1
|
Luo D, Luo R, Wang W, Deng R, Wang S, Ma X, Pu C, Liu Y, Zhang H, Yu S, Huang Q, Yang L, Tong Y, Zheng Y, Li R. Discovery of L15 as a novel Vif PROTAC degrader with antiviral activity against HIV-1. Bioorg Med Chem Lett 2024; 111:129880. [PMID: 38996941 DOI: 10.1016/j.bmcl.2024.129880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/17/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Viral infectivity factor (Vif) has been recognized as a new therapeutic target for human immunodeficiency virus-1 (HIV-1) infected patients. In our previous work, we have synthesized a novel class of Vif inhibitors with 2-amino-N-(5-hydroxy-2-methoxyphenyl)-6-((4-nitrophenyl)thio)benzamide scaffold, which show obvious activity in HIV-1 infected cells and are also effective against drug-resistant strains. Proteolytic targeting chimera (PROTAC) utilizes the ubiquitin-proteasome system to degrade target proteins, which is well established in the field of cancer, but the antiviral PROTAC molecules are rarely reported. In order to explore the effectiveness of PROTAC in the antiviral area, we designed and synthesized a series of degrader of HIV-1 Vif based on 2-amino-N-(5-hydroxy-2-methoxyphenyl)-6-((4-nitrophenyl)thio)benzamide scaffold. Among them, L15 can degrade Vif protein obviously in a dose-dependent manner and shows certain antivirus activity. Meanwhile, molecular dynamics simulation indicated that the ternary complex formed by L15, Vif, and E3 ligase adopted a reasonable binding mode and maintained a stable interaction. This provided a molecular basis and prerequisite for the selective degradation of the Vif protein by L15. This study reports the HIV-1 Vif PROTAC for the first time and represents the proof-of-concept of PROTACs-based antiviral drug discovery in the field of HIV/ acquired immune deficiency syndrome (AIDS).
Collapse
Affiliation(s)
- Dan Luo
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Sichuan, Chengdu 610041, China; Department of Pharmacy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ronghua Luo
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Weilin Wang
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Sichuan, Chengdu 610041, China
| | - Rui Deng
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Sichuan, Chengdu 610041, China
| | - Shirui Wang
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Sichuan, Chengdu 610041, China
| | - Xinyu Ma
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Sichuan, Chengdu 610041, China
| | - Chunlan Pu
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu 610504, China
| | - Yuanyuan Liu
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Sichuan, Chengdu 610041, China
| | - Hongjia Zhang
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Sichuan, Chengdu 610041, China
| | - Su Yu
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Sichuan, Chengdu 610041, China
| | - Qing Huang
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Sichuan, Chengdu 610041, China
| | - Liumeng Yang
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yu Tong
- West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, Sichuan Province, China.
| | - Yongtang Zheng
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| | - Rui Li
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Sichuan, Chengdu 610041, China.
| |
Collapse
|
2
|
Gai Y, Duan S, Wang S, Liu K, Yu X, Yang C, Li G, Zhou Y, Yu B, Wu J, Wang C, Yu X. Design of Vif-Derived Peptide Inhibitors with Anti-HIV-1 Activity by Interrupting Vif-CBFβ Interaction. Viruses 2024; 16:490. [PMID: 38675833 PMCID: PMC11053914 DOI: 10.3390/v16040490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
One of the major functions of the accessory protein Vif of human immunodeficiency virus type 1 (HIV-1) is to induce the degradation of APOBEC3 (A3) family proteins by recruiting a Cullin5-ElonginB/C-CBFβ E3 ubiquitin ligase complex to facilitate viral replication. Therefore, the interactions between Vif and the E3 complex proteins are promising targets for the development of novel anti-HIV-1 drugs. Here, peptides are designed for the Vif-CBFβ interaction based on the sequences of Vif mutants with higher affinity for CBFβ screened by a yeast surface display platform. We identified two peptides, VMP-63 and VMP-108, that could reduce the infectivity of HIV-1 produced from A3G-positive cells with IC50 values of 49.4 μM and 55.1 μM, respectively. They protected intracellular A3G from Vif-mediated degradation in HEK293T cells, consequently increasing A3G encapsulation into the progeny virions. The peptides could rapidly enter cells after addition to HEK293T cells and competitively inhibit the binding of Vif to CBFβ. Homology modeling analysis demonstrated the binding advantages of VMP-63 and VMP-108 with CBFβ over their corresponding wild-type peptides. However, only VMP-108 effectively restricted long-term HIV-1 replication and protected A3 functions in non-permissive T lymphocytes. Our findings suggest that competitive Vif-derived peptides targeting the Vif-CBFβ interaction are promising for the development of novel therapeutic strategies for acquired immune deficiency syndrome.
