1
|
Zhang M, Yan X, Wang L, Liu Z. Facile Synthesis of New Imidazo[4',5':4,5]benzo[1,2-d] isoxazol-6-one Derivatives and In Silico Studies of Their Drug-like Profiles. ORG PREP PROCED INT 2021. [DOI: 10.1080/00304948.2021.1920303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Maofeng Zhang
- College of Pharmacy, Jiangsu Solid Preparation Engineering Technology Research and Development Center, Taizhou Polytechnic College, Taizhou, P. R. China
| | - Xingli Yan
- College of Pharmacy, Jiangsu Solid Preparation Engineering Technology Research and Development Center, Taizhou Polytechnic College, Taizhou, P. R. China
| | - Lizhong Wang
- College of Pharmacy, Jiangsu Solid Preparation Engineering Technology Research and Development Center, Taizhou Polytechnic College, Taizhou, P. R. China
| | - Zhuyun Liu
- College of Pharmacy, Jiangsu Solid Preparation Engineering Technology Research and Development Center, Taizhou Polytechnic College, Taizhou, P. R. China
| |
Collapse
|
2
|
Wang P, Luchowska-Stańska U, van Basten B, Chen H, Liu Z, Wiejak J, Whelan P, Morgan D, Lochhead E, Barker G, Rehmann H, Yarwood SJ, Zhou J. Synthesis and Biochemical Evaluation of Noncyclic Nucleotide Exchange Proteins Directly Activated by cAMP 1 (EPAC1) Regulators. J Med Chem 2020; 63:5159-5184. [PMID: 32340447 DOI: 10.1021/acs.jmedchem.9b02094] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Exchange proteins directly activated by cAMP (EPAC) play a central role in various biological functions, and activation of the EPAC1 protein has shown potential benefits for the treatment of various human diseases. Herein, we report the synthesis and biochemical evaluation of a series of noncyclic nucleotide EPAC1 activators. Several potent EPAC1 binders were identified including 25g, 25q, 25n, 25u, 25e, and 25f, which promote EPAC1 guanine nucleotide exchange factor activity in vitro. These agonists can also activate EPAC1 protein in cells, where they exhibit excellent selectivity toward EPAC over protein kinase A and G protein-coupled receptors. Moreover, 25e, 25f, 25n, and 25u exhibited improved selectivity toward activation of EPAC1 over EPAC2 in cells. Of these, 25u was found to robustly inhibit IL-6-activated signal transducer and activator of transcription 3 (STAT3) and subsequent induction of the pro-inflammatory vascular cell adhesion molecule 1 (VCAM1) cell-adhesion protein. These novel EPAC1 activators may therefore act as useful pharmacological tools for elucidation of EPAC function and promising drug leads for the treatment of relevant human diseases.
Collapse
Affiliation(s)
- Pingyuan Wang
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Urszula Luchowska-Stańska
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, U.K
| | - Boy van Basten
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, U.K
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Zhiqing Liu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jolanta Wiejak
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, U.K
| | - Padraic Whelan
- Institute of Chemical Sciences, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, U.K
| | - David Morgan
- Institute of Chemical Sciences, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, U.K
| | - Emma Lochhead
- Institute of Chemical Sciences, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, U.K
| | - Graeme Barker
- Institute of Chemical Sciences, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, U.K
| | - Holger Rehmann
- Department of Molecular Cancer Research, Centre of Biomedical Genetics and Cancer Genomics Centre, University Medical Centre Utrecht, Utrecht 3584 CX, Netherlands
| | - Stephen J Yarwood
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, U.K
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
3
|
The Epac1 Protein: Pharmacological Modulators, Cardiac Signalosome and Pathophysiology. Cells 2019; 8:cells8121543. [PMID: 31795450 PMCID: PMC6953115 DOI: 10.3390/cells8121543] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/22/2019] [Accepted: 11/24/2019] [Indexed: 12/11/2022] Open
Abstract
The second messenger 3′,5′-cyclic adenosine monophosphate (cAMP) is one of the most important signalling molecules in the heart as it regulates many physiological and pathophysiological processes. In addition to the classical protein kinase A (PKA) signalling route, the exchange proteins directly activated by cAMP (Epac) mediate the intracellular functions of cAMP and are now emerging as a new key cAMP effector in cardiac pathophysiology. In this review, we provide a perspective on recent advances in the discovery of new chemical entities targeting the Epac1 isoform and illustrate their use to study the Epac1 signalosome and functional characterisation in cardiac cells. We summarize the role of Epac1 in different subcompartments of the cardiomyocyte and discuss how cAMP–Epac1 specific signalling networks may contribute to the development of cardiac diseases. We also highlight ongoing work on the therapeutic potential of Epac1-selective small molecules for the treatment of cardiac disorders.
