1
|
Liu Z, Li T, Gu C, Chen C, Tang Z, Feng Y, Zhou C, Xu J, Chen J. Novel agents derived from natural product β-elemene: A second round of design and synthesis to enhance antitumor properties. Bioorg Med Chem 2025; 121:118129. [PMID: 40015120 DOI: 10.1016/j.bmc.2025.118129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 02/08/2025] [Accepted: 02/20/2025] [Indexed: 03/01/2025]
Abstract
Natural products play a key role in drug discovery and development. The natural sesquiterpene, β-elemene, has been approved as an antitumor drug in China. Despite showing few side effects, the moderate antitumor potency of β-elemene hampers its wide application in clinic. A second round of design and synthesis of β-elemene derivatives was carried out based on our previous prodrug-like ester derivatives. The resulting twenty-nine compounds (except 10c) exhibited enhanced antitumor activity compared with β-elemene and its ester derivative 3. The optimal compound 10a possessed low micromolar antiproliferative activities against three human cancer cell lines (SGC-7901, HeLa, and U87), more potent than positive control cisplatin. The mechanism studies indicate that compound 10a caused arrest of the cell cycle along with inhibition of microtubules, induced apoptosis via a ROS-involved mitochondrial apoptotic pathway, and dampened cell migration and invasion with changes of related protein (MMP-9 and p-FAKY397) expressions. Collectively, the promising antitumor efficacy of compound 10a would make it a potential lead compound in anticancer drug development.
Collapse
Affiliation(s)
- Zhouyan Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chenglei Gu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cheng Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ziwei Tang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yanyan Feng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chen Zhou
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, United States
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| | - Jichao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
2
|
Sun JY, Qi SJ, Chen Q, Liu KX, Liu HY, Zheng HB, Sun B, Lou HX. Design, Synthesis, and Biological Evaluation of Marchantin C-NO Donor Hybrids for Overcoming Pgp-Mediated Drug Resistance by Targeting Lysosome. J Med Chem 2025; 68:5503-5528. [PMID: 40014032 DOI: 10.1021/acs.jmedchem.4c02733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
A series of marchantin C-NO donor hybrids were designed, synthesized, and evaluated for their antitumor activity in vitro and in vivo. Notably, MC-furoxan hybrid 14 exhibited the best selective inhibitory activity against MCF-7/ADR (IC50 = 0.024 μM) with 883 times potency compared with MCF-7 cells (IC50 = 21.20 μM), and the cytotoxicity toward A549/Taxol (IC50 = 1.43 μM) increased 17-fold compared with that in A549 cells (IC50 = 23.75 μM). Preliminary pharmacological studies revealed that 14 could "hijack" the lysosomal Pgp and release NO to produce reactive oxygen species (ROS) in lysosomes, resulting in lysosomal membrane permeabilization (LMP) and potentiated cytotoxicity. Additionally, compound 14 achieved stronger antitumor activity and superior biosafety at relatively low doses than paclitaxel in the A549/Taxol xenograft model. In summary, this study provides a promising strategy for the design of such MC-furoxan hybrids like 14 to overcome MDR via the utilization of lysosomal Pgp transport activity.
Collapse
Affiliation(s)
- Jia-Yu Sun
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, P. R. China
| | - Si-Jie Qi
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, P. R. China
| | - Qian Chen
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, P. R. China
| | - Ke-Xin Liu
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, P. R. China
| | - Hao-Yu Liu
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, P. R. China
| | - Hong-Bo Zheng
- Key Laboratory of Natural Products & Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, P. R. China
| | - Bin Sun
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, P. R. China
| | - Hong-Xiang Lou
- Key Laboratory of Natural Products & Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, P. R. China
| |
Collapse
|
3
|
Xia D, Guo Y, Xu R, Li N. Emerging strategies for nitric oxide production and their topical application as nanodressings to promote diabetic wound healing. J Nanobiotechnology 2025; 23:53. [PMID: 39881346 PMCID: PMC11776289 DOI: 10.1186/s12951-025-03135-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/19/2025] [Indexed: 01/31/2025] Open
Abstract
The challenges associated with prolonged healing or non-healing of chronic diabetic wounds contribute significantly to the increased incidence of lower limb amputation. A pivotal factor in the impediment of healing is the reduced production of endogenous nitric oxide (NO) due to the hyperglycemic microenvironment typical of chronic diabetes. While both endogenous and exogenous NO have been shown to promote the healing process of diabetic wounds, the direct application of NO in wound management is limited due to its gaseous nature and the risk of explosive release. This review summarizes recent advances of nanodressings incorporating NO donors in the treatment of diabetic wounds, detailing the specific conditions under which these nanodressings facilitate NO release, with a focus on the beneficial effects of NO, strategies for its supplementation, and the challenges encountered in the clinical translation of NO donors as a clinically viable nanomedicine in the context of improving diabetic wound healing.
Collapse
Affiliation(s)
- Dan Xia
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Ying Guo
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Ruodan Xu
- Department of Biobmedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ning Li
- Department of Biobmedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
4
|
Wang X, Meng F, Mao J. Progress of natural sesquiterpenoids in the treatment of hepatocellular carcinoma. Front Oncol 2024; 14:1445222. [PMID: 39081717 PMCID: PMC11286475 DOI: 10.3389/fonc.2024.1445222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Hepatocellular carcinoma is one of the common malignant tumors of digestive tract, which seriously threatens the life of patients due to its high incidence rate, strong invasion, metastasis, and prognosis. At present, the main methods for preventing and treating HCC include medication, surgery, and intervention, but patients frequently encounter with specific adverse reactions or side effects. Many Traditional Chinese medicine can improve liver function, reduce liver cancer recurrence and have unique advantages in the treatment of HCC because of their acting mode of multi-target, multi-pathway, multi-component, and multi-level. Sesquiterpenoids, a class of natural products which are widely present in nature and exhibit good anti-tumor activity, and many of them possess good potential for the treatment of HCC. This article reviewed the anti-tumor activities, natural resources, pharmacological mechanism of natural sesquiterpenoids against HCC, providing the theoretical basis for the prevention and treatment of HCC and a comprehensive understanding of their potential for development of new clinical drugs.