Collapse
Affiliation(s)
- Yanxin Gai
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
| | - Sizhu Duan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
| | - Shiqi Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
| | - Kaifeng Liu
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China;
| | - Xin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
| | - Chumeng Yang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
| | - Guoqing Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
| | - Yan Zhou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
| | - Chu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China;
| |
Collapse
|
3
|
Bao Q, Zhou J. Various strategies for developing APOBEC3G protectors to circumvent human immunodeficiency virus type 1. Eur J Med Chem 2023; 250:115188. [PMID: 36773550 DOI: 10.1016/j.ejmech.2023.115188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/18/2023] [Accepted: 02/04/2023] [Indexed: 02/09/2023]
Abstract
Host restriction factor APOBEC3G (A3G) efficiently restricts Vif-deficient HIV-1 by being packaged with progeny virions and causing the G to A mutation during HIV-1 viral DNA synthesis as the progeny virus infects new cells. HIV-1 expresses Vif protein to resist the activity of A3G by mediating A3G degradation. This process requires the self-association of Vif in concert with A3G proteins, protein chaperones, and factors of the ubiquitination machinery, which are potential targets to discover novel anti-HIV drugs. This review will describe compounds that have been reported so far to inhibit viral replication of HIV-1 by protecting A3G from Vif-mediated degradation.
Collapse
Affiliation(s)
- Qiqi Bao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China.
| |
Collapse
|
4
|
Tikhonov AS, Mintaev RR, Glazkova DV, Bogoslovskaya EV, Shipulin GA. HIV Restriction Factor APOBEC3G and Prospects for Its Use in Gene Therapy for HIV. Mol Biol 2022. [DOI: 10.1134/s0026893322040112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Aromatic disulfides as potential inhibitors against interaction between deaminase APOBEC3G and HIV infectivity factor. Acta Biochim Biophys Sin (Shanghai) 2022; 54:725-735. [PMID: 35920198 PMCID: PMC9828099 DOI: 10.3724/abbs.2022049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
APOBEC3G (A3G) is a member of cytosine deaminase family with a variety of innate immune functions. It displays activities against retrovirus and retrotransposon by inhibition of virus infectivity factor (Vif)-deficient HIV-1 replication. The interaction between A3G N-terminal domain and Vif directs the cellular Cullin 5 E3-ubiquitin ligase complex to ubiquitinate A3G, and leads to A3G proteasomal degradation, which is a potential target for anti-HIV drug. Currently, there are very few reports about stable small molecules targeting the interaction between A3G and Vif. In this study, we screened two series of small molecules containing carbamyl sulfamide bond or disulfide bond as bridges of two different aromatic rings. Five asymmetrical disulfides were successfully identified against interaction between A3G and Vif with the IC 50 values close to or smaller than 1 μM, especially, not through covalently binding with A3G or Vif. They restore the A3G expression in the presence of Vif by inhibiting Vif-induced A3G ubiquitination and degradation. This study opens a way to the discovery of new anti-HIV drugs.
Collapse
|
6
|
Mustafa M, Winum JY. The importance of sulfur-containing motifs in drug design and discovery. Expert Opin Drug Discov 2022; 17:501-512. [PMID: 35193437 DOI: 10.1080/17460441.2022.2044783] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Sulfur-containing functional groups are privileged motifs that occur in various pharmacologically effective substances and several natural products. Various functionalities are found with a sulfur atom at diverse oxidation states, as illustrated by thioether, sulfoxide, sulfone, sulfonamide, sulfamate, and sulfamide functions. They are valuable scaffolds in the field of medicinal chemistry and are part of a large array of approved drugs and clinical candidates. AREA COVERED Herein, the authors review the current research on the development of organosulfur-based drug discovery. This article also covers details of their roles in the new lead compounds reported in the literature over the past five years 2017-2021. EXPERT OPINION Given its prominent role in medicinal chemistry and its importance in drug discovery, sulfur has attracted continuing interest and has been used in the design of various valuable compounds that demonstrate a variety of biological and pharmacological feature activities. Overall, sulfur's role in medicinal chemistry continues to grow. However, many sulfur functionalities remain underused in small-molecule drug discovery and deserve special attention in the armamentarium for treating diverse diseases. Research efforts are also still required for the development of a synthetic methodology for direct access to these functions and late-stage functionalization.