Collapse
|
4
|
Robichaux WG, Cheng X. Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development. Physiol Rev 2018; 98:919-1053. [PMID: 29537337 PMCID: PMC6050347 DOI: 10.1152/physrev.00025.2017] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
This review focuses on one family of the known cAMP receptors, the exchange proteins directly activated by cAMP (EPACs), also known as the cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs). Although EPAC proteins are fairly new additions to the growing list of cAMP effectors, and relatively "young" in the cAMP discovery timeline, the significance of an EPAC presence in different cell systems is extraordinary. The study of EPACs has considerably expanded the diversity and adaptive nature of cAMP signaling associated with numerous physiological and pathophysiological responses. This review comprehensively covers EPAC protein functions at the molecular, cellular, physiological, and pathophysiological levels; and in turn, the applications of employing EPAC-based biosensors as detection tools for dissecting cAMP signaling and the implications for targeting EPAC proteins for therapeutic development are also discussed.
Collapse
Affiliation(s)
- William G Robichaux
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| |
Collapse
|
5
|
Barker G, Parnell E, van Basten B, Buist H, Adams DR, Yarwood SJ. The Potential of a Novel Class of EPAC-Selective Agonists to Combat Cardiovascular Inflammation. J Cardiovasc Dev Dis 2017; 4:jcdd4040022. [PMID: 29367551 PMCID: PMC5753123 DOI: 10.3390/jcdd4040022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 11/23/2017] [Accepted: 11/30/2017] [Indexed: 02/07/2023] Open
Abstract
The cyclic 3′,5′-adenosine monophosphate (cAMP) sensor enzyme, EPAC1, is a candidate drug target in vascular endothelial cells (VECs) due to its ability to attenuate proinflammatory cytokine signalling normally associated with cardiovascular diseases (CVDs), including atherosclerosis. This is through the EPAC1-dependent induction of the suppressor of cytokine signalling gene, SOCS3, which targets inflammatory signalling proteins for ubiquitinylation and destruction by the proteosome. Given this important role for the EPAC1/SOCS3 signalling axis, we have used high throughput screening (HTS) to identify small molecule EPAC1 regulators and have recently isolated the first known non-cyclic nucleotide (NCN) EPAC1 agonist, I942. I942 therefore represents the first in class, isoform selective EPAC1 activator, with the potential to suppress pro-inflammatory cytokine signalling with a reduced risk of side effects associated with general cAMP-elevating agents that activate multiple response pathways. The development of augmented I942 analogues may therefore provide improved research tools to validate EPAC1 as a potential therapeutic target for the treatment of chronic inflammation associated with deadly CVDs.
Collapse
Affiliation(s)
- Graeme Barker
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Euan Parnell
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Boy van Basten
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Hanna Buist
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - David R Adams
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Stephen J Yarwood
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| |
Collapse
|
6
|
Liu Z, Zhu Y, Chen H, Wang P, Mei FC, Ye N, Cheng X, Zhou J. Structure-activity relationships of 2-substituted phenyl-N-phenyl-2-oxoacetohydrazonoyl cyanides as novel antagonists of exchange proteins directly activated by cAMP (EPACs). Bioorg Med Chem Lett 2017; 27:5163-5166. [PMID: 29100797 DOI: 10.1016/j.bmcl.2017.10.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/19/2017] [Accepted: 10/22/2017] [Indexed: 11/24/2022]
Abstract
Exchange proteins directly activated by cAMP (EPACs) are critical cAMP-dependent signaling pathway mediators that play important roles in cancer, diabetes, heart failure, inflammations, infections, neurological disorders and other human diseases. EPAC specific modulators are urgently needed to explore EPAC's physiological function, mechanism of action and therapeutic applications. On the basis of a previously identified EPAC specific inhibitor hit ESI-09, herein we have designed and synthesized a novel series of 2-substituted phenyl-N-phenyl-2-oxoacetohydrazonoyl cyanides as potent EPAC inhibitors. Compound 31 (ZL0524) has been discovered as the most potent EPAC inhibitor with IC50 values of 3.6 µM and 1.2 µM against EPAC1 and EPAC2, respectively. Molecular docking of 31 onto an active EPAC2 structure predicts that 31 occupies the hydrophobic pocket in cAMP binding domain (CBD) and also opens up new space leading to the solvent region. These findings provide inspirations for discovering next generation of EPAC inhibitors.
Collapse
Affiliation(s)
- Zhiqing Liu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Yingmin Zhu
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The University of Texas Health Science Center, 7000 Fannin St #1200, Houston, TX 77030, United States
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Pingyuan Wang
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Fang C Mei
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The University of Texas Health Science Center, 7000 Fannin St #1200, Houston, TX 77030, United States
| | - Na Ye
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The University of Texas Health Science Center, 7000 Fannin St #1200, Houston, TX 77030, United States.
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States.
| |
Collapse
|