Collapse
Affiliation(s)
- Xiaodong Wang
- Department of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Fancheng Meng
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Jingxin Mao
- Department of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Jiang XY, Shi LP, Zhu JL, Bai RR, Xie T. Elemene Antitumor Drugs Development Based on "Molecular Compatibility Theory" and Clinical Application: A Retrospective and Prospective Outlook. Chin J Integr Med 2024; 30:62-74. [PMID: 37882911 DOI: 10.1007/s11655-023-3714-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2023] [Indexed: 10/27/2023]
Abstract
Elemene, derived from Curcuma wenyujin, one of the "8 famous genuine medicinal materials of Zhejiang province," exhibits remarkable antitumor activity. It has gained wide recognition in clinical practice for effectiveness on tumors. Dr. XIE Tian, introduced the innovative concept of "molecular compatibility theory" by combining Chinese medicine principles, specifically the "monarch, minister, assistant, and envoy" theory, with modern biomedical technology. This groundbreaking approach, along with a systematic analysis of Chinese medicine and modern biomedical knowledge, led to the development of elemene nanoliposome formulations. These novel formulations offer numerous advantages, including low toxicity, well-defined composition, synergistic effects on multiple targets, and excellent biocompatibility. Following the principles of the "molecular compatibility theory", further exploration of cancer treatment strategies and methods based on elemene was undertaken. This comprehensive review consolidates the current understanding of elemene's potential antitumor mechanisms, recent clinical investigations, advancements in drug delivery systems, and structural modifications. The ultimate goal of this review is to establish a solid theoretical foundation for researchers, empowering them to develop more effective antitumor drugs based on the principles of "molecular compatibility theory".
Collapse
Affiliation(s)
- Xiao-Ying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, 311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China
| | - Li-Ping Shi
- Good Clinical Practice Center, Affliliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Jun-Long Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, 311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China
| | - Ren-Ren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, 311121, China.
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, 311121, China.
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, 311121, China.
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, 311121, China.
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
6
|
Zhu J, Jiang X, Luo X, Gao Y, Zhao R, Li J, Cai H, Dang X, Ye X, Bai R, Xie T. Discovery and bioassay of disubstituted β-elemene-NO donor conjugates: synergistic enhancement in the treatment of leukemia. Chin J Nat Med 2023; 21:916-926. [PMID: 38143105 DOI: 10.1016/s1875-5364(23)60404-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Indexed: 12/26/2023]
Abstract
Natural products are essential sources of antitumor drugs. One such molecule, β-elemene, is a potent antitumor compound extracted from Curcuma wenyujin. In the present investigation, a series of novel 13,14-disubstituted nitric oxide (NO)-donor β-elemene derivatives were designed, with β-elemene as the foundational compound, and subsequently synthesized to evaluate their therapeutic potential against leukemia. Notably, the derivative labeled as compound 13d demonstrated a potent anti-proliferative activity against the K562 cell line, with a high NO release. In vivo studies indicated that compound 13d could effectively inhibit tumor growth, exhibiting no discernible toxic manifestations. Specifically, a significant tumor growth inhibition rate of 62.9% was observed in the K562 xenograft tumor mouse model. The accumulated data propound the potential therapeutic application of compound 13d in the management of leukemia.
Collapse
Affiliation(s)
- Junlong Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xinyu Luo
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuan Gao
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Rui Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Junjie Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Hong Cai
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiawen Dang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiangyang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China.
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China.
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
7
|
Pan Y, Wan P, Zhang L, Wang C, Wang Y. Clinical benefit and risk of elemene in cancer patients undergoing chemotherapy: a systematic review and meta-analysis. Front Pharmacol 2023; 14:1185987. [PMID: 37601061 PMCID: PMC10436211 DOI: 10.3389/fphar.2023.1185987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction: Elemene injection and oral emulsion, known as elemene, have been utilized have been used in adjuvant therapy for cancer patients in China for more than 20 years. In order to evaluate the efficacy and potential risks of the treatments in cancer patients undergoing chemotherapy, a system review and meta-analysis were conducted. Additionally, the factors that may influence the outcomes were also explored. Methods: A comprehensive search was conducted across various databases including PubMed, Cochrane Library, Web of Science, EMBASE, CKNI, Wan Fang, and VIP databases. Meta-regression, subgroup, and sensitivity analyses were conducted to explore the heterogeneity. GRADE system and TSA were used to assess the strength of evidence and robustness of the results. Results: The pooled data showed that combination with elemene could improve the response rate (RR:1.48, 95%CI:1.38-1.60, p < 0.00001), disease control rate (RR:1.20, 95%CI:1.15-1.25, p < 0.00001), the rate of quality-of-life improvement and stability (WMD:1.31, 95% CI:1.12-1.53, p = 0.0006), immune function (CD4+/CD8+: WMD:0.33, 95% CI:0.24-0.42, p < 0.00001), survival rate (1-year, RR:1.34, 95% CI:1.15-1.56, p = 0.0002; 2-year, RR:1.57, 95% CI:1.14-2.16, p = 0.006), and decrease the prevalence of most chemotherapy-induced side effects, especially leukopenia (Ⅲ-Ⅳ) (RR:0.46, 95% CI:0.35-0.61, p < 0.00001), thrombocytopenia (RR:0.86, 95% CI:0.78-0.95, p = 0.003), and hemoglobin reduction (RR:0.83, 95% CI:0.73-0.95, p = 0.007). However, the administration of elemene has been found to significantly increase the incidence of phlebitis in patients undergoing chemotherapy (RR:3.41, 95% CI:1.47-7.93, p = 0.004). Meta-regression and subgroup analyses discovered that the outcomes were rarely influenced by CR, CT, and dosage of elemene (DE) but the cycle number of elemene (CNE) and TT were the main sources of heterogeneity. Discussion: As the treatment time and the number of cycles increased, the efficacy of the elemene combination decreased across various aspects. Thus, shorter duration and fewer cycles are recommended.
Collapse
Affiliation(s)
- Yanhong Pan
- Department of Pharmacy, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Panting Wan
- Department of Pharmacy, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cuirong Wang
- Department of Pharmacy, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yijun Wang
- Department of Pharmacy, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Abu Yousef M, Matsubara R. Recent progress in synthesis and application of furoxan. RSC Adv 2023; 13:5228-5248. [PMID: 36777951 PMCID: PMC9910416 DOI: 10.1039/d3ra00189j] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
This review highlights recent developments in the synthesis and application of furoxan. The chemistry of furoxan is relatively underdeveloped compared to that of other heterocycles owing to its difficult synthesis, which is ascribed to the labile nature of this molecule under various reaction conditions. Nevertheless, recent studies have conducted a variety of bond-forming reactions on the furoxan ring via a post-ring introduction of substituents (PRIS) strategy. This strategy enables the synthesis of furoxan molecules of interest more directly than the conventional methods that rely on the pre-installation of substituents on the furoxan ring precursors. In this review, the PRIS strategy for furoxan synthesis is classified and discussed according to the type of bond formed. Additionally, recent progress in the application of furoxan molecules, predominantly facilitated by the development of new synthetic methods, is covered in this review.