Collapse
Affiliation(s)
- Muhamad Mustafa
- IBMM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France.,Department of Medicinal Chemistry, Faculty of Pharmacy, Deraya Unuversity, Minia, Egypt
| | | |
Collapse
|
7
|
Volarić J, Szymanski W, Simeth NA, Feringa BL. Molecular photoswitches in aqueous environments. Chem Soc Rev 2021; 50:12377-12449. [PMID: 34590636 PMCID: PMC8591629 DOI: 10.1039/d0cs00547a] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 12/17/2022]
Abstract
Molecular photoswitches enable dynamic control of processes with high spatiotemporal precision, using light as external stimulus, and hence are ideal tools for different research areas spanning from chemical biology to smart materials. Photoswitches are typically organic molecules that feature extended aromatic systems to make them responsive to (visible) light. However, this renders them inherently lipophilic, while water-solubility is of crucial importance to apply photoswitchable organic molecules in biological systems, like in the rapidly emerging field of photopharmacology. Several strategies for solubilizing organic molecules in water are known, but there are not yet clear rules for applying them to photoswitchable molecules. Importantly, rendering photoswitches water-soluble has a serious impact on both their photophysical and biological properties, which must be taken into consideration when designing new systems. Altogether, these aspects pose considerable challenges for successfully applying molecular photoswitches in aqueous systems, and in particular in biologically relevant media. In this review, we focus on fully water-soluble photoswitches, such as those used in biological environments, in both in vitro and in vivo studies. We discuss the design principles and prospects for water-soluble photoswitches to inspire and enable their future applications.
Collapse
Affiliation(s)
- Jana Volarić
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Department of Radiology, Medical Imaging Center, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Nadja A Simeth
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
8
|
Zhong X, Luo R, Yan G, Ran K, Shan H, Yang J, Liu Y, Yu S, Pu C, Zheng Y, Li R. Lead optimization to improve the antiviral potency of 2-aminobenzamide derivatives targeting HIV-1 Vif-A3G axis. Eur J Med Chem 2021; 224:113680. [PMID: 34245947 DOI: 10.1016/j.ejmech.2021.113680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/27/2021] [Accepted: 06/27/2021] [Indexed: 02/08/2023]
Abstract
The viral infectivity factor (Vif)-apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G (APOBEC3G) axis has been recognized as a valid target for developing novel small-molecule therapies for acquired immune deficiency syndrome (AIDS) or for enhancing innate immunity against viruses. Our previous work reported the novel Vif antagonist 2-amino-N-(2-methoxyphenyl)-6-((4-nitrophenyl)sulfonyl)benzamide (2) with strong antiviral activity. In this work, through optimizations of ring C of 2, we discovered the more potent compound 6m with an EC50 of 0.07 μM in non-permissive H9 cells, reflecting an approximately 5-fold enhancement of antiviral activity compared to that of 2. Western blotting indicated that 6m more strongly suppressed the defensive protein Vif than 2 at the same concentration. Furthermore, 6m suppressed the replication of various clinical drug-resistant HIV strains (FI, NRTI, NNRTI, IN and PI) with relatively high efficacy. These results suggested that compound 6m is a more potent candidate for treating AIDS.
Collapse
Affiliation(s)
- Xinxin Zhong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Ronghua Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology,Chinese Academy of Sciences, Kunming, Yunnan, 650223, PR China
| | - Guoyi Yan
- School of Pharmacy, Henan University, Kaifeng, Henan, 475001, PR China
| | - Kai Ran
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Huifang Shan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Jie Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yuanyuan Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Su Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Chunlan Pu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yongtang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology,Chinese Academy of Sciences, Kunming, Yunnan, 650223, PR China.
| | - Rui Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
9
|
Ikeda T, Yue Y, Shimizu R, Nasser H. Potential Utilization of APOBEC3-Mediated Mutagenesis for an HIV-1 Functional Cure. Front Microbiol 2021; 12:686357. [PMID: 34211449 PMCID: PMC8239295 DOI: 10.3389/fmicb.2021.686357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
The introduction of combination antiretroviral therapy (cART) has managed to control the replication of human immunodeficiency virus type 1 (HIV-1) in infected patients. However, a complete HIV-1 cure, including a functional cure for or eradication of HIV-1, has yet to be achieved because of the persistence of latent HIV-1 reservoirs in adherent patients. The primary source of these viral reservoirs is integrated proviral DNA in CD4+ T cells and other non-T cells. Although a small fraction of this proviral DNA is replication-competent and contributes to viral rebound after the cessation of cART, >90% of latent viral reservoirs are replication-defective and some contain high rates of G-to-A mutations in proviral DNA. At least in part, these high rates of G-to-A mutations arise from the APOBEC3 (A3) family proteins of cytosine deaminases. A general model has shown that the HIV-1 virus infectivity factor (Vif) degrades A3 family proteins by proteasome-mediated pathways and inactivates their antiviral activities. However, Vif does not fully counteract the HIV-1 restriction activity of A3 family proteins in vivo, as indicated by observations of A3-mediated G-to-A hypermutation in the proviral DNA of HIV-1-infected patients. The frequency of A3-mediated hypermutation potentially contributes to slower HIV-1/AIDS disease progression and virus evolution including the emergence of cytotoxic T lymphocyte escape mutants. Therefore, combined with other strategies, the manipulation of A3-mediated mutagenesis may contribute to an HIV-1 functional cure aimed at cART-free remission. In this mini-review, we discuss the possibility of an HIV-1 functional cure arising from manipulation of A3 mutagenic activity.
