, School of Pharmacy, University College London, London WC1N 1AX, UK
- Centre for Nerve Engineering, University College London, London WC1N 6BT, UK
| | - Owein Guillemot-Legris
- Department of Pharmacology, School of Pharmacy, University College London, London WC1N 1AX, UK
- Centre for Nerve Engineering, University College London, London WC1N 6BT, UK
| | - Holly Gregory
- Department of Pharmacology, School of Pharmacy, University College London, London WC1N 1AX, UK
- Centre for Nerve Engineering, University College London, London WC1N 6BT, UK
| | - Jess Healy
- Centre for Nerve Engineering, University College London, London WC1N 6BT, UK
| | - James B. Phillips
- Department of Pharmacology, School of Pharmacy, University College London, London WC1N 1AX, UK
- Centre for Nerve Engineering, University College London, London WC1N 6BT, UK
| |
Collapse
|
3
|
Virendra SA, Kumar A, Chawla PA, Mamidi N. Development of Heterocyclic PPAR Ligands for Potential Therapeutic Applications. Pharmaceutics 2022; 14:2139. [PMID: 36297575 PMCID: PMC9611956 DOI: 10.3390/pharmaceutics14102139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
The family of nuclear peroxisome proliferator-activated receptors (PPARα, PPARβ/δ, and PPARγ) is a set of ligand-activated transcription factors that regulate different functions in the body. Whereas activation of PPARα is known to reduce the levels of circulating triglycerides and regulate energy homeostasis, the activation of PPARγ brings about insulin sensitization and increases the metabolism of glucose. On the other hand, PPARβ when activated increases the metabolism of fatty acids. Further, these PPARs have been claimed to be utilized in various metabolic, neurological, and inflammatory diseases, neurodegenerative disorders, fertility or reproduction, pain, and obesity. A series of different heterocyclic scaffolds have been synthesized and evaluated for their ability to act as PPAR agonists. This review is a compilation of efforts on the part of medicinal chemists around the world to find novel compounds that may act as PPAR ligands along with patents in regards to PPAR ligands. The structure-activity relationship, as well as docking studies, have been documented to better understand the mechanistic investigations of various compounds, which will eventually aid in the design and development of new PPAR ligands. From the results of the structural activity relationship through the pharmacological and in silico evaluation the potency of heterocycles as PPAR ligands can be described in terms of their hydrogen bonding, hydrophobic interactions, and other interactions with PPAR.
Collapse
Affiliation(s)
- Sharma Arvind Virendra
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Ankur Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Pooja A. Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Narsimha Mamidi
- Department of Chemistry and Nanotechnology, School of Engineering and Sciences, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Nuevo Leon, Mexico
| |
Collapse
|
4
|
Knox AK, Kalchschmid C, Schuster D, Gaggia F, Gust R. Heterodimeric GW7604 Derivatives: Modification of the Pharmacological Profile by Additional Interactions at the Coactivator Binding Site. J Med Chem 2021; 64:5766-5786. [PMID: 33904307 PMCID: PMC8279417 DOI: 10.1021/acs.jmedchem.0c02230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
(E/Z)-3-(4-((E)-1-(4-Hydroxyphenyl)-2-phenylbut-1-enyl)phenyl)acrylic
acid (GW7604)
as a derivative of (Z)-4-hydroxytamoxifen (4-OHT)
was linked by diaminoalkane spacers to molecules that are known binders
to the coactivator binding site (benzimidazole or thioxo-quinazolinone
scaffolds). With this modification, an optimization of the pharmacological
profile was achieved. The most active thioxo-quinazolinone derivative 16 showed extraordinarily high affinity to the estrogen receptor
(ER) β (RBA = 110%), inhibited effectively the coactivator recruitment
(IC50 = 20.88 nM (ERα) and 28.34 nM (ERβ)),
acted as a pure estradiol (E2) antagonist in a transactivation assay
(IC50 = 18.5 nM (ERα) and 7.5 nM (ERβ)), and
downregulated the ERα content in MCF-7 cells with an efficacy
of 60% at 1 μM. The cytotoxicity was restricted to hormone-dependent
MCF-7 (IC50 = 4.2 nM) and tamoxifen-resistant MCF-7TamR
cells (IC50 = 476.6 nM). The compounds bearing a thioxo-quinazolinone
moiety can therefore be assigned as pure E2-antagonistic selective
ER degraders/downregulators. By contrast, the benzimidazole derivatives
acted solely as pure antagonists without degradation of the ER.
