1
|
Choo MZY, Lim ET, Wong WSF, Chai CLL. Discovery of an NF-κB1 p105 Degrader for Anti-Inflammatory Therapy via Structural Optimization of the Coumarin Natural Product Minutuminolate. J Med Chem 2025. [PMID: 40378174 DOI: 10.1021/acs.jmedchem.5c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
In this study, the coumarin natural product minutuminolate (MNT) was used as a starting point for the development of anti-inflammatory agents. Through structure-activity relationship studies, a lead compound MD-1 was designed and synthesized, exhibiting significantly improved anti-inflammatory activities. Mechanistic studies revealed that MD-1 is a degrader of the p105 subunit of NF-κB. Gene knockdown experiments further showed that the Cullin-ring ligase (CRL) SCFβTrCP is involved in MD-1-induced p105 degradation. This leads to suppressed NF-κB transcriptional activity, which is consistent with its potent anti-inflammatory effects. Taken together, our work challenges the longstanding notion that NF-κB is undruggable, as we demonstrate that the p105 subunit of NF-κB is indeed tractable with small molecules. More importantly, our study highlights that natural products are valuable starting points for the discovery and development of anti-inflammatory agents with novel mechanisms of action.
Collapse
Affiliation(s)
- Malcolm Z Y Choo
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, 117543 Singapore
| | - En Tong Lim
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, 117543 Singapore
| | - W S Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, 16 Medical Drive, 117600 Singapore
- Drug Discovery and Optimization Platform, Yong Loo Lin School of Medicine, National University Health System, 117600 Singapore
| | - Christina L L Chai
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, 117543 Singapore
| |
Collapse
|
2
|
Wu J, Zhang M, Tao J, Liu M, Xiong J, Jiang T, Wang Y, Li X, Li Y, Yin C, Zhang S, Liu X, Zhang Y. Structural characterization, derivatization, and bioactivities of secondary metabolites produced by termite-associated Streptomyces lannensis BYF-106. Microbiol Spectr 2025; 13:e0181824. [PMID: 40231832 PMCID: PMC12054111 DOI: 10.1128/spectrum.01818-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 02/24/2025] [Indexed: 04/16/2025] Open
Abstract
Two new C-glycoside angucycline-related analogs, urdamycin Y (1) and grincamycin W (2), as well as eight known metabolites (3-10), were identified from termite-associated Streptomyces lannensis BYF-106 based on global natural products social molecular networking (GNPS). The putative biosynthetic pathways of urdamycin Y (1) and grincamycin W (2) were proposed using bioinformatic analysis of the full genome of S. lannensis BYF-106. In addition, four new derivative compounds (4A, 5A, 6A, and 6B) were synthesized via acetylation and methylation, respectively. Partial compounds were evaluated in vitro for antibacterial, anti-inflammatory, and cytotoxic activities. Vineomycinone B2 (3), fridamycin D (4), and 6-hydroxytetrangulol (5) displayed broad-spectrum antibacterial activities against S. aureus, methicillin-resistant S. aureus, and P. syringae pv. actinidae. Furthermore, urdamycin Y (1) exhibited potent inhibition on NO production, with an IC50 value of 4.8 µM, which was comparable to that of Bay11-7082 with an IC50 value of 2.1 µM. Subsequently, the possible anti-inflammatory mechanism of urdamycin Y (1) was explored by molecular docking simulation. Finally, most of the tested metabolites showed significant cytotoxic activities against HCT-116, HT-29, and A375. Notably, 6-hydroxytetrangulol (5) and the acetyl derivative 5A showed extremely strong cytotoxic activities against HCT-116, with IC50 values of 9.8 and 2.2 µM, respectively. Moreover, 5A showed extremely strong cytotoxic activity against A375 (IC50 <0.2 µM), and the conceivable cytotoxic activity mechanism was also proposed by molecular docking. These findings indicated metabolites of insect-associated S. lannensis BYF-106 might be a potential source for developing new bioactive drugs in food, agriculture, and biomedical fields.IMPORTANCEFrequent attention to soil microorganisms has led to the rediscovery of known compounds. By contrast, insect-associated Streptomyces have been shown to produce a more diverse array of unique bioactive secondary metabolites compared to soil Streptomyces. In our ongoing effort to explore structurally diverse bioactive natural products from termite-associated Streptomyces, we discovered that the strain S. lannensis BYF-106 exhibited potent bioactivity. Chemical investigation of BYF-106 resulted in the isolation of two new C-glycoside angucycline-related analogs: urdamycin Y (1) and grincamycin W (2). In addition, four new derivative compounds (4A, 5A, 6A, and 6B) were synthesized through acetylation and methylation, respectively. Urdamycin Y (1) exhibited a strong inhibitory effect on NO production, and most of the tested metabolites showed significant cytotoxic activity. These findings indicate that the metabolites of BYF-106 may offer promising avenues for the exploration and development of new bioactive drugs.
Collapse
Affiliation(s)
- Jun Wu
- School of Life Science, Anhui Agricultural University, Hefei, China
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China
| | - Miao Zhang
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Jian Tao
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - MengRu Liu
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - JianHao Xiong
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - TaoShan Jiang
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - YaXuan Wang
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - XiaoHong Li
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - YueYue Li
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - CaiPing Yin
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - ShuXiang Zhang
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - XinHua Liu
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - YingLao Zhang
- School of Life Science, Anhui Agricultural University, Hefei, China
| |
Collapse
|
3
|
Huang L, Liu W, Lv X, Ge X, He Z, Yang Y, Tang Y, Wang L, Zeng J, Cheng P. Rational design, synthesis and anti-inflammatory activity of 6-substituted dihydrobenzophenanthridine derivatives. Bioorg Med Chem 2025; 122:118145. [PMID: 40056889 DOI: 10.1016/j.bmc.2025.118145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 03/10/2025]
Abstract
a series of 6-substituted dihydrobenzophenanthridine alkaloids were synthesized by introduction of different functional groups to C-6 of dihydrobenzophenanthridine backbone. The preliminary anti-inflammatory activities of all compounds were screened by investigating the inhibitory ability on NO production in LPS-stimulated RAW 264.7 cells. Among synthesized compounds, 6-(N-phenyl)-aminocarbonyl methyl dihydrochelerythrine (compound 12b) showed increased anti-inflammatory ability and decreased cytotoxicity and could inhibit the expression of pro-inflammatory factors TNF-α and IL-6 in RAW 264.7 macrophages. The anti-inflammatory ability of compound 12b was further evaluated using DSS-induced mice colitis models based on colonic tissue damage assessment, histopathological assessment and immunohistochemical analysis. In vivoexperiment revealed that compound 12b had good alleviating effect on acute colitis in mice. In conclusion, compound 12b may be a promising anti-inflammatory lead compound.
