1
|
Peng X, Tang W, Jiang Y, Peng A, Xiao Y, Zhang Y. Recent advances in CDC7 kinase inhibitors: Novel strategies for the treatment of cancers and neurodegenerative diseases. Eur J Med Chem 2025; 289:117491. [PMID: 40090297 DOI: 10.1016/j.ejmech.2025.117491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/27/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
Cell division cycle 7 (CDC7) plays an indispensable regulatory role in various cellular processes, encompassing the initiation of DNA replication and the maintenance of replication checkpoints. However, dysregulation of CDC7 protein levels is closely associated with the development and progression of several human diseases, particularly cancers and neurodegenerative diseases. Therefore, targeting the CDC7 kinase is deemed a potential avenue for disease management. Currently, a few CDC7 inhibitors have progressed to clinical trials. Nevertheless, limited clinical efficacy coupled with severe adverse reactions necessitates the implementation of innovative technologies to enhance therapeutic effectiveness and minimize adverse events. Herein, we highlight the structure, biological functions and significance in disease progression of CDC7, and discuss the preclinical and clinical states of CDC7 inhibitors. Our focus centers on the structure-activity relationship (SAR) and binding modes of CDC7 inhibitors, offering perspectives on novel CDC7-targeting drugs for clinical application.
Collapse
Affiliation(s)
- Xi Peng
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wentao Tang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yu Jiang
- West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Anjiao Peng
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yao Xiao
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yiwen Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Saif A, Islam MT, Raihan MO, Yousefi N, Rahman MA, Faridi H, Hasan AR, Hossain MM, Saleem RM, Albadrani GM, Al-Ghadi MQ, Ahasan Setu MA, Kamel M, Abdel-Daim MM, Aktaruzzaman M. Pan-cancer analysis of CDC7 in human tumors: Integrative multi-omics insights and discovery of novel marine-based inhibitors through machine learning and computational approaches. Comput Biol Med 2025; 190:110044. [PMID: 40120182 DOI: 10.1016/j.compbiomed.2025.110044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 03/14/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
Cancer remains a significant global health challenge, with the Cell Division Cycle 7 (CDC7) protein emerging as a potential therapeutic target due to its critical role in tumor proliferation, survival, and resistance. However, a comprehensive analysis of CDC7 across multiple cancers is lacking, and existing therapeutic options have come with limited clinical success. The aim of this is to integrate a comprehensive pan-cancer analysis of CDC7 with the identification of novel marine-derived inhibitors, bridging the understanding of CDC7's role as a prognostic biomarker and therapeutic target across diverse cancer types. In this study, we conducted a pan-cancer analysis of CDC7 across 33 tumor types using publicly available datasets to evaluate its expression, genetic alterations, immune interactions, survival, and prognostic significance. Additionally, a marine-derived compound library of 31,492 molecules was screened to identify potential CDC7 inhibitors using chemoinformatics and machine learning. The top candidates underwent rigorous evaluations, including molecular docking, pharmacokinetics, toxicity, Density Functional Theory (DFT) calculations, and Molecular Dynamics (MD) simulations. The findings revealed that CDC7 is overexpressed in several cancers and is associated with poor survival outcomes and unfavorable prognosis. Enrichment analysis linked CDC7 to critical DNA replication pathways, while its role in modulating tumor-immune interactions highlighted its potential as a target for immunotherapy. Among all tested compounds, Tetrahydroaltersolanol D (CMNPD21999) exhibited the strongest binding affinity and stability, along with better drug-likeness and zero toxicity. These attributes highlight its potential as a promising drug candidate for CDC7 inhibition and future cancer treatment development. Furthermore, additional in vitro and in vivo studies are required to confirm the effectiveness of this drug candidate against the CDC7 protein.
Collapse
Affiliation(s)
- Ahmed Saif
- Department of Pharmacy, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh; Laboratory of Advanced Computational Biology, Biological Research on the Brain (BRB), Jashore, 7408, Bangladesh.
| | - Md Tarikul Islam
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh; Laboratory of Advanced Computational Biology, Biological Research on the Brain (BRB), Jashore, 7408, Bangladesh.
| | - Md Obayed Raihan
- Laboratory of Advanced Computational Biology, Biological Research on the Brain (BRB), Jashore, 7408, Bangladesh; Department of Pharmaceutical Sciences, College of Health Sciences and Pharmacy, Chicago State University, Chicago, IL, USA.