Collapse
Affiliation(s)
- Alexandra K Knox
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, CMBI - Center for Molecular Biosciences Innsbruck, University of Innsbruck, CCB - Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Christina Kalchschmid
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, CMBI - Center for Molecular Biosciences Innsbruck, University of Innsbruck, CCB - Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Daniela Schuster
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, CMBI - Center for Molecular Biosciences Innsbruck, University of Innsbruck, CCB - Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria.,Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Francesca Gaggia
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, CMBI - Center for Molecular Biosciences Innsbruck, University of Innsbruck, CCB - Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Ronald Gust
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, CMBI - Center for Molecular Biosciences Innsbruck, University of Innsbruck, CCB - Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| |
Collapse
|
5
|
Schoepf AM, Salcher S, Hohn V, Veider F, Obexer P, Gust R. Synthesis and Characterization of Telmisartan-Derived Cell Death Modulators to Circumvent Imatinib Resistance in Chronic Myeloid Leukemia. ChemMedChem 2020; 15:1067-1077. [PMID: 32298535 PMCID: PMC7318623 DOI: 10.1002/cmdc.202000092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/15/2020] [Indexed: 12/25/2022]
Abstract
New strategies to eradicate cancer stem cells in chronic myeloid leukemia (CML) include a combination of imatinib with peroxisome proliferator-activated receptor gamma (PPARγ) ligands. Recently, we identified the partial PPARγ agonist telmisartan as effective sensitizer of resistant K562 CML cells to imatinib treatment. Here, the importance of the heterocyclic core on the cell death-modulating effects of the telmisartan-derived lead 4'-((2-propyl-1H-benzo[d]imidazol-1-yl)methyl)-[1,1'-biphenyl]-2-carboxylic acid (3 b) was investigated. Inspired by the pharmacodynamics of HYL-6d and the selective PPARγ ligand VSP-51, the benzimidazole was replaced by a carbazole or an indole core. The results indicate no correlation between PPARγ activation and sensitization of resistant CML cells to imatinib. The 2-COOH derivatives of the carbazoles or indoles achieved low activity at PPARγ, while the benzimidazoles showed 60-100 % activation. Among the 2-CO2 CH3 derivatives, only the ester of the lead (2 b) slightly activated PPARγ. Sensitizing effects were further observed for this non-cytotoxic 2 b (80 % cell death), and to a lesser extent for the lead 3 b or the 5-Br-substituted ester of the benzimidazoles (5 b).
