1
|
Zolghadri S, Ghanbariasad A, Fallahian F, Rahban M, Kalavani M, Bahman Jahromi E, Asadzadeh A, Hajiani M. Anticancer activity of N-heteroaryl acetic acid salts against breast cancer; in silico and in vitro investigation. Mol Biol Rep 2021; 49:363-372. [PMID: 34714485 DOI: 10.1007/s11033-021-06881-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/22/2021] [Indexed: 12/07/2022]
Abstract
BACKGROUND The present research was performed to assess N-heteroaryl acetic acid salts' anticancer activity against the breast cancer cell in order to introduce new inhibitory agents for histone deacetylase. METHODS AND RESULTS A molecular docking simulation was performed to design the rational novel compounds. Afterward, the best compounds were selected for synthesis. The cytotoxic effects and mechanism of action have been studied via (Methyl Thiazol-Tetrazolium) MTT assay. Flow cytometry and gene expression analyses were performed to introduce an effective acetic acid derivative as an anticancer agent. Molecular docking simulations demonstrated that all compounds have the best interaction with histone deacetylase. The fold changes of Bcl-2, Bak, Bim, Caspase-3, and Caspase-8 gene expressions were investigated and compared with reference gene using real-time PCR. The cytotoxic studies showed the best anticancer activity of 4-benzyl-1-(carboxymethyl) pyridinium bromide (compound 2) with a low IC50 value (32 µM, p < 0.05). Also, the best anti HDAC activity was obtained for compound 2 with IC50 value of 1.1 µM. Furthermore, this compound showed a high percentage of apoptosis among all tested compounds after 72 h incubation which was associated with the significant increase in mRNA level of Bim, Bax, Bak, Caspase-3, and Caspase-8 and the considerable decrease in Bcl2 gene expression. CONCLUSION These results suggest that compound 2 with the benzyl ring could be an effective anticancer compound for further investigation in breast cancer treatment.
Collapse
Affiliation(s)
- Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Ali Ghanbariasad
- Noncommunicable Diseases, Research Center, Fasa University of Medical Science, Fasa, Iran
| | - Fatemeh Fallahian
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Mahdie Rahban
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mahsa Kalavani
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | | | - Azizeh Asadzadeh
- Department of Biology, Faculty of Science, Nour-Danesh Institute of Higher Education, Mymeh, Isfahan, Iran
| | - Maliheh Hajiani
- School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran.
| |
Collapse
|
2
|
Korinfskaya S, Parameswaran S, Weirauch MT, Barski A. Runx Transcription Factors in T Cells-What Is Beyond Thymic Development? Front Immunol 2021; 12:701924. [PMID: 34421907 PMCID: PMC8377396 DOI: 10.3389/fimmu.2021.701924] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Runx proteins (also known as Runt-domain transcription factors) have been studied for a long time as key regulators of cellular differentiation. RUNX2 has been described as essential for osteogenesis, whereas RUNX1 and RUNX3 are known to control blood cell development during different stages of cell lineage specification. However, recent studies show evidence of complex relationships between RUNX proteins, chromatin-modifying machinery, the cytoskeleton and different transcription factors in various non-embryonic contexts, including mature T cell homeostasis, inflammation and cancer. In this review, we discuss the diversity of Runx functions in mature T helper cells, such as production of cytokines and chemokines by different CD4 T cell populations; apoptosis; and immunologic memory acquisition. We then briefly cover recent findings about the contribution of RUNX1, RUNX2 and RUNX3 to various immunologic diseases. Finally, we discuss areas that require further study to better understand the role that Runx proteins play in inflammation and immunity.
Collapse
Affiliation(s)
- Svetlana Korinfskaya
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Sreeja Parameswaran
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Artem Barski
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
3
|
Sałaciak K, Malikowska-Racia N, Lustyk K, Siwek A, Głuch-Lutwin M, Kazek G, Popiół J, Sapa J, Marona H, Żelaszczyk D, Pytka K. Synthesis and Evaluation of the Antidepressant-like Properties of HBK-10, a Novel 2-Methoxyphenylpiperazine Derivative Targeting the 5-HT 1A and D 2 Receptors. Pharmaceuticals (Basel) 2021; 14:ph14080744. [PMID: 34451841 PMCID: PMC8400343 DOI: 10.3390/ph14080744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/20/2021] [Accepted: 07/24/2021] [Indexed: 11/20/2022] Open
Abstract
The increasing number of patients reporting depressive symptoms requires the design of new antidepressants with higher efficacy and limited side effects. As our previous research showed, 2-methoxyphenylpiperazine derivatives are promising candidates to fulfill these criteria. In this study, we aimed to synthesize a novel 2-methoxyphenylpiperazine derivative, HBK-10, and investigate its in vitro and in vivo pharmacological profile. After assessing the affinity for serotonergic and dopaminergic receptors, and serotonin transporter, we determined intrinsic activity of the compound at the 5-HT1A and D2 receptors. Next, we performed behavioral experiments (forced swim test, tail suspension test) to evaluate the antidepressant-like activity of HBK-10 in naïve and corticosterone-treated mice. We also assessed the safety profile of the compound. We showed that HBK-10 bound strongly to 5-HT1A and D2 receptors and presented antagonistic properties at these receptors in the functional assays. HBK-10 displayed the antidepressant-like effect not only in naïve animals, but also in the corticosterone-induced mouse depression model, i.e., chronic administration of HBK-10 reversed corticosterone-induced changes in behavior. Moreover, the compound’s sedative effect was observed at around 26-fold higher doses than the antidepressant-like ones. Our study showed that HBK-10 displayed a favorable pharmacological profile and may represent an attractive putative treatment candidate for depression.