Collapse
Affiliation(s)
- Muhammad Abu Yousef
- Department of Chemistry, Graduate School of Science, Kobe University 1-1 Rokkodai-cho, Nada-ku Kobe 657-8501 Japan
| | - Ryosuke Matsubara
- Department of Chemistry, Graduate School of Science, Kobe University 1-1 Rokkodai-cho, Nada-ku Kobe 657-8501 Japan
| |
Collapse
|
9
|
The exploitation of enzyme-based cancer immunotherapy. Hum Cell 2023; 36:98-120. [PMID: 36334180 DOI: 10.1007/s13577-022-00821-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Cancer immunotherapy utilizes the immune system and its wide-ranging components to deliver anti-tumor responses. In immune escape mechanisms, tumor microenvironment-associated soluble factors and cell surface-bound molecules are mainly accountable for the dysfunctional activity of tumor-specific CD8+ T cells, natural killer (NK) cells, tumor associated macrophages (TAMs) and stromal cells. The myeloid-derived suppressor cells (MDSCs) and Foxp3+ regulatory T cells (Tregs), are also key tumor-promoting immune cells. These potent immunosuppressive networks avert tumor rejection at various stages, affecting immunotherapies' outcomes. Numerous clinical trials have elucidated that disruption of immunosuppression could be achieved via checkpoint inhibitors. Another approach utilizes enzymes that can restore the body's potential to counter cancer by triggering the immune system inhibited by the tumor microenvironment. These immunotherapeutic enzymes can catalyze an immunostimulatory signal and modulate the tumor microenvironment via effector molecules. Herein, we have discussed the immuno-metabolic roles of various enzymes like ATP-dephosphorylating ectoenzymes, inducible Nitric Oxide Synthase, phenylamine, tryptophan, and arginine catabolizing enzymes in cancer immunotherapy. Understanding the detailed molecular mechanisms of the enzymes involved in modulating the tumor microenvironment may help find new opportunities for cancer therapeutics.
Collapse
|
10
|
Gao Y, Mao ND, Che H, Xu L, Bai R, Wang LW, Ye XY, Xie T. Novel hydroxyl carboximates derived from β-elemene: design, synthesis and anti-tumour activities evaluation. J Enzyme Inhib Med Chem 2022; 37:2403-2416. [PMID: 36065895 PMCID: PMC9467605 DOI: 10.1080/14756366.2022.2117314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A series of novel N-alkyl-N-hydroxyl carboximates derived from β-elemene were fortuitously discovered. Most of them showed more potent anti-proliferative activities than their lead compound β-elemene (1). Notably, compound 11i exhibited significant inhibitory effects on the proliferation of three lung cell lines (H1975, A549 and H460) and several other tumour cell lines (H1299, U87MG, MV4-11, and SU-DHL-2). Preliminary mechanistic studies revealed that compound 11i could significantly induce cell apoptosis. Further in vivo study in the H460 xenograft mouse model validated the anti-tumour activities of 11i with a greater tumour growth inhibition (TGI, 68.3%) than β-elemene and SAHA (50.1% and 55.9% respectively) at 60 mg/kg ip dosing, without obvious body weight loss and toxicity. Thus, such N-alkyl-N-hydroxyl carboximate class of compounds exemplified as 11i demonstrated potent anticancer activities both in vitro and in vivo, and should warrant further investigation for potential anticancer therapy.
Collapse
Affiliation(s)
- Yuan Gao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou, China.,Institute of Chinese Materia Medical, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Nian-Dong Mao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou, China
| | - Hao Che
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou, China
| | - Li Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou, China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou, China
| | - Li-Wei Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou, China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou, China.,Institute of Chinese Materia Medical, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
Qi X, Jiang S, Hui Z, Gao Y, Ye Y, Lirussi F, Garrido C, Xu L, He X, Bai R, Ye XY, Xie T. Design, synthesis and antitumor efficacy evaluation of a series of novel β-elemene-based macrocycles. Bioorg Med Chem 2022; 74:117049. [DOI: 10.1016/j.bmc.2022.117049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/15/2022] [Accepted: 10/04/2022] [Indexed: 11/26/2022]
|
12
|
Bai R, Zhu J, Bai Z, Mao Q, Zhang Y, Hui Z, Luo X, Ye XY, Xie T. Second generation β-elemene nitric oxide derivatives with reasonable linkers: potential hybrids against malignant brain glioma. J Enzyme Inhib Med Chem 2022; 37:379-385. [PMID: 35012394 PMCID: PMC8757613 DOI: 10.1080/14756366.2021.2016734] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Elemene is a second-line broad-spectrum anti-tumour drug that has been used in China for more than two decades. However, its main anti-tumour ingredient, β-elemene, has disadvantages, including excessive lipophilicity and relatively weak anti-tumour efficacy. To improve the anti-tumour activity of β-elemene, based on its minor molecular weight character, we introduced furoxan nitric oxide (NO) donors into the β-elemene structure and designed six series of new generation β-elemene NO donor hybrids. The synthesised compounds could effectively release NO in vitro, displayed significant anti-proliferative effects on U87MG, NCI-H520, and SW620 cell lines. In the orthotopic glioma model, compound Id significantly and continuously suppressed the growth of gliomas in nude mice, and the brain glioma of the treatment group was markedly inhibited (>90%). In short, the structural fusion design of NO donor and β-elemene is a feasible strategy to improve the in vivo anti-tumour activity of β-elemene.
Collapse
Affiliation(s)
- Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Junlong Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Ziqiang Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Qing Mao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yingqian Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Zi Hui
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Xinyu Luo
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
13
|
Soltan OM, Shoman ME, Abdel-Aziz SA, Narumi A, Konno H, Abdel-Aziz M. Molecular hybrids: A five-year survey on structures of multiple targeted hybrids of protein kinase inhibitors for cancer therapy. Eur J Med Chem 2021; 225:113768. [PMID: 34450497 DOI: 10.1016/j.ejmech.2021.113768] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/23/2021] [Accepted: 08/08/2021] [Indexed: 02/07/2023]
Abstract
Protein kinases have grown over the past few years as a crucial target for different cancer types. With the multifactorial nature of cancer, and the fast development of drug resistance for conventional chemotherapeutics, a strategy for designing multi-target agents was suggested to potentially increase drug efficacy, minimize side effects and retain the proper pharmacokinetic properties. Kinase inhibitors were used extensively in such strategy. Different kinase inhibitor agents which target EGFR, VEGFR, c-Met, CDK, PDK and other targets were merged into hybrids with conventional chemotherapeutics such as tubulin polymerization and topoisomerase inhibitors. Other hybrids were designed gathering kinase inhibitors with targeted cancer therapy such as HDAC, PARP, HSP 90 inhibitors. Nitric oxide donor molecules were also merged with kinase inhibitors for cancer therapy. The current review presents the hybrids designed in the past five years discussing their design principles, results and highlights their future perspectives.
