1
|
Kumar P, Purohit R. Refining the Trapping of Therapeutic Agent Silybin A in Functionalized β- and γ-Cyclodextrin Cavitands for Improved Supramolecular Complexation. J Chem Inf Model 2025. [PMID: 40329594 DOI: 10.1021/acs.jcim.5c00625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Silybin A (Slym), the principal bioactive constituent of silymarin, exhibits significant therapeutic potential but suffers from poor bioavailability due to its low aqueous solubility. This study addresses this by employing cyclodextrins (CDs) as cost-effective solubilizers to enhance Slym's solubility through the formation of stable supramolecular complexes. Our findings indicate that while β-CD and γ-CD have suitable cavity sizes for Slym, their derivatives 6-O-alpha-d-Glucosyl-β-CD (G-β-CD), Heptakis-O-(4-sulfobutyl)-β-CD (SBE-β-CD), and Hydroxypropyl-γ-CD (HP-γ-CD) exhibit superior binding affinity. The binding free energy results from the MM/PBSA analysis indicated that derivatives of β-CD and γ-CD exhibit superior encapsulation efficiency for Slym compared to the unsubstituted CD forms by performing 1 μs MD simulations. Detailed mechanistic insights of these were obtained through 5 μs MD simulations and triplicate analysis, confirming the stability of these complexes over extended durations, attributed to numerous nonbonded interactions. Furthermore, full DFT calculations with M06-2X/6-31g(d) model chemistry revealed that the SBE-β-CD/Slym complex showed the most favorable complexation energy -303.82 kJ/mol than G-β-CD/Slym (-224.82 kJ/mol) and HP-γ-CD/Slym (-246.75 kJ/mol). The QM-derived IR spectrum of the SBE-β-CD/Slym complex was compared with experimental data, and nonbonded interactions between CDs and Slym were analyzed using IGMH analysis. The conformational entry of Slym into CDs was also analyzed, highlighting the potential of SBE-β-CD as an effective carrier for enhancing the solubility and pharmaceutical efficacy of Slym.
Collapse
Affiliation(s)
- Pramod Kumar
- Structural Bioinformatics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061 Himachal Pradesh, India
- Academy of Scientific & Innovative Research, Ghaziabad 201002, India
| | - Rituraj Purohit
- Structural Bioinformatics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061 Himachal Pradesh, India
- Academy of Scientific & Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
2
|
Llamedo A, Rodríguez P, Gabasa Y, Soengas RG, Rodríguez-Solla H, Elorriaga D, García-Alonso FJ, Soto SM. Liposomal formulation of a gold(III) metalloantibiotic: a promising strategy against antimicrobial resistance. Dalton Trans 2024; 53:15205-15214. [PMID: 39221630 DOI: 10.1039/d4dt01867b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A novel lipoformulation was developed by encapsulating cationic (S^C)-cyclometallated gold(III) complex [Au(dppta)(N2Py-PZ-dtc)]+ (AuPyPZ) in liposomes. The liposomal form of compound AuPyPZ has a bactericidal action similar to that of the free drug without any appreciable effect on the viability of mammalian cells. Furthermore, the nanoformulation reduces metalloantibiotic-induced inhibition of hERG and the inhibition of cytochromes, significantly decreasing the potential liabilities of the metallodrug. The obtained metalloantibiotic liposomal formulation shows high stability and suitable properties for drug delivery, representing an effective strategy to fight against drug-resistant bacteria.
Collapse
Affiliation(s)
- Alejandro Llamedo
- Nanovex Biotechnologies S.L., Parque Tecnológico de Asturias Edificio CEEI, 33428 Llanera, Spain
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo, Spain.
| | - Pablo Rodríguez
- Nanovex Biotechnologies S.L., Parque Tecnológico de Asturias Edificio CEEI, 33428 Llanera, Spain
| | - Yaiza Gabasa
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Raquel G Soengas
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo, Spain.
| | - Humberto Rodríguez-Solla
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo, Spain.
| | - David Elorriaga
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo, Spain.
| | - Francisco J García-Alonso
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo, Spain.