Collapse
Affiliation(s)
- Lei Huang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Chinese Medicinal Materials Breeding Innovation Center of Yuelushan Laboratory, Changsha 410128, Hunan, China
| | - Wei Liu
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Chinese Medicinal Materials Breeding Innovation Center of Yuelushan Laboratory, Changsha 410128, Hunan, China
| | - Xinye Lv
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Chinese Medicinal Materials Breeding Innovation Center of Yuelushan Laboratory, Changsha 410128, Hunan, China
| | - Xiaomei Ge
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Chinese Medicinal Materials Breeding Innovation Center of Yuelushan Laboratory, Changsha 410128, Hunan, China
| | - Zhehao He
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Chinese Medicinal Materials Breeding Innovation Center of Yuelushan Laboratory, Changsha 410128, Hunan, China
| | - Yingxue Yang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Chinese Medicinal Materials Breeding Innovation Center of Yuelushan Laboratory, Changsha 410128, Hunan, China
| | - Yuhui Tang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Chinese Medicinal Materials Breeding Innovation Center of Yuelushan Laboratory, Changsha 410128, Hunan, China
| | - Lin Wang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Chinese Medicinal Materials Breeding Innovation Center of Yuelushan Laboratory, Changsha 410128, Hunan, China
| | - Jianguo Zeng
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Chinese Medicinal Materials Breeding Innovation Center of Yuelushan Laboratory, Changsha 410128, Hunan, China.
| | - Pi Cheng
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Chinese Medicinal Materials Breeding Innovation Center of Yuelushan Laboratory, Changsha 410128, Hunan, China.
| |
Collapse
|
4
|
Bhattacharyya J, Saikia L, Kalita V, Dutta PP. An Updated Review on the Anti-Inflammatory Potential of Phyllanthus Genus. Chem Biodivers 2025:e202402483. [PMID: 40271556 DOI: 10.1002/cbdv.202402483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 04/05/2025] [Accepted: 04/15/2025] [Indexed: 04/25/2025]
Abstract
The Phyllanthus genus, known for its therapeutic efficacy in traditional and folk medicine, has been extensively investigated for its anti-inflammatory properties. This review systematically evaluates the existing literature on various Phyllanthus species, with a focus on their potential as medicinal agents for managing inflammatory conditions. Notably, extracts, fractions and bioactive phytoconstituents, predominantly phenolic derivatives and cleistanthane-type diterpenoids from species such as Phyllanthus emblica, Phyllanthus niruri, Phyllanthus amarus, Phyllanthus acidus, Phyllanthus muellerianus, Phyllanthus reticulatus, Phyllanthus rheophyticus, Phyllanthus fraternus, Phyllanthus glaucus, Phyllanthus urinaria, Phyllanthus nivosus and Phyllanthus orbicularis, have demonstrated anti-inflammatory activity. These effects are primarily facilitated through the reduction of pro-inflammatory cytokine production, inhibition of prostaglandin and nitric oxide synthesis, inhibition of inflammatory mediators such as COX-2, NOX, and LOX, and increase the production of anti-inflammatory cytokines. In addition, the suppression of inflammation is achieved via the modulation of critical signalling pathways, including NF-κB, Nrf2, extracellular signal-regulated kinase (ERK)/c-Jun N-terminal kinase (JNK) and mitogen-activated protein kinase (MAPK). Despite these promising findings, limited clinical studies assessing the anti-inflammatory efficacy of Phyllanthus species, underscoring the need for rigorous future research to fully elucidate their therapeutic potential.
Collapse
Affiliation(s)
| | - Lunasmrita Saikia
- Faculty of Pharmaceutical Science, Assam down town University, Guwahati, Assam, India
| | - Violina Kalita
- Faculty of Pharmaceutical Science, Assam down town University, Guwahati, Assam, India
- Department of Pharmaceutics, NEF College of Pharmacy, Guwahati, Assam, India
| | - Partha Pratim Dutta
- Faculty of Pharmaceutical Science, Assam down town University, Guwahati, Assam, India
| |
Collapse
|
5
|
Wu J, Wang Y, Wang Y, Li X, Li Y, Zhang M, Xiong J, Yin C, Zhang S, Liu X, Zhang Y. A combination of genome mining with OSMAC strategy facilitates the discovery of bioactive metabolites produced from termite-associated Streptomyces tanashiensis BYF-112. PEST MANAGEMENT SCIENCE 2025; 81:2364-2378. [PMID: 39797495 DOI: 10.1002/ps.8640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/20/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025]
Abstract
BACKGROUND Previously, eight new alkaloids were obtained from the fermentation extract of termite-associated Streptomyces tanashiensis BYF-112. However, genome analysis indicated the presence of many undiscovered secondary metabolites in S. tanashiensis BYF-112. RESULTS Herein, 12 new alkaloids, tianwuine A-E (1-5), cephalandole C (6), venezuelines I-L (7-10), N-(4-methylphenyl-2-hydroxy) formamide (11) and N-(5-formyl-2-hydroxyphenyl) formamide (12), as well as three known metabolites (13-15) were discovered from BYF-112 based on a combination of genome mining and the one strain many compounds (OSMAC) strategy. Plausible biosynthetic pathways of 1-13 were proposed using bioinformatic analysis of the full genome of BYF-112. Partial metabolites were evaluated in vitro for their antibacterial, phytotoxic, and anti-inflammatory activities. Pyrroloformamide A (14) showed strong antibacterial activities against Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, Pseudomonas syringae pv. actinidae, Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola at a concentration of 50 μg per 6 mm disk. Simultaneously, pyrroloformamide A (14) also had a strong inhibitory effect on the radicle growth of Echinochloa crusgalli with an inhibition rate of 98.01% at a concentration of 100 μg/mL, equivalent to the positive 2,4-dichlorophenoxyacetic acid. Subsequently, the possible herbicidal mechanism of 14 was explored using molecular docking simulation. In addition, venezueline G (13) displayed a strong inhibitory effect of NO production, with an half-maximal inhibitory concentration (IC50) value of 2.3 μm, which was comparable with that of BAY 11-7082 with an IC50 value of 2.1 μm. CONCLUSION These findings revealed a perspective for the development of novel bioactive drugs in the food, agricultural, and biomedical fields utilizing the metabolites of BYF-112. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jun Wu
- School of Life Science, Anhui Agricultural University, Hefei, China
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China
| | - YiHeng Wang
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - YaXuan Wang
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - XiaoHong Li
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - YueYue Li
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Miao Zhang
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - JianHao Xiong
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - CaiPing Yin
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - ShuXiang Zhang
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - XinHua Liu
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - YingLao Zhang
- School of Life Science, Anhui Agricultural University, Hefei, China
| |
Collapse
|
6
|
Baaiu BS, Saleh NM, Alshref Aldirsi AF, Abdel-Aziem A. Synthesis of new coumarin derivatives and assessment of their antimicrobial efficacy. Future Med Chem 2025; 17:9-18. [PMID: 39665641 DOI: 10.1080/17568919.2024.2437974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024] Open
Abstract
AIM Developing new antimicrobial agents in response to the urgent challenge of antimicrobial resistance. METHODS Synthesis of the targeted coumarins, elucidation of their structures using spectroscopic tools, and investigation of their antimicrobial activity. RESULTS Coumarin-pyrazole 11 with CF3 in the 3-position of the pyrazole ring displayed the lowest minimum inhibitory concentrations (MICs) and the minimum bactericidal concentrations (MBCs) with values of 1.95 and 15.6 µg/ml, respectively, against Bacillus pumilis. In addition, it exhibited the best inhibitory activity against Saccharomyces cerevisiae (MIC = 3.91 µg/ml) compared to the rest of the derivatives (7.81-62.5 µg/ml). Surprisingly, coumarin 14 with the S-CH3 group had higher ability to inhibit the Staphylococcus faecalis strain with an MIC value of 1.95 µg/ml, which is twice that of penicillin G (MIC = 3.91 µg/ml). At the same time, compounds 6, 8, 11, 16, and penicillin G showed similar activity with an MIC value of 3.91 µg/ml against Staphylococcus faecalis. Also, the lowest MIC value (3.91 µg/ml) was obtained for S-CH3 derivative 14 against Enterobacter cloacae. Coumarins 14 and 1,3,4-thiadiazine derivative 6 recorded the lowest MBC (15.6 µg/ml) against Escherichia coli. CONCLUSION Finally, it can be concluded that some designed coumarins have a high potential to act as potent antimicrobial agents. Some of them displayed higher efficacy than or equal to the reference drug.