Collapse
Affiliation(s)
- Osama M Soltan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Mai E Shoman
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519, Minia, Egypt.
| | - Salah A Abdel-Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, 61111, Minia, Egypt
| | - Atsushi Narumi
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Jonan 4-3-16, Yonezawa, 992-8510, Japan
| | - Hiroyuki Konno
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Jonan 4-3-16, Yonezawa, 992-8510, Japan
| | - Mohamed Abdel-Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519, Minia, Egypt.
| |
Collapse
|
14
|
Ismail N, Shoueir KR, Toson EA. Hepatoprotective activity and free radical scavenging against induction of CCl4 in an experimental model using dendronaphthya crude extract loaded chitosan nanocarrier. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
15
|
Zhu Z, Liu Z, Cui J, Huang Y, Chen H, Wu Y, Huang X, Gan C. Apoptosis inducing properties of 3-biotinylate-6-benzimidazole B-nor-cholesterol analogues. Steroids 2021; 169:108822. [PMID: 33722574 DOI: 10.1016/j.steroids.2021.108822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 01/14/2023]
Abstract
In this work, a series of Biotin-substituted B-nor-cholesteryl benzimidazole compounds were synthesized. The antiproliferativeactivities of these compounds were evaluated in vitro using a series of human cancer cell lines, including HeLa (cervical cancer), SKOV3 (ovarian cancer), T-47D (thymus gland cancer), MCF-7 (human breast cancer) and HEK293T (normal renal epithelial) cells. These compounds displayed distinct antiproliferative activities against the currently tested cancer cells. The apoptotic properties induced by compound 6d were further investigated. Our results showed that compound 6d could induce the apoptosis of SKOV3 cells, blocking the cell growth in S-phase. Western blotting analyses revealed that compound 6d can induce cell apoptosis via the mitochondria-dependent pathway.
Collapse
Affiliation(s)
- Zhiling Zhu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning 530001, PR China
| | - Zhiping Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning 530001, PR China
| | - Jianguo Cui
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning 530001, PR China
| | - Yanmin Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning 530001, PR China
| | - Hualong Chen
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning 530001, PR China
| | - Yulan Wu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning 530001, PR China
| | - Xiaotong Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning 530001, PR China
| | - Chunfang Gan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning 530001, PR China.
| |
Collapse
|
16
|
Cai SZ, Xiong QW, Zhao LN, Ji YT, Luo ZX, Ma ZR. β-Elemene Triggers ROS-dependent Apoptosis in Glioblastoma Cells Through Suppressing STAT3 Signaling Pathway. Pathol Oncol Res 2021; 27:594299. [PMID: 34257541 PMCID: PMC8262204 DOI: 10.3389/pore.2021.594299] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/15/2021] [Indexed: 01/01/2023]
Abstract
Glioblastoma is one of the most aggressive primary brain tumors with few treatment strategies. β-Elemene is a sesquiterpene known to have broad spectrum antitumor activity against various cancers. However, the signaling pathways involved in β-elemene induced apoptosis of glioblastoma cells remains poorly understood. In this study, we reported that β-elemene exhibited antiproliferative activity on U87 and SHG-44 cells, and induced cell death through induction of apoptosis. Incubation of these cells with β-elemene led to the activation of caspase-3 and generation of reactive oxygen species (ROS). Western blot assay showed that β-elemene suppressed phosphorylation of STAT3, and subsequently down-regulated the activation of p-JAK2 and p-Src. Moreover, pre-incubation of cells with ROS inhibitor N-acetyl-L-cysteine (NAC) significantly reversed β-elemene-mediated apoptosis effect and down-regulation of JAK2/Src-STAT3 signaling pathway. Overall, our findings implied that generation of ROS and suppression of STAT3 signaling pathway is critical for the apoptotic activity of β-elemene in glioblastoma cells.
Collapse
Affiliation(s)
- Shi-Zhong Cai
- Department of Child and Adolescent Healthcare, Children's Hospital of Soochow University, Suzhou, China
| | - Qian-Wei Xiong
- Department of Surgery, Children's Hospital of Soochow University, Suzhou, China
| | - Li-Na Zhao
- Department of Laboratory Medicine, Key Laboratory of Clinical Immunology of Jiangsu Province, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi-Ting Ji
- Department of Child and Adolescent Healthcare, Children's Hospital of Soochow University, Suzhou, China
| | - Zheng-Xiang Luo
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Zhou-Rui Ma
- Department of Surgery, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
17
|
Anti-Tumor Drug Discovery Based on Natural Product β-Elemene: Anti-Tumor Mechanisms and Structural Modification. Molecules 2021; 26:molecules26061499. [PMID: 33801899 PMCID: PMC7998186 DOI: 10.3390/molecules26061499] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 12/26/2022] Open
Abstract
Natural products are important sources for drug discovery, especially anti-tumor drugs. β-Elemene, the prominent active ingredient extract from the rhizome of Curcuma wenyujin, is a representative natural product with broad anti-tumor activities. The main molecular mechanism of β-elemene is to inhibit tumor growth and proliferation, induce apoptosis, inhibit tumor cell invasion and metastasis, enhance the sensitivity of chemoradiotherapy, regulate the immune system, and reverse multidrug resistance (MDR). Elemene oral emulsion and elemene injection were approved by the China Food and Drug Administration (CFDA) for the treatment of various cancers and bone metastasis in 1994. However, the lipophilicity and low bioavailability limit its application. To discover better β-elemene-derived anti-tumor drugs with satisfying drug-like properties, researchers have modified its structure under the premise of not damaging the basic scaffold structure. In this review, we comprehensively discuss and summarize the potential anti-tumor mechanisms and the progress of structural modifications of β-elemene.