| | - Sara M Soto
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Mertens RT, Gukathasan S, Arojojoye AS, Olelewe C, Awuah SG. Next Generation Gold Drugs and Probes: Chemistry and Biomedical Applications. Chem Rev 2023; 123:6612-6667. [PMID: 37071737 PMCID: PMC10317554 DOI: 10.1021/acs.chemrev.2c00649] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
The gold drugs, gold sodium thiomalate (Myocrisin), aurothioglucose (Solganal), and the orally administered auranofin (Ridaura), are utilized in modern medicine for the treatment of inflammatory arthritis including rheumatoid and juvenile arthritis; however, new gold agents have been slow to enter the clinic. Repurposing of auranofin in different disease indications such as cancer, parasitic, and microbial infections in the clinic has provided impetus for the development of new gold complexes for biomedical applications based on unique mechanistic insights differentiated from auranofin. Various chemical methods for the preparation of physiologically stable gold complexes and associated mechanisms have been explored in biomedicine such as therapeutics or chemical probes. In this Review, we discuss the chemistry of next generation gold drugs, which encompasses oxidation states, geometry, ligands, coordination, and organometallic compounds for infectious diseases, cancer, inflammation, and as tools for chemical biology via gold-protein interactions. We will focus on the development of gold agents in biomedicine within the past decade. The Review provides readers with an accessible overview of the utility, development, and mechanism of action of gold-based small molecules to establish context and basis for the thriving resurgence of gold in medicine.
Collapse
Affiliation(s)
- R Tyler Mertens
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Sailajah Gukathasan
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Adedamola S Arojojoye
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Chibuzor Olelewe
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Samuel G Awuah
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- University of Kentucky Markey Cancer Center, Lexington, Kentucky 40536, United States
| |
Collapse
|
4
|
Lipiec S, Gurba A, Agnieszczak IM, Szczepankiewicz AA, Szymański P, Taciak P, Szczepaniak R, Szeleszczuk Ł, Nieznanska H, Włodarczyk J, Fichna J, Bialy LP, Mlynarczuk-Bialy I. New gold (III) cyanide complex TGS 121 induces ER stress, proteasome inhibition and death of Ras-hyperactivated cells. Toxicol In Vitro 2023; 88:105556. [PMID: 36681286 DOI: 10.1016/j.tiv.2023.105556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/20/2022] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
Metal-based agents in cancer therapy, like cisplatin and its derivates, have established clinical applications but also can induce serious side effects. Thus, metallotherapeutic alternatives for platinum derivatives are developed and intensively studied. Platinum is replaced by several transition metals including gold. Especially gold (III) complexes can have the same square-planar structure and are isoelectric with platinum (II). Hence, they are developed as potential anti-cancer drugs. Thus, our group projected and developed a group of novel cyanide-based gold (III) complexes. Within this work, we aimed to characterize the safety and effectivity of one of them, TGS 121. TGS 121 in our preliminary work was selective for Ras-hyperactivated cells. Here we studied the effects of the novel complex in cancerous Ras-3 T3 and non-cancerous NIH-3 T3 cells. The complex TGS 121 turned out to be non-toxic for NIH-3 T3 cells and to induce death and alternations in Ras-hyperactivated cells. We found induction of ER stress, mitochondria swelling, proteasome inhibition, and cell cycle block. Moreover, TGS 121 inhibited cell migration and induced the accumulation of perinuclear organelles that was secondary to proteasome inhibition. Results presented in this report suggest that stable gold-cyanide TGS 121 complex is non-toxic, with a targeted mechanism of action and it is promising in anticancer drug discovery.