| | - Niloofar Yousefi
- Department of Industrial Engineering and Management Systems, University of Central Florida, USA, Orlando, FL, USA
| | - Md Ajijur Rahman
- Department of Pharmacy, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Hafeez Faridi
- Department of Pharmaceutical Sciences, College of Health Sciences and Pharmacy, Chicago State University, Chicago, IL, USA
| | - Al Riyad Hasan
- Laboratory of Advanced Computational Biology, Biological Research on the Brain (BRB), Jashore, 7408, Bangladesh; Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Mirza Mahfuj Hossain
- Laboratory of Advanced Computational Biology, Biological Research on the Brain (BRB), Jashore, 7408, Bangladesh; Department of Computer Science and Engineering, Faculty of Engineering and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Rasha Mohammed Saleem
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, 65431, Saudi Arabia
| | - Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, 84428, Riyadh, 11671, Saudi Arabia
| | - Muath Q Al-Ghadi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Md Ali Ahasan Setu
- Laboratory of Advanced Computational Biology, Biological Research on the Brain (BRB), Jashore, 7408, Bangladesh; Department of Microbiology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah, 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Md Aktaruzzaman
- Laboratory of Advanced Computational Biology, Biological Research on the Brain (BRB), Jashore, 7408, Bangladesh; Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| |
Collapse
|
3
|
Zhao T, Tan X, Tang P, Xie L, Qin Y, Cai H, Zhao H, Huang Q, Wang S. Regioselective [3 + 2] Annulation of β,γ-Alkynyl-α-ketimino Esters with 1,3-Dicarbonyls: The Synthesis of Highly Functionalized Dihydrofurans. J Org Chem 2025. [PMID: 39883886 DOI: 10.1021/acs.joc.4c02393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
A regioselective [3 + 2] annulation of β,γ-alkynyl-α-ketimino esters with 1,3-dicarbonyls is disclosed. A series of Z-selective dihydrofurans bearing an exocyclic double bond and a quaternary carbon center are accessed without the usage of base. Control and deuterium-labeling experiments have been investigated to probe into the reaction mechanism. The catalyst and base-free nucleophilic addition highlights the transformation.
Collapse
Affiliation(s)
- Ting Zhao
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Minzu University, Nanning 530006, China
| | - Xuecai Tan
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Minzu University, Nanning 530006, China
| | - Ping Tang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Minzu University, Nanning 530006, China
| | - Lin Xie
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Minzu University, Nanning 530006, China
| | - Yaowen Qin
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Minzu University, Nanning 530006, China
| | - Haiyue Cai
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Minzu University, Nanning 530006, China
| | - Huishan Zhao
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Minzu University, Nanning 530006, China
| | - Qin Huang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Minzu University, Nanning 530006, China
| | - Sasa Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Minzu University, Nanning 530006, China
| |
Collapse
|
4
|
Inagaki S, Omichi R, Yamazaki K, Shibuta Y, Kawano T. Synthesis of 5-Amino-3(2 H)-furanones via S-Methylation/Intramolecular Cyclization of γ-Sulfanylamides. J Org Chem 2024; 89:6770-6782. [PMID: 38691345 DOI: 10.1021/acs.joc.4c00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
The S-methylation/intramolecular cyclization of γ-sulfanylamide is depicted. Different methylating reagents were successfully employed for S-methylation, depending on the substituent pattern of the amide in the starting γ-sulfanylamides; trimethyloxonium tetrafluoroborate was used for N-aryl substituted γ-sulfanylamides, and the combination of methyl iodide and silver(I) tetrafluoroborate was used for N-alkyl substituted γ-sulfanylamides. When the resulting sulfonium salt was treated with DBU, it smoothly underwent intramolecular cyclization to produce a series of N-aryl, N-alkyl, N,N-dialkyl or N-alkyl-N-aryl substituted 5-amino-3(2H)-furanones in 55%-quantitative yields.
Collapse
Affiliation(s)
- Sho Inagaki
- Department of Medicinal and Organic Chemistry, School of Pharmacy, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Riko Omichi
- Department of Medicinal and Organic Chemistry, School of Pharmacy, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Kei Yamazaki
- Department of Medicinal and Organic Chemistry, School of Pharmacy, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Yuzuka Shibuta
- Department of Medicinal and Organic Chemistry, School of Pharmacy, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Tomikazu Kawano
- Department of Medicinal and Organic Chemistry, School of Pharmacy, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| |
Collapse
|
5
|
Zhou YJ, Fang YG, Yang K, Lin JY, Li HQ, Chen ZJ, Wang ZY. DBDMH-Promoted Methylthiolation in DMSO: A Metal-Free Protocol to Methyl Sulfur Compounds with Multifunctional Groups. Molecules 2023; 28:5635. [PMID: 37570605 PMCID: PMC10419854 DOI: 10.3390/molecules28155635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Organic thioethers play an important role in the discovery of drugs and natural products. However, the green synthesis of organic sulfide compounds remains a challenging task. The convenient and efficient synthesis of 5-alkoxy-3-halo-4-methylthio-2(5H)-furanones from DMSO is performed via the mediation of 1,3-dibromo-5,5-dimethylhydantoin (DBDMH), affording a facile route for the sulfur-functionalization of 3,4-dihalo-2(5H)-furanones under transition metal-free conditions. This new approach has demonstrated the functionalization of non-aromatic Csp2-X-type halides with unique structures containing C-X, C-O, C=O and C=C bonds. Compared with traditional synthesis methods using transition metal catalysts with ligands, this reaction has many advantages, such as the lower temperature, the shorter reaction time, the wide substrate range and good functional group tolerance. Notably, DMSO plays multiple roles, and is simultaneously used as an odorless methylthiolating reagent and safe solvent.