Collapse
Affiliation(s)
- Basma Saad Baaiu
- Department of Chemistry, Faculty of Science, Benghazi University, Benghazi, Libya
| | - Nashwa M Saleh
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | | | - Anhar Abdel-Aziem
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
7
|
Liu K, Xia J, Li Y, Li BB, Wang MQ, Zhou Q, Ma ML, He QR, Yang WQ, Liu DF, Wang ZY, Yang LL, Zhang YY. Discovery of Novel Coumarin Pleuromutilin Derivatives as Potent Anti-MRSA Agents. J Med Chem 2024; 67:21030-21048. [PMID: 39603597 DOI: 10.1021/acs.jmedchem.4c01678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Treating methicillin-resistant Staphylococcus aureus (MRSA) infection remains one of the most difficult challenges in clinical practice, primarily due to the resistance of MRSA to multiple antibiotics. Therefore, there is an urgent need to develop novel antibiotics with high efficacy and low cross-resistance rates. In this study, a series of novel pleuromutilin derivatives with coumarin structures were synthesized and subsequently assessed for their biological activities. Most of these derivatives showed potent antimicrobial activity against drug-resistant Gram-positive bacterial strains. Compound 14b displayed particularly rapid bactericidal effects, slow resistance development, and low cytotoxicity. Moreover, it decreased bacterial loads in the lung, liver, kidney, spleen, and heart and exhibited better antibacterial efficacy (ED50 = 11.16 mg/kg) than tiamulin (ED50 = 28.93 mg/kg) in a mouse model of systemic MRSA infection. Both in vitro and in vivo analyses suggest that compound 14b is a promising agent for the treatment of MRSA infections.
Collapse
Affiliation(s)
- Kai Liu
- School of Science, Xihua University, Chengdu 610039, China
| | - Jing Xia
- School of Science, Xihua University, Chengdu 610039, China
| | - Yun Li
- School of Science, Xihua University, Chengdu 610039, China
| | - Bing-Bing Li
- School of Science, Xihua University, Chengdu 610039, China
| | - Meng-Qian Wang
- School of Science, Xihua University, Chengdu 610039, China
| | - Qian Zhou
- School of Science, Xihua University, Chengdu 610039, China
| | - Meng-Lin Ma
- School of Science, Xihua University, Chengdu 610039, China
| | - Qiu-Rong He
- West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Wei-Qing Yang
- School of Science, Xihua University, Chengdu 610039, China
| | - Dong-Fang Liu
- School of Science, Xihua University, Chengdu 610039, China
| | - Zhou-Yu Wang
- School of Science, Xihua University, Chengdu 610039, China
| | - Ling-Ling Yang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Yuan-Yuan Zhang
- School of Science, Xihua University, Chengdu 610039, China
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu 610041, China
| |
Collapse
|
8
|
Chen L, Wang K, Liu X, Wang L, Zou H, Hu S, Zhou L, Li R, Cao S, Ruan B, Cui Q. Design, synthesis, in vitro and in vivo biological evaluation of pterostilbene derivatives for anti-inflammation therapy. J Enzyme Inhib Med Chem 2024; 39:2315227. [PMID: 38421003 PMCID: PMC10906133 DOI: 10.1080/14756366.2024.2315227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/07/2024] [Indexed: 03/02/2024] Open
Abstract
Pterostilbene (PST) is a naturally derived stilbene compound in grapes, blueberries, and other fruits. It is also a natural dietary compound with a wide range of biological activities such as antioxidant, anti-inflammatory, antitumor, and so on. Structural modifications based on the chemical scaffold of the pterostilbene skeleton are of great importance for drug discovery. In this study, pterostilbene skeletons were used to design novel anti-inflammatory compounds with high activity and low toxicity. A total of 30 new were found and synthesised, and their anti-inflammatory activity and safety were screened. Among them, compound E2 was the most active (against NO: IC50 = 0.7 μM) than celecoxib. Further studies showed that compound E2 exerted anti-inflammatory activity by blocking LPS-induced NF-κB/MAPK signalling pathway activation. In vivo experiments revealed that compound E2 had a good alleviating effect on acute colitis in mice. In conclusion, compound E2 may be a promising anti-inflammatory lead compound.
Collapse
Affiliation(s)
- Liuzeng Chen
- School of Biology, Food and Environment, Hefei University, Hefei, P. R. China
| | - Ke Wang
- School of Biology, Food and Environment, Hefei University, Hefei, P. R. China
| | - Xiaohan Liu
- School of Biology, Food and Environment, Hefei University, Hefei, P. R. China
| | - Lifan Wang
- School of Biology, Food and Environment, Hefei University, Hefei, P. R. China
| | - Hui Zou
- School of Biology, Food and Environment, Hefei University, Hefei, P. R. China
| | - Shuying Hu
- School of Biology, Food and Environment, Hefei University, Hefei, P. R. China
| | - Lingling Zhou
- School of Biology, Food and Environment, Hefei University, Hefei, P. R. China
| | - Rong Li
- School of Biology, Food and Environment, Hefei University, Hefei, P. R. China
| | - Shiying Cao
- School of Biology, Food and Environment, Hefei University, Hefei, P. R. China
| | - Banfeng Ruan
- School of Biology, Food and Environment, Hefei University, Hefei, P. R. China
| | - Quanren Cui
- Institute of Tobacoo Research, Anhui Academy of Agricultural Sciences, Hefei, P. R. China
| |
Collapse
|
9
|
Dwivedi S, Dey S, Sau A. Sugar functionalized coumarin motifs: Synthesis and applications. Carbohydr Res 2024; 544:109244. [PMID: 39180880 DOI: 10.1016/j.carres.2024.109244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
Sugars are vital biomolecules widely found in nature, playing an indispensable role in a plethora of biological processes. Similarly, coumarins are heterocycles with an effective pharmacophore skeleton, making them crucial in drug design and development. Coupling carbohydrate moieties to the small biologically active molecules creates a vast library of glycoconjugates with impressive structural diversity. The potential of coumarin glycosides is being extensively explored due to their broad spectrum of applications, including antibacterial, anticancer, and anticoagulant properties, etc. This review highlights various chemical methodologies for synthesizing diverse coumarin glycohybrids with distinct linkages and explores their immense biological potential, making a significant contribution to the field of organic synthesis.