Collapse
Affiliation(s)
- Szymon Lipiec
- HESA at the Department for Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland
| | - Agata Gurba
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-093 Warsaw, Poland
| | - Izabela M Agnieszczak
- HESA at the Department for Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland
| | - Andrzej Antoni Szczepankiewicz
- Laboratory of Electron Microscopy, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Ludwika Pasteura 3, 02-093 Warsaw, Poland
| | - Przemysław Szymański
- HESA at the Department for Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland
| | - Przemysław Taciak
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-093 Warsaw, Poland
| | | | - Łukasz Szeleszczuk
- Department of Physical Chemistry, Chair of Physical Pharmacy and Bioanalysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-093 Warsaw, Poland
| | - Hanna Nieznanska
- Laboratory of Electron Microscopy, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Ludwika Pasteura 3, 02-093 Warsaw, Poland
| | - Jakub Włodarczyk
- Department of Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland
| | - Lukasz P Bialy
- Department for Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland
| | - Izabela Mlynarczuk-Bialy
- Department for Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland.
| |
Collapse
|
5
|
Moreno-Alcántar G, Picchetti P, Casini A. Gold Complexes in Anticancer Therapy: From New Design Principles to Particle-Based Delivery Systems. Angew Chem Int Ed Engl 2023; 62:e202218000. [PMID: 36847211 DOI: 10.1002/anie.202218000] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 02/28/2023]
Abstract
The discovery of the medicinal properties of gold complexes has fuelled the design and synthesis of new anticancer metallodrugs, which have received special attention due to their unique modes of action. Current research in the development of gold compounds with therapeutic properties is predominantly focused on the molecular design of drug leads with superior pharmacological activities, e.g., by introducing targeting features. Moreover, intensive research aims at improving the physicochemical properties of gold compounds, such as chemical stability and solubility in the physiological environment. In this regard, the encapsulation of gold compounds in nanocarriers or their chemical grafting onto targeted delivery vectors could lead to new nanomedicines that eventually reach clinical applications. Herein, we provide an overview of the state-of-the-art progress of gold anticancer compounds, andmore importantly we thoroughly revise the development of nanoparticle-based delivery systems for gold chemotherapeutics.
Collapse
Affiliation(s)
- Guillermo Moreno-Alcántar
- Chair of Medicinal and Bioinorganic Chemistry, School of Natural Sciences, Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748, Garching b. München, Germany
| | - Pierre Picchetti
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Angela Casini
- Chair of Medicinal and Bioinorganic Chemistry, School of Natural Sciences, Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748, Garching b. München, Germany
| |
Collapse
|
6
|
Chopra H, Verma R, Kaushik S, Parashar J, Madan K, Bano A, Bhardwaj R, Pandey P, Kumari B, Purohit D, Kumar M, Bhatia S, Rahman MH, Mittal V, Singh I, Kaushik D. Cyclodextrin-Based Arsenal for Anti-Cancer Treatments. Crit Rev Ther Drug Carrier Syst 2023; 40:1-41. [PMID: 36734912 DOI: 10.1615/critrevtherdrugcarriersyst.2022038398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Anti-cancer drugs are mostly limited in their use due to poor physicochemical and biopharmaceutical properties. Their lower solubility is the most common hurdle limiting their use upto their potential. In the recent years, the cyclodextrin (CD) complexation have emerged as existing approach to overcome the problem of poor solubility. CD-based nano-technological approaches are safe, stable and showed well in vivo tolerance and greater payload for encapsulation of hydrophobic drugs for the targeted delivery. They are generally chosen due to their ability to get self-assembled to form liposomes, nanoparticles, micelles and nano-sponges etc. This review paper describes a birds-eye view of the various CD-based nano-technological approaches applied for the delivery of anti-cancer moieties to the desired target such as CD based liposomes, niosomes, niosoponges, micelles, nanoparticles, monoclonal antibody, magnetic nanoparticles, small interfering RNA, nanorods, miscellaneous formulation of anti-cancer drugs containing CD. Moreover, the author also summarizes the various shortcomings of such a system and their way ahead.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Ravinder Verma
- Department of Pharmacy, G.D. Goenka University, Sohna Road, Gurugram 122103, India
| | - Sakshi Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Jatin Parashar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Kumud Madan
- Lloyd Institute of Management and Technology (Pharm), Knowledge Park, Greater Noida, U.P., India
| | - Afsareen Bano
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak 124001, India
| | - Rashmi Bhardwaj
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak 124001, India
| | - Parijat Pandey
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram 122413, India
| | - Beena Kumari
- Department of Pharmaceutical Sciences, Indira Gandhi University, Meerpur, Rewari, India