Collapse
Affiliation(s)
- Kinga Sałaciak
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (K.S.); (N.M.-R.); (K.L.); (G.K.); (J.S.)
| | - Natalia Malikowska-Racia
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (K.S.); (N.M.-R.); (K.L.); (G.K.); (J.S.)
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St., 31-343 Krakow, Poland
| | - Klaudia Lustyk
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (K.S.); (N.M.-R.); (K.L.); (G.K.); (J.S.)
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (A.S.); (M.G.-L.)
| | - Monika Głuch-Lutwin
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (A.S.); (M.G.-L.)
| | - Grzegorz Kazek
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (K.S.); (N.M.-R.); (K.L.); (G.K.); (J.S.)
| | - Justyna Popiół
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland;
| | - Jacek Sapa
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (K.S.); (N.M.-R.); (K.L.); (G.K.); (J.S.)
| | - Henryk Marona
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland;
| | - Dorota Żelaszczyk
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland;
- Correspondence: (D.Ż.); (K.P.)
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (K.S.); (N.M.-R.); (K.L.); (G.K.); (J.S.)
- Correspondence: (D.Ż.); (K.P.)
| |
Collapse
|
4
|
Sultana F, Manasa KL, Shaik SP, Bonam SR, Kamal A. Zinc Dependent Histone Deacetylase Inhibitors in Cancer Therapeutics: Recent Update. Curr Med Chem 2020; 26:7212-7280. [PMID: 29852860 DOI: 10.2174/0929867325666180530094120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/12/2018] [Accepted: 05/22/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Histone deacetylases (HDAC) are an important class of enzymes that play a pivotal role in epigenetic regulation of gene expression that modifies the terminal of core histones leading to remodelling of chromatin topology and thereby controlling gene expression. HDAC inhibitors (HDACi) counter this action and can result in hyperacetylation of histones, thereby inducing an array of cellular consequences such as activation of apoptotic pathways, generation of reactive oxygen species (ROS), cell cycle arrest and autophagy. Hence, there is a growing interest in the potential clinical use of HDAC inhibitors as a new class of targeted cancer therapeutics. Methodology and Result: Several research articles spanning between 2016 and 2017 were reviewed in this article and presently offer critical insights into the important strategies such as structure-based rational drug design, multi-parameter lead optimization methodologies, relevant SAR studies and biology of various class of HDAC inhibitors, such as hydroxamic acids, benzamides, cyclic peptides, aliphatic acids, summarising the clinical trials and results of various combination drug therapy till date. CONCLUSION This review will provide a platform to the synthetic chemists and biologists to cater the needs of both molecular targeted therapy and combination drug therapy to design and synthesize safe and selective HDAC inhibitors in cancer therapeutics.