Collapse
Affiliation(s)
- Shubhi Dwivedi
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, 502285 Sangareddy, Telangana, India
| | - Soumyadip Dey
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, 502285 Sangareddy, Telangana, India
| | - Abhijit Sau
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, 502285 Sangareddy, Telangana, India.
| |
Collapse
|
10
|
Saylan Y, Aliyeva N, Eroglu S, Denizli A. Nanomaterial-Based Sensors for Coumarin Detection. ACS OMEGA 2024; 9:30015-30034. [PMID: 39035881 PMCID: PMC11256117 DOI: 10.1021/acsomega.4c01945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024]
Abstract
Sensors are widely used owing to their advantages including excellent sensing performance, user-friendliness, portability, rapid response, high sensitivity, and specificity. Sensor technologies have been expanded rapidly in recent years to offer many applications in medicine, pharmaceuticals, the environment, food safety, and national security. Various nanomaterial-based sensors have been developed for their exciting features, such as a powerful absorption band in the visible region, excellent electrical conductivity, and good mechanical properties. Natural and synthetic coumarin derivatives are attracting attention in the development of functional polymers and polymeric networks for their unique biological, optical, and photochemical properties. They are the most abundant organic molecules in medicine because of their biological and pharmacological impacts. Furthermore, coumarin derivatives can modulate signaling pathways that affect various cellular processes. This review covers the discovery of coumarins and their derivatives, the integration of nanomaterial-based sensors, and recent advances in nanomaterial-based sensing for coumarins. This review also explains how sensors work, their types, their pros and cons, and sensor studies for coumarin detection in recent years.
Collapse
Affiliation(s)
- Yeşeren Saylan
- Department
of Chemistry, Hacettepe University, 06800 Ankara, Turkey
| | - Nilufer Aliyeva
- Department
of Chemistry, Hacettepe University, 06800 Ankara, Turkey
| | - Seckin Eroglu
- Department
of Biological Sciences, Middle East Technical
University, 06800 Ankara, Turkey
| | - Adil Denizli
- Department
of Chemistry, Hacettepe University, 06800 Ankara, Turkey
| |
Collapse
|
11
|
Majhi A, Venkateswarlu K, Sasikumar P. Coumarin Based Fluorescent Probe for Detecting Heavy Metal Ions. J Fluoresc 2024; 34:1453-1483. [PMID: 37581754 DOI: 10.1007/s10895-023-03372-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/25/2023] [Indexed: 08/16/2023]
Abstract
Heavy metals such as Iron, Copper, and Zinc are micro-essential trace metal and involve animportant biological role, but it quickly turns toxic at exceeding the permissible limit, causing gastrointestinal irritation, liver, bone, and kidney damage, as well as disorders including Wilson's, Parkinson's, and Alzheimer's. It is important to detect the metal ions as well as their concentration quickly and affordable cost using organic probes. Among the organic probes,the coumarin fluorescent probe shows a very prominent candidate with heavy metal ions. Therefore, in the present review, we reviewed the very recent literature the identify the heavy metals using modified coumarin fluorescent probes. Readers will get information quickly about the method of preparation of modified coumarin core and their use as fluorescent probes with heavy metals using absorption and emission spectroscopic methods along with the probable mechanistic pathway of detection.
Collapse
Affiliation(s)
- Anjoy Majhi
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India.
| | - Katta Venkateswarlu
- Laboratory for Synthetic and Natural Products Chemistry, Department of Chemistry, Yogi Vemana University, Kadapa, 516005, India
| | - Palani Sasikumar
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India.
| |
Collapse
|
12
|
Feng Q, Yan H, Feng Y, Cui L, Hussain H, Park JH, Kwon SW, Xie L, Zhao Y, Zhang Z, Li J, Wang D. Characterization of the structure, anti-inflammatory activity and molecular docking of a neutral polysaccharide separated from American ginseng berries. Biomed Pharmacother 2024; 174:116521. [PMID: 38593700 DOI: 10.1016/j.biopha.2024.116521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Abstract
AIM American ginseng berries, grown in the aerial parts and harvested in August, are a potentially valuable material. The aim of the study was to analyze the specific polysaccharides in American ginseng berries, and to demonstrate the anti-inflammation effect through in vitro and in vivo experiments and molecular docking. METHODS After deproteinization and dialysis, the extracted crude polysaccharide was separated and purified. The structure of the specific isolated polysaccharide was investigated by Fourier Transform infrared spectroscopy (FT-IR), GC-MS and nuclear magnetic resonance (NMR), and anti-inflammatory activity was evaluated using in vitro and in vivo models (Raw 264.7 cells and zebrafish). Molecular docking was used to analyze the binding capacity and interaction with cyclooxygenase-2 (COX-2). RESULTS A novel neutral polysaccharide fraction (AGBP-A) was isolated from American ginseng berries. The structural analysis demonstrated that AGBP-A had a weight-average molecular weight (Mw) of 122,988 Da with a dispersity index (Mw/Mn) value of 1.59 and was composed of arabinose and galactose with a core structure containing →6)-Gal-(1→ residues as the backbone and a branching substitution at the C3 position. The side-chains comprised of α-L-Ara-(1→, α-L-Ara-(1→, →5)-α-L-Ara-(1→, β-D-Gal-(1→. The results showed that it significantly decreased pro-inflammatory cytokines in the cell model. In a zebrafish model, AGBP-A reduced the massive recruitment of neutrophils to the caudal lateral line neuromast, suggesting the relief of inflammation. Molecular docking was used to analyze the combined capacity and interaction with COX-2. CONCLUSION Our study indicated the potential efficacy of AGBP-A as a safe and valid natural anti-inflammatory component.