| | - Deepika Purohit
- Department of Pharmaceutical Sciences, Indira Gandhi University, Meerpur, Rewari, India
| | - Manish Kumar
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India
| | - Saurabh Bhatia
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman; School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| |
Collapse
|
7
|
Ratia C, Soengas RG, Soto SM. Gold-Derived Molecules as New Antimicrobial Agents. Front Microbiol 2022; 13:846959. [PMID: 35401486 PMCID: PMC8984462 DOI: 10.3389/fmicb.2022.846959] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/21/2022] [Indexed: 12/03/2022] Open
Abstract
Antimicrobial resistance is considered one of the three most important health problems by the World Health Organization. The emergence and spread of an increasing number of antimicrobial-resistant microorganisms make this a worldwide problem. Antibiotic-resistant bacteria are estimated to be the cause of 33,000 deaths in Europe and 700,000 worldwide each year. It is estimated that in 2050 bacterial infections will cause 10 million deaths across the globe. This problem is concomitant with a decrease in the investment and, therefore, the discovery and marketing of new antibiotics. Recently, there have been tremendous efforts to find new effective antimicrobial agents. Gold complexes, with their broad-spectrum antimicrobial activities and unique modes of action, are particularly relevant among several families of derivatives that have been investigated. This mini review revises the role of gold-derived molecules as antibacterial agents.
Collapse
Affiliation(s)
- Carlos Ratia
- ISGlobal, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
| | - Raquel G. Soengas
- Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, Oviedo, Spain
| | - Sara M. Soto
- ISGlobal, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- *Correspondence: Sara M. Soto,
| |
Collapse
|
8
|
In Vitro Anti-SARS-CoV-2 Activity of Selected Metal Compounds and Potential Molecular Basis for Their Actions Based on Computational Study. Biomolecules 2021; 11:biom11121858. [PMID: 34944502 PMCID: PMC8699537 DOI: 10.3390/biom11121858] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/24/2022] Open
Abstract
Metal-based drugs represent a rich source of chemical substances of potential interest for the treatment of COVID-19. To this end, we have developed a small but representative panel of nine metal compounds, including both synthesized and commercially available complexes, suitable for medical application and tested them in vitro against the SARS-CoV-2 virus. The screening revealed that three compounds from the panel, i.e., the organogold(III) compound Aubipyc, the ruthenium(III) complex KP1019, and antimony trichloride (SbCl3), are endowed with notable antiviral properties and an acceptable cytotoxicity profile. These initial findings prompted us to perform a computational study to unveil the likely molecular basis of their antiviral actions. Calculations evidenced that the metalation of nucleophile sites in SARS-CoV-2 proteins or nucleobase strands, induced by Aubipyc, SbCl3, and KP1019, is likely to occur. Remarkably, we found that only the deprotonated forms of Cys and Sec residues can react favorably with these metallodrugs. The mechanistic implications of these findings are discussed.
Collapse
|
9
|
Gou Y, Huang G, Li J, Yang F, Liang H. Versatile delivery systems for non-platinum metal-based anticancer therapeutic agents. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213975] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Cirri D, Landini I, Massai L, Mini E, Maestrelli F, Messori L. Cyclodextrin Inclusion Complexes of Auranofin and Its Iodido Analog: A Chemical and Biological Study. Pharmaceutics 2021; 13:pharmaceutics13050727. [PMID: 34063389 PMCID: PMC8155929 DOI: 10.3390/pharmaceutics13050727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 01/25/2023] Open
Abstract
Auranofin (AF) and its iodido analog, i.e., Au(PEt3) I (AFI), were reported to exhibit very promising anticancer properties both in vitro and in vivo. However, both these gold compounds have a scarce aqueous solubility that hampers their pharmaceutical use. Here, we explore whether encapsulation of these metallodrugs inside hydroxypropyl-beta–cyclodextrin (HPβ–CD) may lead to an improved biopharmaceutical profile for the resulting adducts. Phase solubility studies, performed at 25 °C in an aqueous buffer, revealed, in both cases, the formation of a 1:1 drug to cyclodextrin complex; a far greater apparent stability constant (K1:1) was measured for AFI compared to AF (331 M−1 versus ca. 30 M−1). NMR studies conducted on the AFI/HPβ–CD system confirmed the formation of a stable 1:1 adduct. Then, binary systems of AF and AFI with HPβ–CD were prepared by colyophilization and characterized by DSC and PXRD. The results revealed the occurrence of drug complexation and/or amorphization for the AFI/HPβ–CD binary system. Afterwards, the antiproliferative properties of the two cyclodextrin adducts and of the corresponding free drugs were comparatively evaluated in vitro in three representative ovarian cancer cell lines, i.e., A2780, SKOV3, and IGROV-1. The results, in all cases, point out that CD complexation of the two gold drugs does not substantially affect their biological activity. The implications of these findings are discussed in the frame of the current knowledge of AF and its analogs.