Collapse
Affiliation(s)
- Yong-Jun Zhou
- School of Chemistry, South China Normal University, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China; (Y.-J.Z.); (Y.-G.F.); (J.-Y.L.); (H.-Q.L.); (Z.-J.C.)
| | - Yong-Gan Fang
- School of Chemistry, South China Normal University, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China; (Y.-J.Z.); (Y.-G.F.); (J.-Y.L.); (H.-Q.L.); (Z.-J.C.)
| | - Kai Yang
- School of Chemistry, South China Normal University, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China; (Y.-J.Z.); (Y.-G.F.); (J.-Y.L.); (H.-Q.L.); (Z.-J.C.)
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Jian-Yun Lin
- School of Chemistry, South China Normal University, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China; (Y.-J.Z.); (Y.-G.F.); (J.-Y.L.); (H.-Q.L.); (Z.-J.C.)
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huan-Qing Li
- School of Chemistry, South China Normal University, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China; (Y.-J.Z.); (Y.-G.F.); (J.-Y.L.); (H.-Q.L.); (Z.-J.C.)
| | - Zu-Jia Chen
- School of Chemistry, South China Normal University, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China; (Y.-J.Z.); (Y.-G.F.); (J.-Y.L.); (H.-Q.L.); (Z.-J.C.)
| | - Zhao-Yang Wang
- School of Chemistry, South China Normal University, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China; (Y.-J.Z.); (Y.-G.F.); (J.-Y.L.); (H.-Q.L.); (Z.-J.C.)
| |
Collapse
|
6
|
Irie T, Sawa M. CDC7 kinase inhibitors: a survey of recent patent literature (2017-2022). Expert Opin Ther Pat 2023; 33:493-501. [PMID: 37735909 DOI: 10.1080/13543776.2023.2262138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/19/2023] [Indexed: 09/23/2023]
Abstract
INTRODUCTION CDC7 is a serine/threonine kinase which plays an important role in DNA replication. Inhibition of CDC7 in cancer cells causes lethal S phase or M phase progression, whereas inhibition of CDC7 in normal cells does not cause cell death and only leads to cell cycle arrest at the DNA replication checkpoint. Therefore, CDC7 has been recognized as a potential target for novel therapeutic interventions in cancers. AREAS COVERED Patent literature claiming novel small molecule compounds inhibiting CDC7 disclosed from 2017 to 2022. EXPERT OPINION Despite the indisputable positive impact of CDC7 as a drug target, there have been reported only a handful of chemical scaffolds as CDC7 inhibitors. Several CDC7 inhibitors have been progressed into clinical trials for cancer treatments, but they did not result in satisfactory efficacies in those trials. One possible reason for the failure might be due to the dose-limiting toxicities, and some of the observed toxicities were thought to be not related to CDC7 inhibition, suggesting it should be important to identify novel chemical scaffolds to eliminate unwanted toxicities. Another important factor is the patient stratification that would enable greater response, and the identification of such predictive biomarkers should be the key to success for the development of CDC7 inhibitors.
Collapse
Affiliation(s)
- Takayuki Irie
- Drug Discovery and Development, Carna Biosciences, Inc, Kobe, Japan
| | - Masaaki Sawa
- Drug Discovery and Development, Carna Biosciences, Inc, Kobe, Japan
| |
Collapse
|
7
|
Fang G, Chen H, Cheng Z, Tang Z, Wan Y. Azaindole derivatives as potential kinase inhibitors and their SARs elucidation. Eur J Med Chem 2023; 258:115621. [PMID: 37423125 DOI: 10.1016/j.ejmech.2023.115621] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/11/2023]
Abstract
Currently, heterocycles have occupied an important position in the fields of drug design. Among them, azaindole moiety is regarded as one privileged scaffold to develop therapeutic agents. Since two nitrogen atoms of azaindole increase the possibility to form hydrogen bonds in the adenosine triphosphate (ATP)-binding site, azaindole derivatives are important sources of kinase inhibitors. Moreover, some of them have been on the market or in clinical trials for the treatment of some kinase-related diseases (e.g., vemurafenib, pexidartinib, decernotinib). In this review, we focused on the recent development of azaindole derivatives as potential kinase inhibitors based on kinase targets, such as adaptor-associated kinase 1 (AAK1), anaplastic lymphoma kinase (ALK), AXL, cell division cycle 7 (Cdc7), cyclin-dependent kinases (CDKs), dual-specificity tyrosine (Y)-phosphorylation regulated kinase 1A (DYRK1A), fibroblast growth factor receptor 4 (FGFR4), phosphatidylinositol 3-kinase (PI3K) and proviral insertion site in moloney murine leukemia virus (PIM) kinases. Meanwhile, the structure-activity relationships (SARs) of most azaindole derivatives were also elucidated. In addition, the binding modes of some azaindoles complexed with kinases were also investigated during the SARs elucidation. This review may offer an insight for medicinal chemists to rationally design more potent kinase inhibitors bearing the azaindole scaffold.