Collapse
Affiliation(s)
- Qixiang Feng
- Medicine and Food R&D and Health Product Creation International Joint Laboratory, Biological Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze 274000, China; School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Huijiao Yan
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Yu Feng
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Li Cui
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale) D-06120, Germany
| | - Jeong Hill Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | - Sung Won Kwon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | - Lei Xie
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yan Zhao
- Medicine and Food R&D and Health Product Creation International Joint Laboratory, Biological Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze 274000, China
| | - Zhihao Zhang
- Medicine and Food R&D and Health Product Creation International Joint Laboratory, Biological Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze 274000, China
| | - Jinfan Li
- Medicine and Food R&D and Health Product Creation International Joint Laboratory, Biological Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze 274000, China
| | - Daijie Wang
- Medicine and Food R&D and Health Product Creation International Joint Laboratory, Biological Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze 274000, China; School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
13
|
Ahmed GE, Elshahid ZA, El-Sawy ER, Abdel-Aziz MS, Abdel-Aziem A. Synthesis, biofilm formation inhibitory, and inflammation inhibitory activities of new coumarin derivatives. Sci Rep 2024; 14:9106. [PMID: 38643226 PMCID: PMC11032357 DOI: 10.1038/s41598-024-59072-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 04/07/2024] [Indexed: 04/22/2024] Open
Abstract
Coumarins are heterocycles of great interest in the development of valuable active structures in chemistry and biological domains. The ability of coumarins to inhibit biofilm formation of Gram positive bacterium (Staphylococcus aureus), Gram negative bacterium (Escherichia coli) as well as the methicillin-resistant S. aureus (MRSA) has been previously described. In the present work, new hybrid coumarin-heterocycles have been synthesized via the reaction of coumarin-6-sulfonyl chloride and 6-aminocoumarin with different small heterocycle moieties. The biological efficacy of the new compounds was evaluated towards their ability to inhibit biofilm formation and their anti-inflammatory properties. The antimicrobial activities of the newly synthesized compounds were tested against Gram positive bacterium (S. aureus ATCC 6538), Gram negative bacterium (E. coli ATCC 25922), yeast (Candida albicans ATCC 10231) and the fungus (Aspergillus niger NRRL-A326). Compounds 4d, 4e, 4f, 6a and 9 showed significant MIC and MBC values against S. aureus, E. coli, C. albicans, and methicillin-resistant S. aureus (MRSA) with especial incidence on compound 9 which surpasses all the other compounds giving MIC and MBC values of (4.88 and 9.76 µg/mL for S. aureus), (78.13 and 312.5 µg/mL for E. coli), (9.77 and 78.13 µg/mL for C. albicans), and (39.06 and 76.7 µg/mL for MRSA), respectively. With reference to the antibiofilm activity, compound 9 exhibited potent antibiofilm activity with IC50 of 60, 133.32, and 19.67 µg/mL against S. aureus, E. coli, and MRSA, (respectively) considering the reference drug (neomycin). Out of all studied compounds, the anti-inflammatory results indicated that compound 4d effectively inhibited nitric oxide production in lipopolysaccharide-(LPS-) stimulated RAW264.7 macrophage cells, giving NO% inhibition of 70% compared to Sulindac (55.2%).
Collapse
Affiliation(s)
- Ghada E Ahmed
- High Canal Institute of Engineering & Technology, Suez, Egypt
| | - Zeinab A Elshahid
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, Egypt
| | - Eslam Reda El-Sawy
- Chemistry of Natural Compounds Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Mohamed S Abdel-Aziz
- Microbial Chemistry Department, Genetic Engineering and Biotechnology Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Anhar Abdel-Aziem
- Chemistry Department, Faculty of Science (Girl's Branch), Al-Azhar University, Cairo, 11754, Egypt.
| |
Collapse
|
14
|
Dai P, Wang Q, Teng P, Jiao J, Li Y, Xia Q, Zhang W. Design, Synthesis, Antifungal Activity, and 3D-QASR of Novel Oxime Ether-Containing Coumarin Derivatives as Potential Fungicides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5983-5992. [PMID: 38456397 DOI: 10.1021/acs.jafc.3c06032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Structural modification of natural products is an effective approach for improving antifungal activity and has, therefore, been used extensively in the development of new agrochemical products. In this work, a series of novel coumarin derivatives containing oxime ether structures were designed, synthesized, and evaluated for antifungal activity. Some of the designed compounds exhibited promising antifungal activities against tested fungi, and compounds 4a, 4c, 5a, and 6b had EC50 values equivalent to those of commercial fungicides. Compound 6b was the most promising candidate fungicide against Rhizoctonia solani (EC50 = 0.46 μg/mL). In vivo antifungal bioassays suggested that compounds 5a and 6b could serve as novel agricultural antifungals. Furthermore, microscopy demonstrated that compound 6b induced the sprawling growth of hyphae, distorted the outline of cell walls, and reduced mitochondrial numbers. Additionally, the effects of the substituent steric, electrostatic, hydrophobic, and hydrogen-bond fields were elucidated using an accurate and reliable three-dimensional quantitative structure-activity relationship (3D-QSAR) model. The results presented here will guide the discovery of potential novel fungicides for plant disease control in agriculture.
Collapse
Affiliation(s)
- Peng Dai
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingqing Wang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Teng
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Jiao
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yufei Li
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qing Xia
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Weihua Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
15
|
Guo HY, Li X, Sang XT, Quan ZS, Shen QK. Design and synthesis of forsythin derivatives as anti-inflammatory agents for acute lung injury. Eur J Med Chem 2024; 267:116223. [PMID: 38342013 DOI: 10.1016/j.ejmech.2024.116223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
Acute lung injury (ALI) is a clinically high mortality disease, which has not yet been effectively treated. The development of anti-ALI drugs is imminent. ALI can be effectively treated by inhibiting the inflammatory cascade and reducing the inflammatory response in the lung. Forsythia suspense is a common Chinese herbal medicine with significant anti-inflammatory activity. Using forsythin as the parent, 27 Forsythin derivatives were designed and synthesized, and the anti-AIL activity of these compounds was evaluated. Among them, compound B5 has the best activity to inhibit the release of IL-6, and the inhibition rate reaches 91.79% at 25 μM, which was 7.5 times that of the parent forsythin. In addition, most of the compounds have no significant cytotoxicity in vitro. Further studies showed that compound B5 had a concentration-dependent inhibitory effect on NO, IL-6 and TNF-α. And the IC50 values of compound B5 for NO and IL-6 are 10.88 μM and 4.93 μM, respectively. We also found that B5 could significantly inhibit the expression of some immune-related cytotoxic factors, including inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). In addition, B5 inhibits NF-κB/MAPK signaling pathway. In vivo experiments showed that B5 could alleviate lung inflammation in LPS-induced ALI mice and inhibit IL-6, TNF-α, COX-2 and iNOS. In summary, B5 has anti-inflammatory effects and alleviates ALI by regulating inflammatory mediators and inhibiting MAPK and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Xiaoting Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Xiao-Tong Sang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
| |
Collapse
|
16
|
Chen L, Wang K, Wang L, Wang W, Wang L, Wang W, Li J, Liu X, Wang M, Ruan B. Design and synthesis of pterostilbene derivatives bearing triazole moiety that might treat DSS-induced colitis in mice through modulation of NF-κB/MAPK signaling pathways. Eur J Med Chem 2024; 263:115949. [PMID: 37989058 DOI: 10.1016/j.ejmech.2023.115949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
In this study, a series of novel anti-inflammatory compounds with high activity and low toxicity were designed and synthesized based on the natural product pterostilbene skeleton. According to the strategy of pharmacophore combination, we introduced thiazole moiety into pterostilbene skeleton to design and synthesize a novel series of pterostilbene derivatives (a total of 41 compounds), and lipopolysaccharide (LPS)-treated RAW 264.7 cells were screened for anti-inflammatory activity and cytotoxicity. Among them, compound 8 was found to be the most active (against NO: IC50 = 0.6 μM) compared with pterostilbene and indomethacin. Anti-inflammatory mechanism studies revealed that compound 8 inhibited pro-inflammatory cytokines by blocking the NF-κB/MAPK signaling pathway in LPS-treated RAW 264.7 cells. In vivo experiments showed that compound 8 had a good relieving effect on DSS-induced acute colitis in mice, and also demonstrated a good safety in acute toxicity experiments. In conclusion, compound 8 may be a promising anti-inflammatory lead compound in the treatment of acute colitis.