Collapse
Affiliation(s)
- Damiano Cirri
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy;
| | - Ida Landini
- Department of Health Sciences, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy;
| | - Lara Massai
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy;
| | - Enrico Mini
- Department of Health Sciences, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy;
- Correspondence: (E.M.); (F.M.); (L.M.)
| | - Francesca Maestrelli
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy;
- Correspondence: (E.M.); (F.M.); (L.M.)
| | - Luigi Messori
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy;
- Correspondence: (E.M.); (F.M.); (L.M.)
| |
Collapse
|
11
|
Tundo GR, Sbardella D, Santoro AM, Coletta A, Oddone F, Grasso G, Milardi D, Lacal PM, Marini S, Purrello R, Graziani G, Coletta M. The proteasome as a druggable target with multiple therapeutic potentialities: Cutting and non-cutting edges. Pharmacol Ther 2020; 213:107579. [PMID: 32442437 PMCID: PMC7236745 DOI: 10.1016/j.pharmthera.2020.107579] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 01/10/2023]
Abstract
Ubiquitin Proteasome System (UPS) is an adaptable and finely tuned system that sustains proteostasis network under a large variety of physiopathological conditions. Its dysregulation is often associated with the onset and progression of human diseases; hence, UPS modulation has emerged as a promising new avenue for the development of treatments of several relevant pathologies, such as cancer and neurodegeneration. The clinical interest in proteasome inhibition has considerably increased after the FDA approval in 2003 of bortezomib for relapsed/refractory multiple myeloma, which is now used in the front-line setting. Thereafter, two other proteasome inhibitors (carfilzomib and ixazomib), designed to overcome resistance to bortezomib, have been approved for treatment-experienced patients, and a variety of novel inhibitors are currently under preclinical and clinical investigation not only for haematological malignancies but also for solid tumours. However, since UPS collapse leads to toxic misfolded proteins accumulation, proteasome is attracting even more interest as a target for the care of neurodegenerative diseases, which are sustained by UPS impairment. Thus, conceptually, proteasome activation represents an innovative and largely unexplored target for drug development. According to a multidisciplinary approach, spanning from chemistry, biochemistry, molecular biology to pharmacology, this review will summarize the most recent available literature regarding different aspects of proteasome biology, focusing on structure, function and regulation of proteasome in physiological and pathological processes, mostly cancer and neurodegenerative diseases, connecting biochemical features and clinical studies of proteasome targeting drugs.
Collapse
Affiliation(s)
- G R Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| | | | - A M Santoro
- CNR, Institute of Crystallography, Catania, Italy
| | - A Coletta
- Department of Chemistry, University of Aarhus, Aarhus, Denmark
| | - F Oddone
- IRCCS-Fondazione Bietti, Rome, Italy
| | - G Grasso
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - D Milardi
- CNR, Institute of Crystallography, Catania, Italy
| | - P M Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, Rome, Italy
| | - S Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - R Purrello
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - G Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - M Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
12
|
Adokoh CK. Therapeutic potential of dithiocarbamate supported gold compounds. RSC Adv 2020; 10:2975-2988. [PMID: 35496096 PMCID: PMC9048446 DOI: 10.1039/c9ra09682e] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/08/2020] [Indexed: 12/24/2022] Open
Abstract
Chrysotherapy or aurotherapy, the use of gold as medicine, is two thousand years old. Hitherto, numerous diverse gold stabilizing ligands for instance vitamins, pyridine, phosphines, naphthylamine and xanthanes have been developed and their 'chelating effect' in addition to their anti-proliferative properties have been extensively studied. Recent advances in the field of bioinorganic chemistry have led to the design of biologically relevant metal complexes with appropriate fine-tuned ligands such as metallic conjugates of dithiocarbamates (DTCs). DTC compounds have been recognised to possess diverse applications and have demonstrated interesting biological properties. For instance, the chemoprotective and antitumour properties of gold metal ions and DTC compounds respectively, presents an innovative and effective approach to cancer management. This review presents therefore the therapeutic potential of DTC ligand systems as a support for gold compounds. The importance of dithiocarbamate supported gold compounds as potential therapeutic agents is highlighted with emphasis on the therapeutic potential of gold(iii) and gold(i) dithiocarbamate derivatives.