Collapse
Affiliation(s)
- Anna M. Schoepf
- Department of Pharmaceutical Chemistry Institute of Pharmacy CMBI – Center for Molecular Biosciences InnsbruckUniversity of Innsbruck, CCB – Centrum for Chemistry and BiomedicineInnrain 80/826020InnsbruckAustria
| | - Stefan Salcher
- Tyrolean Cancer Research InstituteInnrain 666020InnsbruckAustria
- Department of Internal Medicine VMedical University InnsbruckAnichstraße 356020InnsbruckAustria
| | - Verena Hohn
- Department of Pharmaceutical Chemistry Institute of Pharmacy CMBI – Center for Molecular Biosciences InnsbruckUniversity of Innsbruck, CCB – Centrum for Chemistry and BiomedicineInnrain 80/826020InnsbruckAustria
| | - Florina Veider
- Department of Pharmaceutical Chemistry Institute of Pharmacy CMBI – Center for Molecular Biosciences InnsbruckUniversity of Innsbruck, CCB – Centrum for Chemistry and BiomedicineInnrain 80/826020InnsbruckAustria
| | - Petra Obexer
- Tyrolean Cancer Research InstituteInnrain 666020InnsbruckAustria
- Department of Pediatrics IIMedical University InnsbruckInnrain 666020InnsbruckAustria
| | - Ronald Gust
- Department of Pharmaceutical Chemistry Institute of Pharmacy CMBI – Center for Molecular Biosciences InnsbruckUniversity of Innsbruck, CCB – Centrum for Chemistry and BiomedicineInnrain 80/826020InnsbruckAustria
| |
Collapse
|
6
|
Al-Zoubi RM, Al-Jammal WK, McDonald R. Regioselective synthesis of ortho-iodobiphenylboronic acid derivatives: a superior catalyst for carboxylic acid activation. NEW J CHEM 2020. [DOI: 10.1039/c9nj05708k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Efficient and versatile synthesis of ortho-iodobiphenylboronic acids with remarkable catalytic and microbial activities.
Collapse
Affiliation(s)
- Raed M. Al-Zoubi
- Department of Chemistry
- Jordan University of Science and Technology
- Irbid
- Jordan
| | - Walid K. Al-Jammal
- Department of Chemistry
- Jordan University of Science and Technology
- Irbid
- Jordan
| | - Robert McDonald
- Department of Chemistry
- Gunning-Lemieux Chemistry Centre
- University of Alberta
- Edmonton
- Canada
| |
Collapse
|
7
|
Overcoming imatinib resistance in chronic myelogenous leukemia cells using non-cytotoxic cell death modulators. Eur J Med Chem 2019; 185:111748. [PMID: 31648125 DOI: 10.1016/j.ejmech.2019.111748] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 11/21/2022]
Abstract
Recent studies examined the possibility to overcome imatinib resistance in chronic myeloid leukemia (CML) patients by combination therapy with peroxisome proliferator-activated receptor gamma (PPARγ) ligands. Pioglitazone, a full PPARγ agonist, improved the survival of patients by the gradual elimination of the residual CML stem cell pool. To evaluate the importance of the pharmacological profile of PPARγ agonists on the ability to circumvent resistance, the partial PPARγ agonist 4'-((2-propyl-1H-benzo[d]imidazol-1-yl)methyl)-[1,1'-biphenyl]-2-carboxylic acid, derived from telmisartan, and other related derivatives were investigated. The 4-substituted benzimidazole derivatives bearing a [1,1'-biphenyl]-2-carboxamide moiety sensitized K562-resistant cells to imatinib treatment. Especially the derivatives 18a-f, which did not activate PPARγ to more than 40% at 10 μM, retrieved the cytotoxicity of imatinib in these cells. The cell death modulating properties were higher than that of pioglitazone. It is of interest to note that all novel compounds were not cytotoxic neither on non-resistant nor on resistant cells. They exerted antitumor potency only in combination with imatinib.
Collapse
|
8
|
The σ and π Holes. The Halogen and Tetrel Bondings: Their Nature, Importance and Chemical, Biological and Medicinal Implications. ChemistrySelect 2017. [DOI: 10.1002/slct.201701676] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Piemontese L, Cerchia C, Laghezza A, Ziccardi P, Sblano S, Tortorella P, Iacobazzi V, Infantino V, Convertini P, Dal Piaz F, Lupo A, Colantuoni V, Lavecchia A, Loiodice F. New diphenylmethane derivatives as peroxisome proliferator-activated receptor alpha/gamma dual agonists endowed with anti-proliferative effects and mitochondrial activity. Eur J Med Chem 2017; 127:379-397. [DOI: 10.1016/j.ejmech.2016.12.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 12/18/2022]
|