Collapse
Affiliation(s)
- Liuzeng Chen
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, PR China; School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases Anhui Medical University, Hefei, 230032, PR China
| | - Ke Wang
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, PR China
| | - Lingyun Wang
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, PR China
| | - Wei Wang
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, PR China
| | - Lifan Wang
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, PR China
| | - Wei Wang
- Hefei Food and Drug Inspection Center, Hefei, 230071, PR China
| | - Jia Li
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, PR China
| | - Xiaohan Liu
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, PR China
| | - Mengya Wang
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, PR China
| | - Banfeng Ruan
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, PR China.
| |
Collapse
|
17
|
Tajdari M, Peyrovinasab A, Bayanati M, Ismail Mahboubi Rabbani M, Abdolghaffari AH, Zarghi A. Dual COX-2/TNF-α Inhibitors as Promising Anti-inflammatory and Cancer Chemopreventive Agents: A Review. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2024; 23:e151312. [PMID: 39830670 PMCID: PMC11742592 DOI: 10.5812/ijpr-151312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 01/22/2025]
Abstract
Cyclooxygenases (COX) play a pivotal role in inflammation and are responsible for the production of prostaglandins (PGs). Two types of COXs have been identified as key biological targets for drug design: Constitutive COX-1 and inducible COX-2. Nonsteroidal anti-inflammatory drugs (NSAIDs) target COX-1, while selective COX-2 inhibitors are designed for COX-2. These COX isoforms are involved in multiple physiological and pathological pathways throughout the body. Overproduction of tumor necrosis factor-alpha (TNF-α) plays a role in COX-2's inflammatory activity. Tumor necrosis factor-alpha can contribute to cardiac fibrosis, heart failure, and various cancers by upregulating the COX-2/PGE2 axis. Therefore, suppressing COX activity has emerged as a potentially effective treatment for chronic inflammatory disorders and cancer. This review explores the mechanisms of TNF-α-induced COX-2/PGE2 expression, a significant pathophysiological feature of cancer development. Furthermore, we summarize chemical compounds with dual COX-2/TNF-α inhibitory actions, providing an overview of their structure-activity relationship. These insights may contribute to the development of new generations of dual-acting COX-2/TNF-α inhibitors with enhanced efficacy.
Collapse
Affiliation(s)
- Mobina Tajdari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amirreza Peyrovinasab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Bayanati
- Department of Food Technology Research, National Nutrition, and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amir Hossein Abdolghaffari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Afshin Zarghi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Mishra PS, Kumar A, Kaur K, Jaitak V. Recent Developments in Coumarin Derivatives as Neuroprotective Agents. Curr Med Chem 2024; 31:5702-5738. [PMID: 37455459 DOI: 10.2174/0929867331666230714160047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/16/2023] [Accepted: 05/23/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Neurodegenerative diseases are among the diseases that cause the foremost burden on the health system of the world. The diseases are multifaceted and difficult to treat because of their complex pathophysiology, which includes protein aggregation, neurotransmitter breakdown, metal dysregulation, oxidative stress, neuroinflammation, excitotoxicity, etc. None of the currently available therapies has been found to be significant in producing desired responses without any major side effects; besides, they only give symptomatic relief otherwise indicated off-episode relief. Targeting various pathways, namely choline esterase, monoamine oxidase B, cannabinoid system, metal chelation, β-secretase, oxidative stress, etc., may lead to neurodegeneration. By substituting various functional moieties over the coumarin nucleus, researchers are trying to produce safer and more effective neuroprotective agents. OBJECTIVES This study aimed to review the current literature to produce compounds with lower side effects using coumarin as a pharmacophore. METHODS In this review, we have attempted to compile various synthetic strategies that have been used to produce coumarin and various substitutional strategies used to produce neuroprotective agents from the coumarin pharmacophore. Moreover, structure-activity relationships of substituting coumarin scaffold at various positions, which could be instrumental in designing new compounds, were also discussed. RESULTS The literature review suggested that coumarins and their derivatives can act as neuroprotective agents following various mechanisms. CONCLUSION Various studies have demonstrated the neuroprotective activity of coumarin due to an oxaheterocyclic loop, which allows binding with a broad array of proteins, thus motivating researchers to explore its potential as a lead against various neurodegenerative diseases.
Collapse
Affiliation(s)
- Prakash Shyambabu Mishra
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb.), 151401, India
| | - Amit Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb.), 151401, India
| | - Kamalpreet Kaur
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb.), 151401, India
| | - Vikas Jaitak
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb.), 151401, India
| |
Collapse
|
19
|
Díaz-Sánchez F, García-Castro MA, Amador-Ramírez MP, Espinosa-Morales D, Varela-Caselis JL. 7-Methoxy-4-methylcoumarin: Standard Molar Enthalpy of Formation Prediction in the Gas Phase Using Machine Learning and Its Comparison to the Experimental Data. ACS OMEGA 2023; 8:49037-49045. [PMID: 38162795 PMCID: PMC10753555 DOI: 10.1021/acsomega.3c06756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
Experimentally, the standard molar enthalpy of formation in the crystalline phase at 298.15 K, ΔfHm°(cr) for 7-methoxy-4-methylcoumarin (7M4MC) was calculated by traditional linear regression, which was obtained by combustion calorimetry. Similarly, the standard molar enthalpy of sublimation was determined through the standard molar enthalpy of fusion and by the standard molar enthalpy of vaporization, from differential scanning calorimetry and thermogravimetry, respectively; lately using these results, the standard molar enthalpy of formation in the gas phase was calculated at 298.15 K, ΔfHm°(g). In addition ML was used to predict the standard molar enthalpy of formation in the gas phase for the 7M4MC, constructing an experimental data set containing three kinds of functional groups: esters, coumarins, and aromatic compounds. The procedure was performed by using multiple linear regression algorithms and stochastic gradient descent with a R2 of 0.99. The obtained models were used to compare those predicted values versus experimental for coumarins, resulting in an average error rate of 9.0%. Likewise, four homodesmic reactions were proposed and predicted with the multiple linear regression algorithm of ML obtaining good results.