Collapse
Affiliation(s)
- Terumasa Ikeda
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Yuan Yue
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.,Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Ryo Shimizu
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.,Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hesham Nasser
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
10
|
Hu Y, Knecht KM, Shen Q, Xiong Y. Multifaceted HIV-1 Vif interactions with human E3 ubiquitin ligase and APOBEC3s. FEBS J 2021; 288:3407-3417. [PMID: 32893454 PMCID: PMC8172064 DOI: 10.1111/febs.15550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/01/2020] [Indexed: 12/31/2022]
Abstract
APOBEC3 (A3) proteins are a family of host antiviral restriction factors that potently inhibit various retroviral infections, including human immunodeficiency virus (HIV)-1. To overcome this restriction, HIV-1 virion infectivity factor (Vif) recruits the cellular cofactor CBFβ to assist in targeting A3 proteins to a host E3 ligase complex for polyubiquitination and subsequent proteasomal degradation. Intervention of the Vif-A3 interactions could be a promising therapeutic strategy to facilitate A3-mediated suppression of HIV-1 in patients. In this structural snapshot, we review the structural features of the recently determined structure of human A3F in complex with HIV-1 Vif and its cofactor CBFβ, discuss insights into the molecular principles of Vif-A3 interplay during the arms race between the virus and host, and highlight the therapeutic implications.
Collapse
Affiliation(s)
- Yingxia Hu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Kirsten M. Knecht
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Qi Shen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| |
Collapse
|
11
|
Sun L, Peng Y, Yu W, Zhang Y, Liang L, Song C, Hou J, Qiao Y, Wang Q, Chen J, Wu M, Zhang D, Li E, Han Z, Zhao Q, Jin X, Zhang B, Huang Z, Chai J, Wang JH, Chang J. Mechanistic Insight into Antiretroviral Potency of 2'-Deoxy-2'-β-fluoro-4'-azidocytidine (FNC) with a Long-Lasting Effect on HIV-1 Prevention. J Med Chem 2020; 63:8554-8566. [PMID: 32678592 DOI: 10.1021/acs.jmedchem.0c00940] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In preclinical and phase I and II clinical studies, 2'-deoxy-2'-β-fluoro-4'-azidocytidine (FNC) displays a potent and long-lasting inhibition of HIV-1 infection. To investigate its mechanism of action, we compared it with the well-documented lamivudine (3TC). Pharmacokinetic studies revealed that the intracellular retention of FNC triphosphate in peripheral blood mononuclear cells was markedly longer than that of the 3TC triphosphate. FNC selectively enters and is retained in HIV target cells, where it exerts long-lasting prevention of HIV-1 infection. In addition to inhibition of HIV-1 reverse transcription, FNC also restores A3G expression in CD4+ T cells in FNC-treated HIV-1 patients. FNC binds to the Vif-E3 ubiquitin ligase complex, enabling A3G to avoid Vif-induced ubiquitination and degradation. These data reveal the mechanisms underlying the superior anti-HIV potency and long-lasting action of FNC. Our results also suggest a potential clinical application of FNC as a long-lasting pre-exposure prophylactic agent capable of preventing HIV infection.