Collapse
Affiliation(s)
- Christian K Adokoh
- Department of Forensic Sciences, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast Cape Coast Ghana
| |
Collapse
|
13
|
Yang J, Zhen L, Jiang L. Synthesis of
N,N
‐Disubstituted Thiocarbamates from Thiocarbamoyl Fluorides with Alcohols/Phenols/Thiophenols/Thioalcohols Through Copper Catalysis. ChemistrySelect 2019. [DOI: 10.1002/slct.201901294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jun Yang
- School of Chemistry and Molecular EngineeringEast China Normal University (china) 500 Dongchuan Road Shanghai 200241 China
| | - Long Zhen
- School of Chemistry and Molecular EngineeringEast China Normal University (china) 500 Dongchuan Road Shanghai 200241 China
| | - Liqin Jiang
- School of Chemistry and Molecular EngineeringEast China Normal University (china) 500 Dongchuan Road Shanghai 200241 China
| |
Collapse
|
14
|
Pettenuzzo N, Brustolin L, Coltri E, Gambalunga A, Chiara F, Trevisan A, Biondi B, Nardon C, Fregona D. Cu II and Au III Complexes with Glycoconjugated Dithiocarbamato Ligands for Potential Applications in Targeted Chemotherapy. ChemMedChem 2019; 14:1162-1172. [PMID: 31091012 DOI: 10.1002/cmdc.201900226] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/29/2019] [Indexed: 11/07/2022]
Abstract
This work is focused on the synthesis, characterization, and preliminary biological evaluation of bio-conjugated AuIII and CuII complexes with the aim of overcoming the well-known side effects of chemotherapy by improving the selective accumulation of an anticancer metal payload in malignant cells. For this purpose, carbohydrates were chosen as targeting agents, exploiting the Warburg effect that accounts for the overexpression of glucose-transporter proteins (in particular GLUTs) in the phospholipid bilayer of most neoplastic cells. We linked the dithiocarbamato moiety to the C1 position of three different monosaccharides: d-glucose, d-galactose, and d-mannose. Altogether, six complexes with a 1:2 metal-to-ligand stoichiometry were synthesized and in vitro tested as anticancer agents. One of them showed high cytotoxic activity toward the HCT116 colorectal human carcinoma cell line, paving the way to future in vivo studies aimed at evaluating the role of carbohydrates in the selective delivery of whole molecules into cancerous cells.