Collapse
Affiliation(s)
- Fausto Díaz-Sánchez
- Facultad de Ingeniería
Química de la Benemérita Universidad Autónoma
de Puebla, 18 Sur y Av. San Claudio, C.P., Puebla Pue 72570, Mexico
| | - Miguel Angel García-Castro
- Facultad de Ingeniería
Química de la Benemérita Universidad Autónoma
de Puebla, 18 Sur y Av. San Claudio, C.P., Puebla Pue 72570, Mexico
| | - María Patricia Amador-Ramírez
- Facultad de Ciencias Químicas de la Benemérita Universidad
Autónoma de Puebla, 14 Sur y Av. San Claudio, C.P., Puebla Pue 72570, Mexico
| | - Diego Espinosa-Morales
- Facultad de Ingeniería
Química de la Benemérita Universidad Autónoma
de Puebla, 18 Sur y Av. San Claudio, C.P., Puebla Pue 72570, Mexico
| | - Jenaro Leocadio Varela-Caselis
- Dirección de Innovación y Transferencia de Conocimiento
de la Benemérita Universidad Autónoma de Puebla, Prolongación de la 24 Sur
y Av. San Claudio Ciudad Universitaria, C.P., Puebla Pue 72570, Mexico
| |
Collapse
|
20
|
Choo MY, Khaw LWT, Chai CLL. Syntheses of Minutuminolate and Related Coumarin Natural Products and Evaluation of Their TNF-α Inhibitory Activities. ACS OMEGA 2023; 8:41785-41791. [PMID: 37970054 PMCID: PMC10633832 DOI: 10.1021/acsomega.3c06361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/09/2023] [Indexed: 11/17/2023]
Abstract
The concise syntheses of the coumarin natural product, minutuminolate (1), and its related natural products, 7-methoxy-8-(2-acetoxy-3-methyl-1-oxobut-2-enyl) coumarin (2) and muralatin I (3), were accomplished for the first time in 4-5 steps from the commercially available umbelliferone. The key step involves a palladium-catalyzed oxidative rearrangement reaction to assemble the α-acyloxyenone moiety in 1 and 2. The incorporation of this functionality enables the successful synthesis of coumarin 3 through an acidic hydrolysis reaction. The anti-inflammatory activities of the compounds were also evaluated against tumor necrosis factor-alpha production in lipopolysaccharides-stimulated RAW264.7 cells. Our developed synthetic route will facilitate the development of analogues and derivatives of 1-3 with potent anti-inflammatory activities.
Collapse
Affiliation(s)
- Malcolm
Zheng Yuan Choo
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Lachelle Wei Ting Khaw
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Christina Li Lin Chai
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| |
Collapse
|
21
|
Chen P, Yang J, Zhou Y, Li X, Zou Y, Zheng Z, Guo M, Chen Z, Cho WJ, Chattipakorn N, Wu W, Tang Q, Liang G. Design, synthesis, and bioactivity evaluation of novel amide/sulfonamide derivatives as potential anti-inflammatory agents against acute lung injury and ulcerative colitis. Eur J Med Chem 2023; 259:115706. [PMID: 37572538 DOI: 10.1016/j.ejmech.2023.115706] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/14/2023]
Abstract
The uneven regulation of inflammation is related to various diseases, making anti-inflammation a potential option for the development of novel therapies. In this study, we designed and synthesized a total of fifty-eight novel amide/sulfonamide derivatives based on our previously reported anti-inflammatory compounds. The anti-inflammatory activities of these compounds were evaluated upon LPS-stimulated J774A.1 cells. Compounds 11a, 11b, 11c, and 11d potently reduced the release of IL-6 and TNF-α, and decreased the mRNA level of cytokines in J774A.1 cells. The most active compound 11d with IC50 value of 0.61 μM for IL-6 inhibition, and 4.34 μM for TNF-α inhibition restored IκB α and inhibited the translocation of phosphorylated p65 into the nucleus. In vivo evaluation indicated that 11d improved LPS-induced ALI and alleviated DSS-induced ulcerative colitis in mice. In conclusion, these results suggested compound 11d can be a new lead structure for the development of anti-inflammatory drugs against ALI and ulcerative colitis.
Collapse
Affiliation(s)
- Pan Chen
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China; College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Jun Yang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ying Zhou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiaobo Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yu Zou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhiwei Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Mi Guo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhichao Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Won-Jea Cho
- College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wenqi Wu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China.
| | - Qidong Tang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China.
| | - Guang Liang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China.
| |
Collapse
|
22
|
Reda N, Elshewy A, El-Askary HI, Mohamed KO, Helwa AA. Design, synthesis, and biological evaluation of new pyrimidine-5-carbonitrile derivatives as novel anti-cancer, dual EGFR WT/COX-2 inhibitors with docking studies. RSC Adv 2023; 13:32296-32320. [PMID: 37928843 PMCID: PMC10620772 DOI: 10.1039/d3ra06088h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023] Open
Abstract
A novel series of pyrimidine-5-carbonitrile derivatives was designed, synthesized, then evaluated for their cytotoxic activity as novel anti-cancer with dual EGFRWT/COX-2 inhibitors. Two compounds 4e and 4f disclosed the highest activity against all NCI60 panel cell lines. They were most potent against Colo 205 (IC50 = 1.66, and 1.83 μM), Sequentially. The most potent two compounds disturbed cell cycle of Colo-205 cells by blocking the G1 phase, coupled with increased annexin-Vstained cells which indicated the increasing in percentage of apoptosis. In addition, 4e and 4f increase the concentration of caspase-3 by 10, and 8-fold compared to control, respectively. Moreover, the two candidate compounds were screened for cytotoxicity on normal epithelial colon cells; fortunately, they were found to be safe. Molecular docking study displayed that these compounds bound to the active site as EGFRWT/COX-2 inhibitors. Furthermore, 3D pharmacophore mapping disclosed many shared features between the most potent candidates 4e and 4f and the standard EGFRWT/COX-2 inhibitors; erlotinib, and celecoxib, respectively. Finally, the physicochemical parameter was calculated for the most potent novel anticancer candidates and the SwissAdme parameter showed that the newly synthesized compounds have good drug-likeness properties.
Collapse
Affiliation(s)
- Nada Reda
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST) 6th of October City Egypt
| | - Ahmed Elshewy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University Kasr El-Aini Street Cairo 11562 Egypt
- Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University New Galala 43713 Egypt
| | - Hesham I El-Askary
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University Kasr El-Aini Street Cairo 11562 Egypt
| | - Khaled O Mohamed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University Kasr El-Aini Street Cairo 11562 Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy. Sinai University (Arish Branch) El Arish Egypt
| | - Amira A Helwa
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST) 6th of October City Egypt
| |
Collapse
|
23
|
Li K, Li M, Zhong H, Tang L, Lv Y, Fan Z. Design and Synthesis of Pyrimidine Amine Containing Isothiazole Coumarins for Fungal Control. ACS OMEGA 2023; 8:37471-37481. [PMID: 37841179 PMCID: PMC10568580 DOI: 10.1021/acsomega.3c05734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023]
Abstract
Developing new fungicides is always crucial to protecting crops. A series of 4-(3,4-dichloroisothiazol-5-yl)-7-(2-((5-(5-pyrimidin-4-yl)amino)ethoxy)-8-methyl) coumarin derivatives were designed and synthesized by Williamson ether condensation and substitution reactions. Structure determinations were clarified by 1H NMR, 13C NMR, and HRMS, and compound 4h crystallized by the fusion method for further structural confirmation. The in vitro bioassay results showed that the target compounds displayed good fungicidal activity against Alternaria solani, Botrytis cinerea, Cercospora arachidicola, Fusarium graminearum, Physalospora piricola, Rhizoctonia solani, and Sclerotinia sclerotiorum. Among them, compounds 4b and 4d showed higher inhibitory activity against R. solani, with EC50 values of 11.3 and 13.7 μg/mL, respectively, and they were more active than the positive control diflumetorim with an EC50 value of 19.8 μg/mL. Molecular docking suggested that compound 4b and diflumetorim may have similar interactions with complex I NADH oxidoreductase. Density functional theory calculation and pesticide-likeness analysis studies gave a rational explanation of their fungicidal activity. These results indicated that compounds 4b and 4d deserved further optimization according to the principle of pesticide-likeness.