Collapse
Affiliation(s)
- Faria Sultana
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad-500007, India
| | - Kesari Lakshmi Manasa
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad-500007, India.,Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Siddiq Pasha Shaik
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad-500007, India.,Academy of Scientific and Innovative Research, New Delhi, 110 025, India
| | - Srinivasa Reddy Bonam
- Vaccine Immunology Laboratory, Natural Product Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Ahmed Kamal
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad-500007, India.,Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India.,Academy of Scientific and Innovative Research, New Delhi, 110 025, India.,School of Pharmaceutical Education and Research (SPER), Jamia Hamdard University, New Delhi, 110062, India
| |
Collapse
|
5
|
The Rebirth of Matrix Metalloproteinase Inhibitors: Moving Beyond the Dogma. Cells 2019; 8:cells8090984. [PMID: 31461880 PMCID: PMC6769477 DOI: 10.3390/cells8090984] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022] Open
Abstract
The pursuit of matrix metalloproteinase (MMP) inhibitors began in earnest over three decades ago. Initial clinical trials were disappointing, resulting in a negative view of MMPs as therapeutic targets. As a better understanding of MMP biology and inhibitor pharmacokinetic properties emerged, it became clear that initial MMP inhibitor clinical trials were held prematurely. Further complicating matters were problematic conclusions drawn from animal model studies. The most recent generation of MMP inhibitors have desirable selectivities and improved pharmacokinetics, resulting in improved toxicity profiles. Application of selective MMP inhibitors led to the conclusion that MMP-2, MMP-9, MMP-13, and MT1-MMP are not involved in musculoskeletal syndrome, a common side effect observed with broad spectrum MMP inhibitors. Specific activities within a single MMP can now be inhibited. Better definition of the roles of MMPs in immunological responses and inflammation will help inform clinic trials, and multiple studies indicate that modulating MMP activity can improve immunotherapy. There is a U.S. Food and Drug Administration (FDA)-approved MMP inhibitor for periodontal disease, and several MMP inhibitors are in clinic trials, targeting a variety of maladies including gastric cancer, diabetic foot ulcers, and multiple sclerosis. It is clearly time to move on from the dogma of viewing MMP inhibition as intractable.
Collapse
|
6
|
Sangwan R, Rajan R, Mandal PK. HDAC as onco target: Reviewing the synthetic approaches with SAR study of their inhibitors. Eur J Med Chem 2018; 158:620-706. [DOI: 10.1016/j.ejmech.2018.08.073] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/09/2018] [Accepted: 08/26/2018] [Indexed: 02/06/2023]
|
7
|
Hermant P, Bosc D, Piveteau C, Gealageas R, Lam B, Ronco C, Roignant M, Tolojanahary H, Jean L, Renard PY, Lemdani M, Bourotte M, Herledan A, Bedart C, Biela A, Leroux F, Deprez B, Deprez-Poulain R. Controlling Plasma Stability of Hydroxamic Acids: A MedChem Toolbox. J Med Chem 2017; 60:9067-9089. [DOI: 10.1021/acs.jmedchem.7b01444] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Paul Hermant
- Univ. Lille Nord
de France, INSERM, Institut Pasteur de Lille, U1177, Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Damien Bosc
- Univ. Lille Nord
de France, INSERM, Institut Pasteur de Lille, U1177, Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Catherine Piveteau
- Univ. Lille Nord
de France, INSERM, Institut Pasteur de Lille, U1177, Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Ronan Gealageas
- Univ. Lille Nord
de France, INSERM, Institut Pasteur de Lille, U1177, Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - BaoVy Lam
- Univ. Lille Nord
de France, INSERM, Institut Pasteur de Lille, U1177, Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Cyril Ronco
- Univ. Lille Nord
de France, INSERM, Institut Pasteur de Lille, U1177, Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Matthieu Roignant
- Univ. Lille Nord
de France, INSERM, Institut Pasteur de Lille, U1177, Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Hasina Tolojanahary
- Univ. Lille Nord
de France, INSERM, Institut Pasteur de Lille, U1177, Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Ludovic Jean
- Normandie Université, COBRA, UMR 6014 & FR 3038, Université de Rouen, INSA Rouen, CNRS, F-76821 Mont-Saint-Aignan Cedex, France
| | - Pierre-Yves Renard
- Normandie Université, COBRA, UMR 6014 & FR 3038, Université de Rouen, INSA Rouen, CNRS, F-76821 Mont-Saint-Aignan Cedex, France
| | - Mohamed Lemdani
- Univ. Lille, EA
2694, Santé Publique: Épidémiologie et Qualité
des Soins, F-59000 Lille, France
| | - Marilyne Bourotte
- Univ. Lille Nord
de France, INSERM, Institut Pasteur de Lille, U1177, Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Adrien Herledan
- Univ. Lille Nord
de France, INSERM, Institut Pasteur de Lille, U1177, Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Corentin Bedart
- Univ. Lille Nord
de France, INSERM, Institut Pasteur de Lille, U1177, Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Alexandre Biela
- Univ. Lille Nord
de France, INSERM, Institut Pasteur de Lille, U1177, Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Florence Leroux
- Univ. Lille Nord
de France, INSERM, Institut Pasteur de Lille, U1177, Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Benoit Deprez
- Univ. Lille Nord
de France, INSERM, Institut Pasteur de Lille, U1177, Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Rebecca Deprez-Poulain
- Univ. Lille Nord
de France, INSERM, Institut Pasteur de Lille, U1177, Drugs and Molecules
for Living Systems, F-59000 Lille, France
- Institut Universitaire de France, F-75231, Paris, France
| |
Collapse
|