Collapse
Affiliation(s)
- Li Sun
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Youmei Peng
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wenquan Yu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yan Zhang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Lan Liang
- College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Chuanjun Song
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jiao Hou
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yan Qiao
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Qingduan Wang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jingyu Chen
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, College of Life Science, Henan Normal University, Xinxiang 453007, China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Mengli Wu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, College of Life Science, Henan Normal University, Xinxiang 453007, China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Dongwei Zhang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, College of Life Science, Henan Normal University, Xinxiang 453007, China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Ertong Li
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhifu Han
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qingxia Zhao
- Department of Infection, Zhengzhou Sixth People's Hospital, Zhengzhou 450000, China
| | - Xia Jin
- Shanghai Public Health Clinical Center Affiliated to Fudan University, Shanghai 201508, China
| | - Bailing Zhang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Zhiwei Huang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Jijie Chai
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, College of Life Science, Henan Normal University, Xinxiang 453007, China.,Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jian-Hua Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Junbiao Chang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, College of Life Science, Henan Normal University, Xinxiang 453007, China.,College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.,College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
12
|
Barce Ferro CT, dos Santos BF, da Silva CDG, Brand G, da Silva BAL, de Campos Domingues NL. Review of the Syntheses and Activities of Some Sulfur-Containing Drugs. Curr Org Synth 2020; 17:192-210. [DOI: 10.2174/1570179417666200212113412] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/06/2019] [Accepted: 12/14/2019] [Indexed: 11/22/2022]
Abstract
Background:
Sulfur-containing compounds represent an important class of chemical compounds due
to their wide range of biological and pharmaceutical properties. Moreover, sulfur-containing compounds may be
applied in other fields, such as biological, organic, and materials chemistry. Several studies on the activities of
sulfur compounds have already proven their anti-inflammatory properties and use to treat diseases, such as
Alzheimer’s, Parkinson’s, and HIV. Moreover, examples of sulfur-containing compounds include dapsone,
quetiapine, penicillin, probucol, and nelfinavir, which are important drugs with known activities.
Objective:
This review will focus on the synthesis and application of some sulfur-containing compounds used to
treat several diseases, as well as promising new drug candidates.
Results:
Due to the variety of compounds containing C-S bonds, we have reviewed the different synthetic
routes used toward the synthesis of sulfur-containing drugs and other compounds.
Collapse
Affiliation(s)
- Criscieli Taynara Barce Ferro
- Faculty of Exact Sciences and Technology, Organic Catalysis and Biocatalysis Laboratory – (LACOB), Federal University of Grande Dourados – UFGD, Dourados/MS, Brazil
| | - Beatriz Fuzinato dos Santos
- Faculty of Exact Sciences and Technology, Organic Catalysis and Biocatalysis Laboratory – (LACOB), Federal University of Grande Dourados – UFGD, Dourados/MS, Brazil
| | - Caren Daniele Galeano da Silva
- Faculty of Exact Sciences and Technology, Organic Catalysis and Biocatalysis Laboratory – (LACOB), Federal University of Grande Dourados – UFGD, Dourados/MS, Brazil
| | - George Brand
- Faculty of Exact Sciences and Technology, Organic Catalysis and Biocatalysis Laboratory – (LACOB), Federal University of Grande Dourados – UFGD, Dourados/MS, Brazil
| | - Beatriz Amaral Lopes da Silva
- Faculty of Exact Sciences and Technology, Organic Catalysis and Biocatalysis Laboratory – (LACOB), Federal University of Grande Dourados – UFGD, Dourados/MS, Brazil
| | - Nelson Luís de Campos Domingues
- Faculty of Exact Sciences and Technology, Organic Catalysis and Biocatalysis Laboratory – (LACOB), Federal University of Grande Dourados – UFGD, Dourados/MS, Brazil
| |
Collapse
|
13
|
Radwan MO, Takaya D, Koga R, Iwamaru K, Tateishi H, Ali TF, Takaori-Kondo A, Otsuka M, Honma T, Fujita M. Interruption of Vif/Elongin C interaction: In silico and experimental elucidation of the underlying molecular mechanism of benzimidazole-based APOBEC3G stabilizers. Bioorg Med Chem 2020; 28:115409. [DOI: 10.1016/j.bmc.2020.115409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 11/26/2022]
|
14
|
Zhang XL, Luo MT, Song JH, Pang W, Zheng YT. An Alu Element Insertion in Intron 1 Results in Aberrant Alternative Splicing of APOBEC3G Pre-mRNA in Northern Pig-Tailed Macaques ( Macaca leonina) That May Reduce APOBEC3G-Mediated Hypermutation Pressure on HIV-1. J Virol 2020; 94:e01722-19. [PMID: 31776266 PMCID: PMC6997765 DOI: 10.1128/jvi.01722-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/14/2019] [Indexed: 11/20/2022] Open