Collapse
Affiliation(s)
- Guoqing Fang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China
| | - Hongjuan Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China
| | - Zhiyun Cheng
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China
| | - Zilong Tang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China
| | - Yichao Wan
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China.
| |
Collapse
|
8
|
Hwang J, Haacke N, Borgelt L, Qiu X, Gasper R, Wu P. Rational design and evaluation of 2-((pyrrol-2-yl)methylene)thiophen-4-ones as RNase L inhibitors. Eur J Med Chem 2023; 256:115439. [PMID: 37201427 DOI: 10.1016/j.ejmech.2023.115439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/13/2023] [Accepted: 04/30/2023] [Indexed: 05/20/2023]
Abstract
Ribonuclease L (RNase L) plays a crucial role in an antiviral pathway of interferon-induced innate immunity by degrading RNAs to prevent viral replication. Modulating RNase L activity thus mediates the innate immune responses and inflammation. Although a few small molecule-based RNase L modulators have been reported, only limited molecules have been mechanistically investigated. This study explored the strategy of RNase L targeting by using a structure-based rational design approach and evaluated the RNase L-binding and inhibitory activities of the yielded 2-((pyrrol-2-yl)methylene)thiophen-4-ones, which exhibited improved inhibitory effect as determined by in vitro FRET and gel-based RNA cleavage assay. A further structural optimization study yielded selected thiophenones that showed >30-fold more potent inhibitory activity than that of sunitinib, the approved kinase inhibitor with reported RNase L inhibitory activity. The binding mode with RNase L for the resulting thiophenones was analyzed by using docking analysis. Furthermore, the obtained 2-((pyrrol-2-yl)methylene)thiophen-4-ones exhibited efficient inhibition of RNA degradation in cellular rRNA cleavage assay. The newly designed thiophenones are the most potent synthetic RNase L inhibitors reported to date and the results revealed in our study lay the foundation for the development of future RNase L-modulating small molecules with new scaffold and improved potency.
Collapse
Affiliation(s)
- Jimin Hwang
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, 44227, Germany; Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, 44227, Germany; Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, 44227, Germany
| | - Neele Haacke
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, 44227, Germany; Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, 44227, Germany; Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, 44227, Germany
| | - Lydia Borgelt
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, 44227, Germany; Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, 44227, Germany; Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, 44227, Germany
| | - Xiaqiu Qiu
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, 44227, Germany; Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, 44227, Germany; Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, 44227, Germany
| | - Raphael Gasper
- Crystallography and Biophysics Unit, Max Planck Institute of Molecular Physiology, Dortmund, 44227, Germany
| | - Peng Wu
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, 44227, Germany; Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, 44227, Germany.
| |
Collapse
|
9
|
Huang J, Chen Y, Guo Y, Bao M, Hong K, Zhang Y, Hu W, Lei J, Liu Y, Xu X. Synthesis of dihydrofuran-3-one and 9,10-phenanthrenequinone hybrid molecules and biological evaluation against colon cancer cells as selective Akt kinase inhibitors. Mol Divers 2022; 27:845-855. [PMID: 35751771 DOI: 10.1007/s11030-022-10458-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022]
Abstract
A series of dihydrofuran-3-one and 9,10-phenanthrenequinone hybrid compounds were synthetized through a one-pot gold-catalyzed oxidative cyclization and Aldol-type addition cascade reaction of homopropargylic alcohols with 9,10-phenanthrenequinone. The cytotoxicity of newly synthesized compounds was evaluated in CCK8 assay against different human cancer cells, showing significantly antiproliferative activity against tested tumor cell lines with a lowest IC50 value of 0.92 μM over HCT-116. Further investigation revealed that the treatment of HCT-116 cell line with the promising compound 4c induced cell death as a selective Akt inhibitor. In addition, controlled experiments and molecular docking study suggested that the significant antitumor activity might be attributed to the unique hybrid structure, which implied the promising potential of this dual heterocycle hybrid method in the discovery of novel bioactive molecules with structural diversity.
Collapse
Affiliation(s)
- Jingjing Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yufei Chen
- Research Center of Chinese Herbal Resources Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yinfeng Guo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ming Bao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Kemiao Hong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yuanqing Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Wenhao Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jinping Lei
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Yongqiang Liu
- Research Center of Chinese Herbal Resources Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Xinfang Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
10
|
Liu R, Huang Y. CDC7 as a novel biomarker and druggable target in cancer. Clin Transl Oncol 2022; 24:1856-1864. [PMID: 35657477 DOI: 10.1007/s12094-022-02853-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022]
Abstract
Due to the bottlenecks encountered in traditional treatment for tumor, more effective drug targets need to be developed. Cell division cycle 7 kinase plays an important role in DNA replication, DNA repair and recombination signaling pathways. In this review, we first describe recent studies on the role of CDC7 in DNA replication in normal human tissues, and then we integrate new evidence focusing on the important role of CDC7 in replication stress tolerance of tumor cells and its impact on the prognosis of clinical oncology patients. Finally, we comb through the CDC7 inhibitors identified in recent studies as a reference for further research in clinical practice.