Collapse
|
18
|
Zhang Y, Yang J, Meng T, Qin Y, Li T, Fu J, Yin J. Nitric oxide-donating and reactive oxygen species-responsive prochelators based on 8-hydroxyquinoline as anticancer agents. Eur J Med Chem 2021; 212:113153. [PMID: 33453603 DOI: 10.1016/j.ejmech.2021.113153] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 12/13/2022]
Abstract
Metal ion chelators based on 8-hydroxyquinoline (8-HQ) have been widely explored for the treatment of many diseases. When aimed at being developed into potent anticancer agent, a largely unmet issue is how to avoid nonspecific chelation of metal ions by 8-HQ in normal cells or tissues. In the current work, a two-step strategy was employed to both enhance the anticancer activity of 8-HQ and improve its cancer cell specificity. Considering the well-known anticancer activity of nitric oxide (NO), NO donor furoxan was first connected to 8-HQ to construct HQ-NO conjugates. These conjugates were screened for their cytotoxicity, metal-binding ability, and NO-releasing efficiency. Selected conjugates were further modified with a ROS-responsive moiety to afford prochelators. Among all the target compounds, prodrug HQ-NO-11 was found to potently inhibit the proliferation of many cancer cells but not normal cells. The abilities of metal chelation and NO generation by HQ-NO-11 were confirmed by various methods and were demonstrated to be essential for the anticancer activity of HQ-NO-11. In vivo studies revealed that HQ-NO-11 inhibited the growth of SW1990 xenograft to a larger extent than 8-HQ. Our results showcase a general method for designing novel 8-HQ derivatives and shed light on obtaining more controllable metal chelators.
Collapse
Affiliation(s)
- Yuxia Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China
| | - Jiaxin Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Tingting Meng
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China
| | - Yajuan Qin
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China
| | - Tingyou Li
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China.
| | - Junjie Fu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China.
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China.
| |
Collapse
|
19
|
Shi Z, Li N, Chen C, Wang Y, Lei Z, Chen L, Sun J. Novel NO-releasing scopoletin derivatives induce cell death via mitochondrial apoptosis pathway and cell cycle arrest. Eur J Med Chem 2020; 200:112386. [DOI: 10.1016/j.ejmech.2020.112386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 01/15/2023]
|
20
|
Zhang R, Pan T, Xiang Y, Zhang M, Feng J, Liu S, Duan T, Chen P, Zhai B, Chen X, Wang W, Chen B, Han X, Chen L, Yan L, Jin T, Liu Y, Li G, Huang X, Zhang W, Sun Y, Li Q, Zhang Q, Zhuo L, Xie T, Wu Q, Sui X. β-Elemene Reverses the Resistance of p53-Deficient Colorectal Cancer Cells to 5-Fluorouracil by Inducing Pro-death Autophagy and Cyclin D3-Dependent Cycle Arrest. Front Bioeng Biotechnol 2020; 8:378. [PMID: 32457882 PMCID: PMC7225311 DOI: 10.3389/fbioe.2020.00378] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022] Open
Abstract
Objective Colorectal cancer is a malignant tumor of the digestive system with high morbidity and mortality. 5-fluorouracil remains a widely used chemotherapeutic drug in the treatment of advanced colorectal cancer, but chemotherapy drugs are prone to develop drug resistance, p53 deletion or mutation is an important reason for the resistance of colorectal cancer cells to 5-fluorouracil. β-elemene has been proved to have the potential of reverse chemotherapy drug resistance, but the mechanism is unknown. This study aimed to investigate the effect of β-elemene to 5-fluorouracil in drug-resistant p53-deficient colorectal cancer cells HCT116p53–/–, and determine the possible molecular mechanism of β-elemene to reverse 5-fluorouracil resistance. Methods The effect of β-elemene on HCT116p53–/– cell activity was detected by Cell counting Kit-8. Cell proliferation was detected by monoclonal plate. The apoptosis was detected by flow cytometry and western blot. The autophagy was detected by western blot, immunofluorescence and transmission electron microscope. Determine the role of Cyclin-related protein Cyclin D3 in β-elemene reversing the resistance of HCT116p53–/– to 5-fluorouracil was detected by overexpression of Cyclin D3. The effect of β-elemene on the tumorigenic ability of p53-deficient colorectal cancer cells was detected establishing HCT116p53–/– all line xenograft model. Results For p53 wildtype colorectal cancer cells, β-elemene could augment the sensitivity of 5-fluorouracil, for p53-deficient colorectal cancer cells, β-elemene significantly inhibited cell proliferation in a concentration-dependent manner, and reversed the resistance of HCT116p53–/– to 5-fluorouracil by inducing pro-death autophagy and Cyclin D3-dependent cycle arrest. Conclusion β-elemene enhances the sensitivity of p53 wild-type cells to 5-fluorouracil, β-elemene can reverse the resistance of HCT116p53–/– to 5-fluorouracil by inducing pro-death autophagy and Cyclin D3-dependent cycle arrest in p53-deficient colorectal cancer, which will provide a new method for the treatment of p53 deletion colorectal cancer patients.
Collapse
Affiliation(s)
- Ruonan Zhang
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Ting Pan
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yu Xiang
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Mingming Zhang
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Jiao Feng
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Shuiping Liu
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Ting Duan
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Peng Chen
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Bingtao Zhai
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Xiaying Chen
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Wengang Wang
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Bi Chen
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xuemeng Han
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Liuxi Chen
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Lili Yan
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Ting Jin
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Ying Liu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Guohua Li
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Xingxing Huang
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Wenzheng Zhang
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yitian Sun
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Qiujie Li
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Qin Zhang
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Lvjia Zhuo
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Tian Xie
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xinbing Sui
- Department of Medical Oncology, Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
21
|
He X, Zhuo XT, Gao Y, Bai R, Ye XY, Xie T. β-Elemene derivatives produced from SeO 2-mediated oxidation reaction. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200038. [PMID: 32537215 PMCID: PMC7277271 DOI: 10.1098/rsos.200038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Herein, we report the first access of β-elemene derivatives through the SeO2-mediated oxidation reaction. Several new compounds were isolated through such a one-step reaction, and their structures were elucidated using various 2D-NMR techniques. This method provides easy access to multiple oxidative β-elemene derivatives in one single step and represents the first modifications on cyclohexyl ring of β-elemene. It is expected to open up the opportunity for future derivatization on cyclohexyl ring of β-elemene. The new compounds obtained above showed better anti-proliferation activities than β-elemene itself on several cancer cell lines. Among them, compound 17 shows the best activity in antiproliferation assays of A549 and U-87MG cell lines.