Collapse
Affiliation(s)
- Nicolò Pettenuzzo
- Department of Chemical Sciences (DISC), University of Padova, Via Marzolo 1, 35131, Padova, Italy.,Department of Surgical, Oncological and Gastroenterological Sciences (DISCOG), University of Padova, Via Giustiniani 2, 35128, Padova, Italy
| | - Leonardo Brustolin
- Department of Chemical Sciences (DISC), University of Padova, Via Marzolo 1, 35131, Padova, Italy.,Department of Surgical, Oncological and Gastroenterological Sciences (DISCOG), University of Padova, Via Giustiniani 2, 35128, Padova, Italy
| | - Elisa Coltri
- Department of Chemical Sciences (DISC), University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Alberto Gambalunga
- Department of Cardio-Thoraco-Vascular Sciences and Public Health (DCTV), University of Padova, Via Giustiniani 2, 35128, Padova, Italy
| | - Federica Chiara
- Department of Cardio-Thoraco-Vascular Sciences and Public Health (DCTV), University of Padova, Via Giustiniani 2, 35128, Padova, Italy
| | - Andrea Trevisan
- Department of Cardio-Thoraco-Vascular Sciences and Public Health (DCTV), University of Padova, Via Giustiniani 2, 35128, Padova, Italy
| | - Barbara Biondi
- Institute of Biomolecular Chemistry, Padova Unit, CNR, Via Marzolo 1, 35131, Padova, Italy
| | - Chiara Nardon
- Department of Chemical Sciences (DISC), University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Dolores Fregona
- Department of Chemical Sciences (DISC), University of Padova, Via Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
15
|
Lu C, Hu L, Zhao B, Yao Y. Addition of Thiols to Isocyanates Catalyzed by Simple Rare-Earth-Metal Amides: Synthesis of S-Alkyl Thiocarbamates and Dithiocarbamates. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Altaf M, Casagrande N, Mariotto E, Baig N, Kawde AN, Corona G, Larcher R, Borghese C, Pavan C, Seliman AA, Aldinucci D, Isab AA. Potent In Vitro and In Vivo Anticancer Activity of New Bipyridine and Bipyrimidine Gold (III) Dithiocarbamate Derivatives. Cancers (Basel) 2019; 11:cancers11040474. [PMID: 30987271 PMCID: PMC6521029 DOI: 10.3390/cancers11040474] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/12/2019] [Accepted: 03/18/2019] [Indexed: 11/16/2022] Open
Abstract
We synthesized eight new bipyridine and bipyrimidine gold (III) dithiocarbamate-containing complexes (C1-C8) and tested them in a panel of human cancer cell lines. We used osteosarcoma (MG-63), lung (A549), prostate (PC3 and DU145), breast (MCF-7), ovarian (A2780 and A2780cis, cisplatin- and doxorubicin-resistant), and cervical (ME-180 and R-ME-180, cisplatin resistant) cancer cell lines. We found that C2, C3, C6, and C7 were more cytotoxic than cisplatin in all cell lines tested and overcame cisplatin and doxorubicin resistance in A2780cis and R-ME-180 cells. In the PC3 prostate cancer cell line, the gold (III) complex C6 ([Au₂(BPM)(DMDTC)₂]Cl₄) induced apoptosis and double-stranded DNA breaks, modified cell cycle phases, increased Reactive Oxigen Species (ROS) generation, and reduced thioredoxin reductase and proteasome activities. It inhibited PC3 cell migration and was more cytotoxic against PC3 cells than normal human adipose-derived stromal cells. In mice bearing PC3 tumor xenografts, C6 reduced tumor growth by more than 70% without causing weight loss. Altogether, our results demonstrate the anticancer activity of these new gold (III) complexes and support the potential of C6 as a new agent for prostate cancer treatment.
Collapse
Affiliation(s)
- Muhammad Altaf
- Department of Chemistry, GC University, Lahore 54000, Pakistan.
| | - Naike Casagrande
- Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy.
| | - Elena Mariotto
- Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy.
| | - Nadeem Baig
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| | - Abdel-Nasser Kawde
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| | - Giuseppe Corona
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy.
| | - Roberto Larcher
- Center for Technological Transfer, Edmund Mach Foundation, 38010 Trento, Italy.
| | - Cinzia Borghese
- Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy.
| | - Claudia Pavan
- Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy.
| | - Adam A Seliman
- Lab Technical Support Office (LTSO), King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| | - Donatella Aldinucci
- Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy.