Collapse
Affiliation(s)
- Runze Liu
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yong Huang
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
11
|
Irie T, Asami T, Sawa A, Uno Y, Taniyama C, Funakoshi Y, Masai H, Sawa M. Discovery of AS-0141, a Potent and Selective Inhibitor of CDC7 Kinase for the Treatment of Solid Cancers. J Med Chem 2021; 64:14153-14164. [PMID: 34607435 DOI: 10.1021/acs.jmedchem.1c01319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
CDC7, a serine-threonine kinase, plays conserved and important roles in regulation of DNA replication and has been recognized as a potential anticancer target. We report here the optimization of a series of furanone analogues starting from compound 1 with a focus on ADME properties suitable for clinical development. By replacing the 2-chlorobenzene moiety in 1 with various aliphatic groups, we identified compound 24 as a potent CDC7 inhibitor with excellent kinase selectivity and favorable oral bioavailability in multiple species. Oral administration of 24 demonstrated robust in vivo antitumor efficacy in a colorectal cancer xenograft model. Compound 24 (AS-0141) is currently in phase I clinical trials for the treatment of solid cancers.
Collapse
Affiliation(s)
- Takayuki Irie
- Research and Development, Carna Biosciences, Inc., 3F BMA, 1-5-5 minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Tokiko Asami
- Research and Development, Carna Biosciences, Inc., 3F BMA, 1-5-5 minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Ayako Sawa
- Research and Development, Carna Biosciences, Inc., 3F BMA, 1-5-5 minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Yuko Uno
- Research and Development, Carna Biosciences, Inc., 3F BMA, 1-5-5 minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Chika Taniyama
- Ginkgo Biomedical Research Institute, Research and Development Department, SBI Biotech Co., Ltd., Izumi Garden Tower 15F, 1-6- Roppongi, Minato-ku, Tokyo 106-6015, Japan
| | - Yoko Funakoshi
- Ginkgo Biomedical Research Institute, Research and Development Department, SBI Biotech Co., Ltd., Izumi Garden Tower 15F, 1-6- Roppongi, Minato-ku, Tokyo 106-6015, Japan
| | - Hisao Masai
- Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Masaaki Sawa
- Research and Development, Carna Biosciences, Inc., 3F BMA, 1-5-5 minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
12
|
Iwai K, Nambu T, Kashima Y, Yu J, Eng K, Miyamoto K, Kakoi K, Gotou M, Takeuchi T, Kogame A, Sappal J, Murai S, Haeno H, Kageyama SI, Kurasawa O, Niu H, Kannan K, Ohashi A. A CDC7 inhibitor sensitizes DNA-damaging chemotherapies by suppressing homologous recombination repair to delay DNA damage recovery. SCIENCE ADVANCES 2021; 7:7/21/eabf0197. [PMID: 34020950 PMCID: PMC8139593 DOI: 10.1126/sciadv.abf0197] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 04/01/2021] [Indexed: 05/10/2023]
Abstract
Cell division cycle 7 (CDC7), a serine/threonine kinase, plays important roles in DNA replication. We developed a highly specific CDC7 inhibitor, TAK-931, as a clinical cancer therapeutic agent. This study aimed to identify the potential combination partners of TAK-931 for guiding its clinical development strategies. Unbiased high-throughput chemical screening revealed that the highest synergistic antiproliferative effects observed were the combinations of DNA-damaging agents with TAK-931. Functional phosphoproteomic analysis demonstrated that TAK-931 suppressed homologous recombination repair activity, delayed recovery from double-strand breaks, and led to accumulation of DNA damages in the combination. Whole-genome small interfering RNA library screening identified sensitivity-modulating molecules, which propose the experimentally predicted target cancer types for the combination, including pancreatic, esophageal, ovarian, and breast cancers. The efficacy of combination therapy in these cancer types was preclinically confirmed in the corresponding primary-derived xenograft models. Thus, our findings would be helpful to guide the future clinical strategies for TAK-931.
Collapse
Affiliation(s)
- Kenichi Iwai
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Tadahiro Nambu
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Yukie Kashima
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Jie Yu
- Oncology Drug Discovery Unit, Millennium Pharmaceuticals Inc., Cambridge, MA, USA, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited
| | - Kurt Eng
- Oncology Drug Discovery Unit, Millennium Pharmaceuticals Inc., Cambridge, MA, USA, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited
| | - Kazumasa Miyamoto
- Integrated Research Laboratory, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Kazuyo Kakoi
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Masamitsu Gotou
- Integrated Research Laboratory, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Toshiyuki Takeuchi
- DMPK Research Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Akifumi Kogame
- DMPK Research Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Jessica Sappal
- Oncology Drug Discovery Unit, Millennium Pharmaceuticals Inc., Cambridge, MA, USA, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited
| | - Saomi Murai
- Integrated Biology Oncology, Axcelead Drug Discovery Partners Inc., Fujisawa, Japan
| | - Hiroshi Haeno
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Shun-Ichiro Kageyama
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Osamu Kurasawa
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Huifeng Niu
- Oncology Translational Science, Millennium Pharmaceuticals Inc., Cambridge, MA, USA, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited
| | - Karuppiah Kannan
- Oncology Drug Discovery Unit, Millennium Pharmaceuticals Inc., Cambridge, MA, USA, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited
- Oncology Therapeutic Area Unit, Millennium Pharmaceuticals Inc., Cambridge, MA, USA, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited
| | - Akihiro Ohashi
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Japan.