Abstract
APOBEC3 family members, particularly APOBEC3F and APOBEC3G, inhibit the replication and spread of various retroviruses by inducing hypermutation in newly synthesized viral DNA. Viral hypermutation by APOBEC3 is associated with viral evolution, viral transmission, and disease progression. In recent years, increasing attention has been paid to targeting APOBEC3G for AIDS therapy. Thus, a controllable model system using species such as macaques, which provide a relatively ideal in vivo system, is needed for the study of APOBEC3-related issues. To appropriately utilize this animal model for biomedical research, important differences between human and macaque APOBEC3s must be considered. In this study, we found that the ratio of APOBEC3G-mediated/APOBEC3-mediated HIV-1 hypermutation footprints was much lower in peripheral blood mononuclear cells (PBMCs) from northern pig-tailed macaques than in PBMCs from humans. Next, we identified a novel and conserved APOBEC3G pre-mRNA alternative splicing pattern in macaques, which differed from that in humans and resulted from an Alu element insertion into macaque APOBEC3G gene intron 1. This alternative splicing pattern generating an aberrant APOBEC3G mRNA isoform may significantly dilute full-length APOBEC3G and reduce APOBEC3G-mediated hypermutation pressure on HIV-1 in northern pig-tailed macaques, which was supported by the elimination of other possibilities accounting for this hypermutation difference between the two hosts.IMPORTANCE APOBEC3 family members, particularly APOBEC3F and APOBEC3G, are important cellular antiviral factors. Recently, more attention has been paid to targeting APOBEC3G for AIDS therapy. To appropriately utilize macaque animal models for the study of APOBEC3-related issues, it is important that the differences between human and macaque APOBEC3s are clarified. In this study, we identified a novel and conserved APOBEC3G pre-mRNA alternative splicing pattern in macaques, which differed from that in humans and which may reduce the APOBEC3G-mediated hypermutation pressure on HIV-1 in northern pig-tailed macaques (NPMs). Our work provides important information for the proper application of macaque animal models for APOBEC3-related issues in AIDS research and a better understanding of the biological functions of APOBEC3 proteins.
Collapse
Affiliation(s)
- Xiao-Liang Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Meng-Ting Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jia-Hao Song
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Institute of Health Sciences, Anhui University, Hefei, Anhui, China
| | - Wei Pang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
15
|
Liu Y, Tan X. Viral Manipulations of the Cullin-RING Ubiquitin Ligases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:99-110. [PMID: 31898224 DOI: 10.1007/978-981-15-1025-0_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cullin-RING ubiquitin ligases (CRLs) are efficient and diverse toolsets of the cells to regulate almost every biological process. However, these characteristics have also been usurped by many viruses to optimize for their replication. CRLs are often at the forefront of the arms races in the coevolution of viruses and hosts. Here we review the modes of actions and functional consequences of viral manipulations of host cell CRLs. We also discuss the therapeutic applications to target these viral manipulations for treating viral infections.
Collapse
Affiliation(s)
- Ying Liu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structures, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Xu Tan
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structures, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
16
|
Sanches BM, Ferreira EI. Is prodrug design an approach to increase water solubility? Int J Pharm 2019; 568:118498. [DOI: 10.1016/j.ijpharm.2019.118498] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 02/07/2023]
|
17
|
Zhang RH, Wang S, Luo RH, Zhou M, Zhang H, Xu GB, Zhao YL, Li YJ, Wang YL, Yan G, Liao SG, Zheng YT, Li R. Design, synthesis, and biological evaluation of 2-amino-N-(2-methoxyphenyl)-6-((4-nitrophenyl)sulfonyl)benzamide derivatives as potent HIV-1 Vif inhibitors. Bioorg Med Chem Lett 2019; 29:126638. [PMID: 31685340 DOI: 10.1016/j.bmcl.2019.126638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/22/2019] [Accepted: 08/24/2019] [Indexed: 02/05/2023]
Abstract
Viral infectivity factor (Vif) is one of the accessory protein of human immunodeficiency virus type I (HIV-1) that inhibits host defense factor, APOBEC3G (A3G), mediated viral cDNA hypermutations. Previous work developed a novel Vif inhibitor 2-amino-N-(2-methoxyphenyl)-6-((4-nitrophenyl)thio)benzamide (1) with strong antiviral activity. Through optimizations on the two side branches, a series of compound 1 derivatives (2-18) were designed, synthesized and tested in vitro for their antiviral activities. The biological results showed that compound 5 and 16 inhibited the virus replication efficiently with EC50 values of 9.81 and 4.62 μM. Meanwhile, low cytotoxicities on H9 cells were observed for the generated compounds by the MTT assay. The structure-activity relationship of compound 1 was preliminarily clarified, which gave rise to the development of more potent Vif inhibitors.