Collapse
Affiliation(s)
- Xingrui He
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
- Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
- School of Pharmacy, Liaocheng University, Shandong 252000, People's Republic of China
| | - Xiao-Tao Zhuo
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
- Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Yuan Gao
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, People's Republic of China
| | - Renren Bai
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Xiang-Yang Ye
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
- Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
- Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Tian Xie
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
- Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
- Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
| |
Collapse
|
22
|
Li J, Zhao J, Tan T, Liu M, Zeng Z, Zeng Y, Zhang L, Fu C, Chen D, Xie T. Nanoparticle Drug Delivery System for Glioma and Its Efficacy Improvement Strategies: A Comprehensive Review. Int J Nanomedicine 2020; 15:2563-2582. [PMID: 32368041 PMCID: PMC7173867 DOI: 10.2147/ijn.s243223] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/21/2020] [Indexed: 12/22/2022] Open
Abstract
Gliomas are the most common tumor of the central nervous system. However, the presence of the brain barrier blocks the effective delivery of drugs and leads to the treatment failure of various drugs. The development of a nanoparticle drug delivery system (NDDS) can solve this problem. In this review, we summarized the brain barrier (including blood-brain barrier (BBB), blood-brain tumor barriers (BBTB), brain-cerebrospinal fluid barrier (BCB), and nose-to-brain barrier), NDDS of glioma (such as passive targeting systems, active targeting systems, and environmental responsive targeting systems), and NDDS efficacy improvement strategies and deficiencies. The research prospect of drug-targeted delivery systems for glioma is also discussed.
Collapse
Affiliation(s)
- Jie Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Jiaqian Zhao
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
- College of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Tiantian Tan
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Mengmeng Liu
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Zhaowu Zeng
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Yiying Zeng
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Lele Zhang
- School of Medicine, Chengdu University, Chengdu, People’s Republic of China
| | - Chaomei Fu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Dajing Chen
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Tian Xie
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
23
|
The Antitumor Efficacy of β-Elemene by Changing Tumor Inflammatory Environment and Tumor Microenvironment. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6892961. [PMID: 32149121 PMCID: PMC7054771 DOI: 10.1155/2020/6892961] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/21/2020] [Indexed: 02/06/2023]
Abstract
Inflammatory mediators and inflammatory cells in the inflammatory microenvironment promote the transformation of normal cells to cancer cells in the early stage of cancer, promote the growth and development of cancer cells, and induce tumor immune escape. The monomeric active ingredient β-elemene is extracted from the traditional Chinese medicine Curcuma wenyujin and has been proven to have good anti-inflammatory and antitumor activities in clinical applications for more than 20 years in China. Recent studies have found that this traditional Chinese medicine plays a vital role in macrophage infiltration and M2 polarization, as well as in regulating immune disorders, and it even regulates the transcription factors NF-κB and STAT3 to alter inflammation, tumorigenesis, and development. In addition, β-elemene regulates not only different inflammatory factors (such as TNF-α, IFN, TGF-β, and IL-6/10) but also oxidative stress in vivo and in vitro. The excellent anti-inflammatory and antitumor effects of β-elemene and its ability to alter the inflammatory microenvironment of tumors have been gradually elaborated. Although the study of monomeric active ingredients in traditional Chinese medicines is insufficient in terms of quality and quantity, the pharmacological effects of more active ingredients of traditional Chinese medicines will be revealed after β-elemene.
Collapse
|
24
|
Zhou Y, Liu Y, Chen J, Sun YZ, Li LH, Chen L. Inhibition of β-elemene on the expressions of HIF-lα, VEGF and iNOS in diabetic rats model. Int J Ophthalmol 2019; 12:1693-1698. [PMID: 31741856 DOI: 10.18240/ijo.2019.11.05] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 08/03/2019] [Indexed: 02/02/2023] Open
Abstract
AIM To evaluate the effect of β-elemene on the expressions of hypoxia-inducible factor (HIF)-lα, vascular endothelial growth factor (VEGF) and inducible nitric oxide synthase (iNOS) in a streptozotocin (STZ) induced diabetic Sprague-Dawley (SD) rat model. METHODS SD rats were administered an abdominal injection of STZ and induced to a diabetic model. After 6wk course of diabetes, the treatment groups were given β-elemene through periocular and intravitreous injection separately and the control groups were given blank emulsion injection. HE staining was used to observe the morphology of retina. The mRNA expressions of HIF-1α, VEGF and iNOS was assayed by real-time polymerase chain reaction (PCR) and the protein expression was measured by Western blot and immunocytochemistry methods. RESULTS The results indicated that the protein and mRNA expressions of HIF-1α, VEGF and iNOS after treated by β-elemene periocularly and intravitreally injections were all found to be reduced compared with the levels in the diabetic rats group (P<0.05). The inhibitory effect of intravitreal injection was more remarkable. CONCLUSION The results show β-elemene protect the retina of diabetic rats from high glucose damage by downregulating the expression of HIF-1α, VEGF and iNOS.
Collapse
Affiliation(s)
- Yun Zhou
- Department of Ophthalmology, the First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Yan Liu
- Department of Ophthalmology, the First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Jun Chen
- Department of Ophthalmology, the First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Yi-Zhou Sun
- Department of Ophthalmology, the First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Li-Hua Li
- Department of Ophthalmology, the First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Lei Chen
- Department of Ophthalmology, the First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
25
|
Hays E, Bonavida B. Nitric Oxide-Mediated Enhancement and Reversal of Resistance of Anticancer Therapies. Antioxidants (Basel) 2019; 8:E407. [PMID: 31533363 PMCID: PMC6769868 DOI: 10.3390/antiox8090407] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/11/2019] [Accepted: 09/13/2019] [Indexed: 12/13/2022] Open
Abstract
In the last decade, immune therapies against human cancers have emerged as a very effective therapeutic strategy in the treatment of various cancers, some of which are resistant to current therapies. Although the clinical responses achieved with many therapeutic strategies were significant in a subset of patients, another subset remained unresponsive initially, or became resistant to further therapies. Hence, there is a need to develop novel approaches to treat those unresponsive patients. Several investigations have been reported to explain the underlying mechanisms of immune resistance, including the anti-proliferative and anti-apoptotic pathways and, in addition, the increased expression of the transcription factor Yin-Yang 1 (YY1) and the programmed death ligand 1 (PD-L1). We have reported that YY1 leads to immune resistance through increasing HIF-1α accumulation and PD-L1 expression. These mechanisms inhibit the ability of the cytotoxic T-lymphocytes to mediate their cytotoxic functions via the inhibitory signal delivered by the PD-L1 on tumor cells to the PD-1 receptor on cytotoxic T-cells. Thus, means to override these resistance mechanisms are needed to sensitize the tumor cells to both cell killing and inhibition of tumor progression. Treatment with nitric oxide (NO) donors has been shown to sensitize many types of tumors to chemotherapy, immunotherapy, and radiotherapy. Treatment of cancer cell lines with NO donors has resulted in the inhibition of cancer cell activities via, in part, the inhibition of YY1 and PD-L1. The NO-mediated inhibition of YY1 was the result of both the inhibition of the upstream NF-κB pathway as well as the S-nitrosylation of YY1, leading to both the downregulation of YY1 expression as well as the inhibition of YY1-DNA binding activity, respectively. Also, treatment with NO donors induced the inhibition of YY1 and resulted in the inhibition of PD-L1 expression. Based on the above findings, we propose that treatment of tumor cells with the combination of NO donors, at optimal noncytotoxic doses, and anti-tumor cytotoxic effector cells or other conventional therapies will result in a synergistic anticancer activity and tumor regression.