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
- Oncology Drug Discovery Unit, Millennium Pharmaceuticals Inc., Cambridge, MA, USA, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited
| |
Collapse
|
13
|
Rentería-Gómez Á, Torres-Ochoa RO, Gámez-Montaño R, Wang Q, Zhu J. Palladium-Catalyzed Multicomponent Synthesis of Fully Substituted Alkylidene Furanones. Org Lett 2020; 22:7030-7033. [PMID: 32846089 DOI: 10.1021/acs.orglett.0c02578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In the presence of a catalytic amount of Pd(OAc)2 and XantPhos, the three-component reaction of ynones, imines, and aryl iodides affords fully substituted alkylidene-furan-3(2H)-ones via a sequence of the Mannich reaction followed by chemo- and regioselective oxypalladation and reductive elimination. One carbon-oxygen and two carbon-carbon bonds are generated to afford the heterocycle in good to excellent yield.
Collapse
Affiliation(s)
- Ángel Rentería-Gómez
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015 Lausanne, Switzerland
| | - Rubén O Torres-Ochoa
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, Distrito Federal, México 04510, México
| | - Rocío Gámez-Montaño
- Campus Guanajuato, División de Ciencias Naturales y Exactas, Departamento de Química, Universidad de Guanajuato, Noria Alta S/N, Guanajuato, Guanajuato 36050, México
| | - Qian Wang
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015 Lausanne, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015 Lausanne, Switzerland
| |
Collapse
|
14
|
Kurasawa O, Miyazaki T, Homma M, Oguro Y, Imada T, Uchiyama N, Iwai K, Yamamoto Y, Ohori M, Hara H, Sugimoto H, Iwata K, Skene R, Hoffman I, Ohashi A, Nomura T, Cho N. Discovery of a Novel, Highly Potent, and Selective Thieno[3,2- d]pyrimidinone-Based Cdc7 Inhibitor with a Quinuclidine Moiety (TAK-931) as an Orally Active Investigational Antitumor Agent. J Med Chem 2020; 63:1084-1104. [PMID: 31895562 DOI: 10.1021/acs.jmedchem.9b01427] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In our pursuit of developing a novel, potent, and selective cell division cycle 7 (Cdc7) inhibitor, we optimized the previously reported thieno[3,2-d]pyrimidinone analogue I showing time-dependent Cdc7 kinase inhibition and slow dissociation kinetics. These medicinal chemistry efforts led to the identification of compound 3d, which exhibited potent cellular activity, excellent kinase selectivity, and antitumor efficacy in a COLO205 xenograft mouse model. However, the issue of formaldehyde adduct formation emerged during a detailed study of 3d, which was deemed an obstacle to further development. A structure-based approach to circumvent the adduct formation culminated in the discovery of compound 11b (TAK-931) possessing a quinuclidine moiety as a preclinical candidate. In this paper, the design, synthesis, and biological evaluation of this series of compounds will be presented.