Collapse
Affiliation(s)
- Rong-Hong Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants & Tissue Engineering and Stem Cell Research Center, Guizhou Medical University, Guiyang 550004, Guizhou, PR China
| | - Shan Wang
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education Guizhou Medical University, Guiyang, Guizhou, PR China; School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, PR China
| | - Rong-Hua Luo
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, PR China
| | - Meng Zhou
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education Guizhou Medical University, Guiyang, Guizhou, PR China; School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, PR China
| | - Hong Zhang
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education Guizhou Medical University, Guiyang, Guizhou, PR China; School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, PR China
| | - Guo-Bo Xu
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education Guizhou Medical University, Guiyang, Guizhou, PR China; School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, PR China
| | - Yong-Long Zhao
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education Guizhou Medical University, Guiyang, Guizhou, PR China; School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, PR China
| | - Yong-Jun Li
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou, PR China; School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, PR China
| | - Yong-Lin Wang
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou, PR China; School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, PR China
| | - Guoyi Yan
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Shang-Gao Liao
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education Guizhou Medical University, Guiyang, Guizhou, PR China; School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, PR China
| | - Yong-Tang Zheng
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, PR China.
| | - Rui Li
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
18
|
Bennett RP, Salter JD, Smith HC. A New Class of Antiretroviral Enabling Innate Immunity by Protecting APOBEC3 from HIV Vif-Dependent Degradation. Trends Mol Med 2018; 24:507-520. [PMID: 29609878 PMCID: PMC7362305 DOI: 10.1016/j.molmed.2018.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/05/2018] [Accepted: 03/08/2018] [Indexed: 12/11/2022]
Abstract
The infectivity of HIV depends on overcoming APOBEC3 (A3) innate immunity, predominantly through the expression of the viral protein Vif, which induces A3 degradation in the proteasome. Disruption of the functional interactions of Vif enables A3 mutagenesis of the HIV genome during viral replication, which can result in a broadly neutralizing antiviral effect. Vif function requires self-association along with interactions with A3 proteins, protein chaperones, and factors of the ubiquitination machinery and these are described here as a potential platform for novel antiviral drug discovery. This Review will examine the current state of development of Vif inhibitors that we believe to have therapeutic and functional cure potential.
Collapse
Affiliation(s)
- Ryan P Bennett
- OyaGen, Inc., 77 Ridgeland Road, Rochester, NY 14623, USA.
| | - Jason D Salter
- OyaGen, Inc., 77 Ridgeland Road, Rochester, NY 14623, USA
| | - Harold C Smith
- OyaGen, Inc., 77 Ridgeland Road, Rochester, NY 14623, USA; University of Rochester, School of Medicine and Dentistry, Department of Biochemistry and Biophysics, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
19
|
Binning JM, Smith AM, Hultquist JF, Craik CS, Caretta Cartozo N, Campbell MG, Burton L, La Greca F, McGregor MJ, Ta HM, Bartholomeeusen K, Peterlin BM, Krogan NJ, Sevillano N, Cheng Y, Gross JD. Fab-based inhibitors reveal ubiquitin independent functions for HIV Vif neutralization of APOBEC3 restriction factors. PLoS Pathog 2018; 14:e1006830. [PMID: 29304101 PMCID: PMC5773222 DOI: 10.1371/journal.ppat.1006830] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 01/18/2018] [Accepted: 12/18/2017] [Indexed: 12/18/2022] Open
Abstract
The lentiviral protein Viral Infectivity Factor (Vif) counteracts the antiviral effects of host APOBEC3 (A3) proteins and contributes to persistent HIV infection. Vif targets A3 restriction factors for ubiquitination and proteasomal degradation by recruiting them to a multi-protein ubiquitin E3 ligase complex. Here, we describe a degradation-independent mechanism of Vif-mediated antagonism that was revealed through detailed structure-function studies of antibody antigen-binding fragments (Fabs) to the Vif complex. Two Fabs were found to inhibit Vif-mediated A3 neutralization through distinct mechanisms: shielding A3 from ubiquitin transfer and blocking Vif E3 assembly. Combined biochemical, cell biological and structural studies reveal that disruption of Vif E3 assembly inhibited A3 ubiquitination but was not sufficient to restore its packaging into viral particles and antiviral activity. These observations establish that Vif can neutralize A3 family members in a degradation-independent manner. Additionally, this work highlights the potential of Fabs as functional probes, and illuminates how Vif uses a multi-pronged approach involving both degradation dependent and independent mechanisms to suppress A3 innate immunity.