Collapse
Affiliation(s)
- Emily Hays
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, CA 90095, USA.
| | - Benjamin Bonavida
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, CA 90095, USA.
| |
Collapse
|
26
|
Hydrogen sulfide releasing enmein-type diterpenoid derivatives as apoptosis inducers through mitochondria-related pathways. Bioorg Chem 2019; 82:192-203. [DOI: 10.1016/j.bioorg.2018.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/21/2018] [Accepted: 10/04/2018] [Indexed: 01/20/2023]
|
27
|
Nair A, Amalraj A, Jacob J, Kunnumakkara AB, Gopi S. Non-Curcuminoids from Turmeric and Their Potential in Cancer Therapy and Anticancer Drug Delivery Formulations. Biomolecules 2019; 9:biom9010013. [PMID: 30609771 PMCID: PMC6358877 DOI: 10.3390/biom9010013] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022] Open
Abstract
Over the past decades curcuminoids have been extensively studied for their biological activities such as antiulcer, antifibrotic, antiviral, antibacterial, antiprotozoal, antimutagenic, antifertility, antidiabetic, anticoagulant, antivenom, antioxidant, antihypotensive, antihypocholesteremic, and anticancer activities. With the perception of limited toxicity and cost, these compounds forms an integral part of cancer research and is well established as a potential anticancer agent. However, only few studies have focused on the other bioactive molecules of turmeric, known as non-curcuminoids, which are also equally potent as curcuminoids. This review aims to explore the comprehensive potency including the identification, physicochemical properties, and anticancer mechanism inclusive of molecular docking studies of non-curcuminoids such as turmerones, elemene, furanodiene (FN), bisacurone, germacrone, calebin A (CA), curdione, and cyclocurcumin. An insight into the clinical studies of these curcumin-free compounds are also discussed which provides ample evidence that favors the therapeutic potential of these compounds. Like curcuminoids, limited solubility and bioavailability are the most fragile domain, which circumscribe further applications of these compounds. Thus, this review credits the encapsulation of non-curcuminoid components in diverse drug delivery systems such as co-crystals, solid lipid nanoparticles, liposomes, microspheres, polar-non-polar sandwich (PNS) technology, which help abolish their shortcomings and flaunt their ostentatious benefits as anticancer activities.
Collapse
Affiliation(s)
- Akhila Nair
- R&D Centre, Aurea Biolabs (P) Ltd., Kolenchery, Cochin, Kerala 682311, India.
| | - Augustine Amalraj
- R&D Centre, Aurea Biolabs (P) Ltd., Kolenchery, Cochin, Kerala 682311, India.
| | - Joby Jacob
- R&D Centre, Aurea Biolabs (P) Ltd., Kolenchery, Cochin, Kerala 682311, India.
| | - Ajaikumar B Kunnumakkara
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781 039, India.
| | - Sreeraj Gopi
- R&D Centre, Aurea Biolabs (P) Ltd., Kolenchery, Cochin, Kerala 682311, India.
| |
Collapse
|
28
|
Discovery of novel NO-releasing celastrol derivatives with Hsp90 inhibition and cytotoxic activities. Eur J Med Chem 2018; 160:1-8. [DOI: 10.1016/j.ejmech.2018.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 11/19/2022]
|
29
|
Zhai B, Zeng Y, Zeng Z, Zhang N, Li C, Zeng Y, You Y, Wang S, Chen X, Sui X, Xie T. Drug delivery systems for elemene, its main active ingredient β-elemene, and its derivatives in cancer therapy. Int J Nanomedicine 2018; 13:6279-6296. [PMID: 30349250 PMCID: PMC6186893 DOI: 10.2147/ijn.s174527] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
β-elemene is a noncytotoxic Class II antitumor drug extracted from the traditional Chinese medicine Curcuma wenyujin Y. H. Chen et C. Ling. β-elemene exerts its effects by inhibiting cell proliferation, arresting the cell cycle, inducing cell apoptosis, exerting antiangiogenesis and antimetastasis effects, reversing multiple-drug resistance (MDR), and enhancing the immune system. Elemene injection and oral emulsion have been used to treat various tumors, including cancer of the lung, liver, brain, breast, ovary, gastric, prostate, and other tissues, for >20 years. The safety of both elemene injection and oral emulsion in the clinic has been discussed. Recently, the secondary development of β-elemene has attracted the attention of researchers and made great progress. On the one hand, studies have been carried out on liposome-based systems (including solid lipid nanoparticles [SLNs], nanostructured lipid carriers [NLCs], long-circulating liposomes, active targeting liposomes, and multidrug-loaded liposomes) and emulsion systems (including microemulsions, self-emulsion drug delivery systems [SEDDSs], and active targeting microemulsion) to solve the issues of poor solubility in water, low bioavailability, and severe phlebitis, as well as to improve antitumor efficacy. The pharmacokinetics of different drug delivery systems of β-elemene are also summarized. On the other hand, a number of highly active anticancer β-elemene derivatives have been obtained through modification of the structure of β-elemene. This review focuses on the two drug delivery systems and derivatives of β-elemene for cancer therapy.