Collapse
Affiliation(s)
- Osamu Kurasawa
- Pharmaceutical Research Division , Takeda Pharmaceutical Company, Ltd. , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Tohru Miyazaki
- Pharmaceutical Research Division , Takeda Pharmaceutical Company, Ltd. , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Misaki Homma
- Pharmaceutical Research Division , Takeda Pharmaceutical Company, Ltd. , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Yuya Oguro
- Pharmaceutical Research Division , Takeda Pharmaceutical Company, Ltd. , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Takashi Imada
- Pharmaceutical Research Division , Takeda Pharmaceutical Company, Ltd. , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Noriko Uchiyama
- Pharmaceutical Research Division , Takeda Pharmaceutical Company, Ltd. , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Kenichi Iwai
- Pharmaceutical Research Division , Takeda Pharmaceutical Company, Ltd. , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Yukiko Yamamoto
- Pharmaceutical Research Division , Takeda Pharmaceutical Company, Ltd. , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Momoko Ohori
- Pharmaceutical Research Division , Takeda Pharmaceutical Company, Ltd. , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Hideto Hara
- Pharmaceutical Research Division , Takeda Pharmaceutical Company, Ltd. , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Hiroshi Sugimoto
- Pharmaceutical Research Division , Takeda Pharmaceutical Company, Ltd. , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Kentaro Iwata
- Pharmaceutical Sciences , Takeda Pharmaceutical Company, Ltd. , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Robert Skene
- Takeda California, Inc. , 10410 Science Center Drive , San Diego , California 92121 , United States
| | - Isaac Hoffman
- Takeda California, Inc. , 10410 Science Center Drive , San Diego , California 92121 , United States
| | - Akihiro Ohashi
- Pharmaceutical Research Division , Takeda Pharmaceutical Company, Ltd. , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Toshiyuki Nomura
- Pharmaceutical Research Division , Takeda Pharmaceutical Company, Ltd. , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Nobuo Cho
- Pharmaceutical Research Division , Takeda Pharmaceutical Company, Ltd. , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| |
Collapse
|
15
|
Insights into the chemistry and therapeutic potential of furanones: A versatile pharmacophore. Eur J Med Chem 2019; 171:66-92. [DOI: 10.1016/j.ejmech.2019.03.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/09/2019] [Accepted: 03/07/2019] [Indexed: 02/06/2023]
|
16
|
Iwai K, Nambu T, Dairiki R, Ohori M, Yu J, Burke K, Gotou M, Yamamoto Y, Ebara S, Shibata S, Hibino R, Nishizawa S, Miyazaki T, Homma M, Oguro Y, Imada T, Cho N, Uchiyama N, Kogame A, Takeuchi T, Kurasawa O, Yamanaka K, Niu H, Ohashi A. Molecular mechanism and potential target indication of TAK-931, a novel CDC7-selective inhibitor. SCIENCE ADVANCES 2019; 5:eaav3660. [PMID: 31131319 PMCID: PMC6531005 DOI: 10.1126/sciadv.aav3660] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 04/17/2019] [Indexed: 05/02/2023]
Abstract
Replication stress (RS) is a cancer hallmark; chemotherapeutic drugs targeting RS are widely used as treatments for various cancers. To develop next-generation RS-inducing anticancer drugs, cell division cycle 7 (CDC7) has recently attracted attention as a target. We have developed an oral CDC7-selective inhibitor, TAK-931, as a candidate clinical anticancer drug. TAK-931 induced S phase delay and RS. TAK-931-induced RS caused mitotic aberrations through centrosome dysregulation and chromosome missegregation, resulting in irreversible antiproliferative effects in cancer cells. TAK-931 exhibited significant antiproliferative activity in preclinical animal models. Furthermore, in indication-seeking studies using large-scale cell panel data, TAK-931 exhibited higher antiproliferative activities in RAS-mutant versus RAS-wild-type cells; this finding was confirmed in pancreatic patient-derived xenografts. Comparison analysis of cell panel data also demonstrated a unique efficacy spectrum for TAK-931 compared with currently used chemotherapeutic drugs. Our findings help to elucidate the molecular mechanisms for TAK-931 and identify potential target indications.
Collapse
Affiliation(s)
- Kenichi Iwai
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Tadahiro Nambu
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Ryo Dairiki
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Momoko Ohori
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Jie Yu
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, MA, USA
| | - Kristine Burke
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, MA, USA
| | - Masamitsu Gotou
- Integrated Research Laboratories, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Yukiko Yamamoto
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Shunsuke Ebara
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Sachio Shibata
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Ryosuke Hibino
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Satoru Nishizawa
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Tohru Miyazaki
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Misaki Homma
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Yuya Oguro
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Takashi Imada
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Nobuo Cho
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Noriko Uchiyama
- Biomolecular Research Laboratories, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Akifumi Kogame
- DMPK Research Laboratories, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Toshiyuki Takeuchi
- DMPK Research Laboratories, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Osamu Kurasawa
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Kazunori Yamanaka
- Integrated Research Laboratories, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Huifeng Niu
- Translational and Biomarker Research, Takeda Pharmaceuticals International Co., Cambridge, MA, USA
| | - Akihiro Ohashi
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, MA, USA
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan
- Corresponding author.