Collapse
Affiliation(s)
- Jennifer M. Binning
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, United States of America
| | - Amber M. Smith
- Keck Advanced Microscopy Laboratory and Department of Biochemistry and Biophysics, University of California, San Francisco, California, United States of America
- Howard Hughes Medical Institute, University of California, San Francisco, California, United States of America
| | - Judd F. Hultquist
- J. David Gladstone Institutes, San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, QB3, University of California, San Francisco, San Francisco, California, United States of America
| | - Charles S. Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, United States of America
| | - Nathalie Caretta Cartozo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, United States of America
| | - Melody G. Campbell
- Keck Advanced Microscopy Laboratory and Department of Biochemistry and Biophysics, University of California, San Francisco, California, United States of America
- Howard Hughes Medical Institute, University of California, San Francisco, California, United States of America
| | - Lily Burton
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, United States of America
| | - Florencia La Greca
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, United States of America
| | - Michael J. McGregor
- J. David Gladstone Institutes, San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, QB3, University of California, San Francisco, San Francisco, California, United States of America
| | - Hai M. Ta
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, United States of America
| | - Koen Bartholomeeusen
- Department of Medicine, University of California, San Francisco, California, United States of America
- Department of Microbiology, University of California, San Francisco, California, United States of America
- Department of Immunology, University of California, San Francisco, California, United States of America
| | - B. Matija Peterlin
- Department of Medicine, University of California, San Francisco, California, United States of America
- Department of Microbiology, University of California, San Francisco, California, United States of America
- Department of Immunology, University of California, San Francisco, California, United States of America
| | - Nevan J. Krogan
- J. David Gladstone Institutes, San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, QB3, University of California, San Francisco, San Francisco, California, United States of America
| | - Natalia Sevillano
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, United States of America
| | - Yifan Cheng
- Keck Advanced Microscopy Laboratory and Department of Biochemistry and Biophysics, University of California, San Francisco, California, United States of America
- Howard Hughes Medical Institute, University of California, San Francisco, California, United States of America
| | - John D. Gross
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, United States of America
| |
Collapse
|
20
|
APOBEC Enzymes as Targets for Virus and Cancer Therapy. Cell Chem Biol 2017; 25:36-49. [PMID: 29153851 DOI: 10.1016/j.chembiol.2017.10.007] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 09/11/2017] [Accepted: 10/18/2017] [Indexed: 01/08/2023]
Abstract
Human DNA cytosine-to-uracil deaminases catalyze mutations in both pathogen and cellular genomes. APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H restrict human immunodeficiency virus 1 (HIV-1) infection in cells deficient in the viral infectivity factor (Vif), and have the potential to catalyze sublethal levels of mutation in viral genomes in Vif-proficient cells. At least two APOBEC3 enzymes, and in particular APOBEC3B, are sources of somatic mutagenesis in cancer cells that drive tumor evolution and may manifest clinically as recurrence, metastasis, and/or therapy resistance. Consequently, APOBEC3 enzymes are tantalizing targets for developing chemical probes and therapeutic molecules to harness mutational processes in human disease. This review highlights recent efforts to chemically manipulate APOBEC3 activities.
Collapse
|
21
|
Anti-HIV Activities and Mechanism of 12-O-Tricosanoylphorbol-20-acetate, a Novel Phorbol Ester from Ostodes katharinae. Molecules 2017; 22:molecules22091498. [PMID: 28885587 PMCID: PMC6151696 DOI: 10.3390/molecules22091498] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 01/09/2023] Open
Abstract
APOBEC3G is a member of the human cytidine deaminase family that restricts Vif-deficient viruses by being packaged with progeny virions and inducing the G to A mutation during the synthesis of HIV-1 viral DNA when the progeny virus infects new cells. HIV-1 Vif protein resists the activity of A3G by mediating A3G degradation. Phorbol esters are plant-derived organic compounds belonging to the tigliane family of diterpenes and could activate the PKC pathway. In this study, we identified an inhibitor 12-O-tricosanoylphorbol-20-acetate (hop-8), a novel ester of phorbol which was isolated from Ostodes katharinae of the family Euphorbiaceae, that inhibited the replication of wild-type HIV-1 and HIV-2 strains and drug-resistant strains broadly both in C8166 cells and PBMCs with low cytotoxicity and the EC50 values ranged from 0.106 μM to 7.987 μM. One of the main mechanisms of hop-8 is to stimulate A3G expressing in HIV-1 producing cells and upregulate the A3G level in progeny virions, which results in reducing the infectivity of the progeny virus. This novel mechanism of hop-8 inhibition of HIV replication might represents a promising approach for developing new therapeutics for HIV infection.
Collapse
|
22
|
Pu C, Luo RH, Zhang M, Hou X, Yan G, Luo J, Zheng YT, Li R. Design, synthesis and biological evaluation of indole derivatives as Vif inhibitors. Bioorg Med Chem Lett 2017; 27:4150-4155. [DOI: 10.1016/j.bmcl.2017.07.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/12/2017] [Accepted: 07/08/2017] [Indexed: 11/25/2022]
|