Collapse
Affiliation(s)
- Bingtao Zhai
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yiying Zeng
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, Zhejiang, China, ;
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, China, ;
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang, China, ;
- College of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhaowu Zeng
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, Zhejiang, China, ;
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, China, ;
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang, China, ;
| | - Nana Zhang
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, Zhejiang, China, ;
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, China, ;
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang, China, ;
| | - Chenxi Li
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, Zhejiang, China, ;
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, China, ;
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang, China, ;
| | - Yijun Zeng
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, Zhejiang, China, ;
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, China, ;
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang, China, ;
| | - Yu You
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shuling Wang
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, Zhejiang, China, ;
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, China, ;
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang, China, ;
| | - Xiabin Chen
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, Zhejiang, China, ;
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, China, ;
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang, China, ;
| | - Xinbing Sui
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, Zhejiang, China, ;
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, China, ;
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang, China, ;
| | - Tian Xie
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, Zhejiang, China, ;
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, China, ;
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang, China, ;
| |
Collapse
|
30
|
Han T, Wang Y, Wang M, Li X, Cheng K, Gao X, Li Z, Bai J, Hua H, Li D. Synthesis of scutellarein derivatives with antiproliferative activity and selectivity through the intrinsic pathway. Eur J Med Chem 2018; 158:493-501. [DOI: 10.1016/j.ejmech.2018.09.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 08/21/2018] [Accepted: 09/14/2018] [Indexed: 12/23/2022]
|
31
|
Cai B, Ma L, Nong S, Wu Y, Guo X, Pu J. β-elemene induced anticancer effect in bladder cancer through upregulation of PTEN and suppression of AKT phosphorylation. Oncol Lett 2018; 16:6019-6025. [PMID: 30333873 DOI: 10.3892/ol.2018.9401] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 08/29/2018] [Indexed: 12/25/2022] Open
Abstract
Human bladder cancer is one of the most aggressive tumours known and has shown resistance to traditional chemotherapy, which depends heavily on DNA-damaging drugs. β-elemene is one of the least cytotoxic antitumor agents that are extracted from Curcuma aromatica salisb and it exhibits antitumor effects in many carcinomas. β-elemene has attracted the attention of clinicians and scientists worldwide due to its few side effects and limited effect on the bone marrow. However, the antitumor mechanism of β-elemene remains largely unstudied. In the present study, the expression of the AKT serine/threonine kinase (AKT) signaling pathway in bladder cancer and normal bladder tissue was investigated, and the influence of β-elemene on bladder cancer cells and the mechanisms involved were assessed. The results showed that phosphatase and tensin homolog deleted on chromosome ten (PTEN) was downregulated and phosphorylated-AKT (pAKT) was overexpressed in human bladder cancer. β-elemene significantly suppressed the viability of bladder cancer cells, while leaving normal bladder cells unaffected. In addition, there was an increased number of apoptotic bladder cancer cells following β-elemene treatment, and a significant reduction in cell invasion and migration. Subsequent western blot analyses revealed that bladder cancer cells treated with β-elemene had increased PTEN expression and decreased expression of pAKT. Taken together, these results suggest that β-elemene has an antitumor effect in bladder cancer cells through the upregulation of PTEN and suppression of AKT phosphorylation.
Collapse
Affiliation(s)
- Bo Cai
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China.,Department of Urology, The First Affiliated Hospital of Suzhou University, Suzhou, Jiangsu 215001, P.R. China
| | - Limin Ma
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Shaojun Nong
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - You Wu
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xin Guo
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jinxian Pu
- Department of Urology, The First Affiliated Hospital of Suzhou University, Suzhou, Jiangsu 215001, P.R. China
| |
Collapse
|
32
|
Nuutinen T. Medicinal properties of terpenes found in Cannabis sativa and Humulus lupulus. Eur J Med Chem 2018; 157:198-228. [PMID: 30096653 DOI: 10.1016/j.ejmech.2018.07.076] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022]
Abstract
Cannabaceae plants Cannabis sativa L. and Humulus lupulus L. are rich in terpenes - both are typically comprised of terpenes as up to 3-5% of the dry-mass of the female inflorescence. Terpenes of cannabis and hops are typically simple mono- and sesquiterpenes derived from two and three isoprene units, respectively. Some terpenes are relatively well known for their potential in biomedicine and have been used in traditional medicine for centuries, while others are yet to be studied in detail. The current, comprehensive review presents terpenes found in cannabis and hops. Terpenes' medicinal properties are supported by numerous in vitro, animal and clinical trials and show anti-inflammatory, antioxidant, analgesic, anticonvulsive, antidepressant, anxiolytic, anticancer, antitumor, neuroprotective, anti-mutagenic, anti-allergic, antibiotic and anti-diabetic attributes, among others. Because of the very low toxicity, these terpenes are already widely used as food additives and in cosmetic products. Thus, they have been proven safe and well-tolerated.
Collapse
Affiliation(s)
- Tarmo Nuutinen
- Department of Environmental and Biological Sciences, Univerisity of Eastern Finland (UEF), Finland; Department of Physics and Mathematics, UEF, Finland.
| |
Collapse
|
33
|
Makhova NN, Fershtat LL. Recent advances in the synthesis and functionalization of 1,2,5-oxadiazole 2-oxides. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.04.070] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
34
|
Antiproliferative hydrogen sulfide releasing evodiamine derivatives and their apoptosis inducing properties. Eur J Med Chem 2018; 151:376-388. [DOI: 10.1016/j.ejmech.2018.04.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 12/26/2022]
|
35
|
Synthesis of N-substituted imidazo[4,5-e]benzo[1,2-c;3,4-c’]difuroxans. Russ Chem Bull 2018. [DOI: 10.1007/s11172-017-1991-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
36
|
Kwon YD, La MT, Kim HK. Aerobic oxidative esterification and thioesterification of aldehydes using dibromoisocyanuric acid under mild conditions: no metal catalysts required. NEW J CHEM 2018. [DOI: 10.1039/c8nj01085d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Esters and thioesters were successfully prepared through oxidative esterification and thioesterification of corresponding aldehydes in the presence of dibromoisocyanuric acid.
Collapse
Affiliation(s)
- Young-Do Kwon
- School of Energy
- Materials & Chemical Engineering
- Korea University of Technology and Education
- Cheonan 31253
- Republic of Korea
| | - Minh Thanh La
- Department of Nuclear Medicine
- Molecular Imaging & Therapeutic Medicine Research Center
- Chonbuk National University Medical School and Hospital
- Jeonju 54907
- Republic of Korea
| | - Hee-Kwon Kim
- Department of Nuclear Medicine
- Molecular Imaging & Therapeutic Medicine Research Center
- Chonbuk National University Medical School and Hospital
- Jeonju 54907
- Republic of Korea
| |
Collapse
|
37
|
Zlotin SG, Churakov AM, Dalinger IL, Luk’yanov OA, Makhova NN, Sukhorukov AY, Tartakovsky VA. Recent advances in synthesis of organic nitrogen–oxygen systems for medicine and materials science. MENDELEEV COMMUNICATIONS 2017. [DOI: 10.1016/j.mencom.2017.11.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|