| |
Collapse
|
17
|
Cheng AN, Lo YK, Lin YS, Tang TK, Hsu CH, Hsu JTA, Lee AYL. Identification of Novel Cdc7 Kinase Inhibitors as Anti-Cancer Agents that Target the Interaction with Dbf4 by the Fragment Complementation and Drug Repositioning Approach. EBioMedicine 2018; 36:241-251. [PMID: 30293817 PMCID: PMC6197782 DOI: 10.1016/j.ebiom.2018.09.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/16/2018] [Accepted: 09/17/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Cdc7-Dbf4 is a conserved serine/threonine kinase that plays an important role in initiation of DNA replication and DNA damage tolerance in eukaryotic cells. Cdc7 has been found overexpressed in human cancer cell lines and tumor tissues, and the knockdown of Cdc7 expression causes an p53-independent apoptosis, suggesting that Cdc7 is a target for cancer therapy. Only a handful Cdc7 kinase inhibitors have been reported. All Cdc7 kinase inhibitors, including PHA-767491, were identified and characterized as ATP-competitive inhibitors. Unfortunately, these ATP-competitive Cdc7 inhibitors have no good effect on clinical trial. METHODS Here, we have developed a novel drug-screening platform to interrupt the interaction between Cdc7 and Dbf4 based on Renilla reniformis luciferase (Rluc)-linked protein-fragment complementation assay (Rluc-PCA). Using drug repositioning approach, we found several promising Cdc7 inhibitors for cancer therapy from a FDA-approved drug library. FINDINGS Our data showed that dequalinium chloride and clofoctol we screened inhibit S phase progression, accumulation in G2/M phase, and Cdc7 kinase activity. In addition, in vivo mice animal study suggests that dequalinium chloride has a promising anti-tumor activity in oral cancer. Interestingly, we also found that dequalinium chloride and clofoctol sensitize the effect of platinum compounds and radiation due to synergistic effect. In conclusion, we identified non-ATP-competitive Cdc7 kinase inhibitors that not only blocks DNA synthesis at the beginning but also sensitizes cancer cells to DNA damage agents. INTERPRETATION The inhibitors will be a promising anti-cancer agent and enhance the therapeutic effect of chemotherapy and radiation for current cancer therapy. FUND: This work was supported by grants from the Ministry of Science and Technology, Ministry of Health and Welfare, and National Health Research Institutes, Taiwan.
Collapse
Affiliation(s)
- An Ning Cheng
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Yu-Kang Lo
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Yi-Sheng Lin
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Tswen-Kei Tang
- Department of Nursing, National Quemoy University, Kinmen 89250, Taiwan
| | - Chun-Hua Hsu
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan; Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - John T-A Hsu
- National Health Research Institutes, Institute of Biotechnology and Pharmaceutical Research, Miaoli 35053, Taiwan
| | - Alan Yueh-Luen Lee
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan; Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
18
|
Fei L, Xu H. Role of MCM2-7 protein phosphorylation in human cancer cells. Cell Biosci 2018; 8:43. [PMID: 30062004 PMCID: PMC6056998 DOI: 10.1186/s13578-018-0242-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/17/2018] [Indexed: 01/12/2023] Open
Abstract
A heterohexameric complex composed of minichromosome maintenance protein 2–7 (MCM2–7), which acts as a key replicative enzyme in eukaryotes, is crucial for initiating DNA synthesis only once per cell cycle. The MCM complex remains inactive through the G1 phase, until the S phase, when it is activated to initiate replication. During the transition from the G1 to S phase, the MCM undergoes multisite phosphorylation, an important change that promotes subsequent assembly of other replisome members. Phosphorylation is crucial for the regulation of MCM activity and function. MCMs can be phosphorylated by multiple kinases and these phosphorylation events are involved not only in DNA replication but also cell cycle progression and checkpoint response. Dysfunctional phosphorylation of MCMs appears to correlate with the occurrence and development of cancers. In this review, we summarize the currently available data regarding the regulatory mechanisms and functional consequences of MCM phosphorylation and seek the probability that protein kinase inhibitor can be used therapeutically to target MCM phosphorylation in cancer.
Collapse
Affiliation(s)
- Liangru Fei
- Department of Pathology, College of Basic Medical Sciences and the First Affiliated Hospital, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122 Liaoning Province People's Republic of China
| | - Hongtao Xu
- Department of Pathology, College of Basic Medical Sciences and the First Affiliated Hospital, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122 Liaoning Province People's Republic of China
| |
Collapse
|
19
|
Furanone derivatives as new inhibitors of CDC7 kinase: development of structure activity relationship model using 3D QSAR, molecular docking, and in silico ADMET. Struct Chem 2018. [DOI: 10.1007/s11224-018-1086-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Irie T, Sawa M. 7-Azaindole: A Versatile Scaffold for Developing Kinase Inhibitors. Chem Pharm Bull (Tokyo) 2018; 66:29-36. [DOI: 10.1248/cpb.c17-00380] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Masaaki Sawa
- Research and Development, Carna Biosciences, Inc
| |
Collapse
|
21
|
Cao J, Sun K, Dong S, Lu T, Dong Y, Du D. Esters as Alkynyl Acyl Ammonium and Azolium Precursors: A Formal [2 + 3] Annulation with Amidomalonates via Lewis Base/Lewis Acid Cooperative Catalysis. Org Lett 2017; 19:6724-6727. [DOI: 10.1021/acs.orglett.7b03453] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jing Cao
- State Key Laboratory of Natural
Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Kewen Sun
- State Key Laboratory of Natural
Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Shuding Dong
- State Key Laboratory of Natural
Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Tao Lu
- State Key Laboratory of Natural
Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Ying Dong
- State Key Laboratory of Natural
Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Ding Du
- State Key Laboratory of Natural
Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
22
|
Inagaki S, Sato A, Sato H, Tamura S, Kawano T. Synthesis of 2-substituted 4,5-dihydro-4-oxo-3-furancarboxylates using acylative intramolecular cyclization of sulfonium salts. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.11.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|