| | - Anvarhusein A Isab
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| |
Collapse
|
17
|
Abyar F, Tabrizi L. New multinuclear Scaffold molybdocene-gold lidocaine complex: DNA/HSA binding, molecular docking, cytotoxicity and mechanistic insights. J Biomol Struct Dyn 2018; 37:3366-3378. [DOI: 10.1080/07391102.2018.1515114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fatemeh Abyar
- Chemical Engineering Department, Faculty of Engineering, Ardakan University, Ardakan, Iran
| | - Leila Tabrizi
- School of Chemistry, National University of Ireland, Galway, Galway, Ireland
| |
Collapse
|
18
|
Andrew FP, Ajibade PA. Synthesis, characterization and anticancer studies of bis-(N-methyl-1-phenyldithiocarbamato) Cu(II), Zn(II), and Pt(II) complexes: single crystal X-ray structure of the copper complex. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1489537] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Fartisincha P. Andrew
- School of Chemistry and Physics, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| | - Peter A. Ajibade
- School of Chemistry and Physics, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| |
Collapse
|
19
|
Quero J, Cabello S, Fuertes T, Mármol I, Laplaza R, Polo V, Gimeno MC, Rodriguez-Yoldi MJ, Cerrada E. Proteasome versus Thioredoxin Reductase Competition as Possible Biological Targets in Antitumor Mixed Thiolate-Dithiocarbamate Gold(III) Complexes. Inorg Chem 2018; 57:10832-10845. [DOI: 10.1021/acs.inorgchem.8b01464] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Javier Quero
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
- Departamento de Farmacología y Fisiología, Unidad de Fisiología, Facultad de Veterinaria, CIBERobn, IIS, Aragón IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Silvia Cabello
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Teresa Fuertes
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
- Departamento de Farmacología y Fisiología, Unidad de Fisiología, Facultad de Veterinaria, CIBERobn, IIS, Aragón IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Inés Mármol
- Departamento de Farmacología y Fisiología, Unidad de Fisiología, Facultad de Veterinaria, CIBERobn, IIS, Aragón IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Ruben Laplaza
- Departamento de Química Física, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Victor Polo
- Departamento de Química Física, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - M. Concepción Gimeno
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - M. Jesús Rodriguez-Yoldi
- Departamento de Farmacología y Fisiología, Unidad de Fisiología, Facultad de Veterinaria, CIBERobn, IIS, Aragón IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Elena Cerrada
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| |
Collapse
|
20
|
Use of Glycosyl Dithiocarbamates: Small Molecule ‘Turn-on’ Fluorescent Probe for Carbohydrate Binding Proteins. ChemistrySelect 2018. [DOI: 10.1002/slct.201702683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
21
|
Soave CL, Guerin T, Liu J, Dou QP. Targeting the ubiquitin-proteasome system for cancer treatment: discovering novel inhibitors from nature and drug repurposing. Cancer Metastasis Rev 2017; 36:717-736. [PMID: 29047025 PMCID: PMC5722705 DOI: 10.1007/s10555-017-9705-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the past 15 years, the proteasome has been validated as an anti-cancer drug target and 20S proteasome inhibitors (such as bortezomib and carfilzomib) have been approved by the FDA for the treatment of multiple myeloma and some other liquid tumors. However, there are shortcomings of clinical proteasome inhibitors, including severe toxicity, drug resistance, and no effect in solid tumors. At the same time, extensive research has been conducted in the areas of natural compounds and old drug repositioning towards the goal of discovering effective, economical, low toxicity proteasome-inhibitory anti-cancer drugs. A variety of dietary polyphenols, medicinal molecules, metallic complexes, and metal-binding compounds have been found to be able to selectively inhibit tumor cellular proteasomes and induce apoptotic cell death in vitro and in vivo, supporting the clinical success of specific 20S proteasome inhibitors bortezomib and carfilzomib. Therefore, the discovery of natural proteasome inhibitors and researching old drugs with proteasome-inhibitory properties may provide an alternative strategy for improving the current status of cancer treatment and even prevention.
Collapse
Affiliation(s)
- Claire L Soave
- Barbara Ann Karmanos Cancer Institute, and Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University, 540.1 HWCRC, 4100 John R Road, Detroit, MI, 48201-2013, USA
| | - Tracey Guerin
- Barbara Ann Karmanos Cancer Institute, and Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University, 540.1 HWCRC, 4100 John R Road, Detroit, MI, 48201-2013, USA
| | - Jinbao Liu
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Q Ping Dou
- Barbara Ann Karmanos Cancer Institute, and Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University, 540.1 HWCRC, 4100 John R Road, Detroit, MI, 48201-2013, USA.
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China.
| |
Collapse
|