Collapse
Affiliation(s)
- Kun Li
- State
Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers
Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Mengyuan Li
- State
Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers
Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Haolin Zhong
- State
Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers
Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Liangfu Tang
- State
Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers
Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - You Lv
- College
of Agricultural and Biological Engineering, Heze University, Heze 274015, P. R. China
| | - Zhijin Fan
- State
Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers
Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
24
|
Qin LQ, Sun JY, Chen NY, Li XW, Gao DF, Wang W, Mo DL, Su JC, Su GF, Pan CX. Design and synthesis of pseudo-rutaecarpines as potent anti-inflammatory agents via regulating MAPK/NF-κB pathways to relieve inflammation-induced acute liver injury in mice. Bioorg Chem 2023; 138:106611. [PMID: 37236073 DOI: 10.1016/j.bioorg.2023.106611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/11/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023]
Abstract
Pseudo-natural products (PNPs) design strategy provides a great valuable entrance to effectively identify of novel bioactive scaffolds. In this report, novel pseudo-rutaecarpines were designed via the combination of several privileged structure units and 46 target compounds were synthesized. Most of them display moderate to potent inhibitory effect on LPS-induced NO production and low cytotoxicity in RAW264.7 macrophage. The results of the anti-inflammatory efficacy and action mechanism of compounds 7l and 8c indicated that they significantly reduced the release of IL-6, IL-1β and TNF-α. Further studies revealed that they can strongly inhibit the activation of NF-κB and MAPK signal pathways. The LPS-induced acute liver injury mice model studies not only confirmed their anti-inflammatory efficacy in vivo but also could effectively relieve the liver injury in mice. The results suggest that compounds 7l and 8c might serve as lead compounds to develop therapeutic drugs for treatment of inflammation.
Collapse
Affiliation(s)
- Li-Qing Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China; Department of Chemistry and Pharmaceutical Science, Guilin Normal College, 9 Feihu Road, Gulin 541199, China
| | - Jia-Yi Sun
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Nan-Ying Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Xin-Wei Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - De-Feng Gao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Wang Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Dong-Liang Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Jun-Cheng Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China.
| | - Gui-Fa Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China.
| | - Cheng-Xue Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China.
| |
Collapse
|
25
|
Yang HY, Huang PZ, Ma Q, Sun Y, Feng WJ, He YL, Chen JJ, Gao K. Anti-inflammatory ent-cleistanthane-type diterpenoids from Phyllanthus rheophyticus. PHYTOCHEMISTRY 2023; 212:113723. [PMID: 37182686 DOI: 10.1016/j.phytochem.2023.113723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/14/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
A bioactivity-guided isolation from the aerial parts of Phyllanthus rheophyticus obtained 17 undescribed ent-cleistanthane-type diterpenoids, namely phyllarheophols A-Q, as well as 12 known analogs. Their structures were characterized by a combination of spectroscopic data interpretation, single-crystal X-ray diffraction and ECD analysis. The anti-inflammatory activities of these compounds were evaluated by measuring their inhibitory effects on NO production in LPS-stimulated RAW264.7 macrophages, and their preliminary structure-activity relationships were also discussed. Further study showed that promising compounds phyllarheophol D and phyacioid B significantly suppressed the expressions of cytokines and nitric oxide synthase through the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Hong-Ying Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Pei-Zhi Huang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Qian Ma
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yue Sun
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Wei-Jiao Feng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yi-Lin He
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China; Research Institute, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| | - Jian-Jun Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| | - Kun Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
26
|
Ruan B, Rong M, Ming Z, Wang K, Liu X, Deng L, Zhang X, Xu K, Shi C, Gao T, Liu X, Chen L. Discovery of pterostilbene analogs as novel NLRP3 inflammasome inhibitors for potential treatment of DSS-induced colitis in mice. Bioorg Chem 2023; 133:106429. [PMID: 36841048 DOI: 10.1016/j.bioorg.2023.106429] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/21/2023]
Abstract
The pterostilbene skeleton is a promising chemical scaffold that exerts anti-inflammatory, anti-depressant, and anti-tumor effects. In this study, we aim to reduce in vivo and in vitro toxicity of compound 32 (preliminary work) and maintain its biological activity. A series of novel pterostilbene derivatives (D1-D43) were designed and synthesized, and their anti-inflammatory activities were screened. All compounds were screened to evaluate their inhibitory effect on LPS/Nigericin-induced IL-1β production and pyroptosis. The structure-activity relationships was deduced, and finally 1-((E)-4-(2-ethoxyethoxy)styryl)-3,5-dimethoxy-2-((E)-2-nitrovinyl)benzene (D22) was found to be a low-toxic compound with most potent inhibitory efficacy (against IL-1β: IC50 = 2.41 μM). Preliminary mechanism studies showed that compound D22 may affect the assembly of NLRP3 inflammasome by targeting NLRP3 protein, thereby inhibiting the activation of NLRP3 inflammasome. The in vivo anti-inflammatory activity indicated that compound D22 had significant therapeutic effects on DSS-induced mouse acute colitis models.
Collapse
Affiliation(s)
- Banfeng Ruan
- Key Lab of Biofabrication of Anhui Higher Education, Hefei University, Hefei 230601, P R China
| | - Minghui Rong
- Key Lab of Biofabrication of Anhui Higher Education, Hefei University, Hefei 230601, P R China
| | - Zibei Ming
- Key Lab of Biofabrication of Anhui Higher Education, Hefei University, Hefei 230601, P R China
| | - Ke Wang
- Key Lab of Biofabrication of Anhui Higher Education, Hefei University, Hefei 230601, P R China
| | - Xiaohan Liu
- Key Lab of Biofabrication of Anhui Higher Education, Hefei University, Hefei 230601, P R China
| | - Lijun Deng
- Key Lab of Biofabrication of Anhui Higher Education, Hefei University, Hefei 230601, P R China
| | - Xingxing Zhang
- School of Pharmacy Anhui Medical University, Hefei 230032, PR China
| | - Kun Xu
- Anhui Dexinjia Biopharm Co., Ltd, Fuyang 236000, PR China
| | - Cheng Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Tongfei Gao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Xinhua Liu
- School of Pharmacy Anhui Medical University, Hefei 230032, PR China.
| | - Liuzeng Chen
- Key Lab of Biofabrication of Anhui Higher Education, Hefei University, Hefei 230601, P R China.
| |
Collapse
|
27
|
Flores-Morales V, Villasana-Ruíz AP, Garza-Veloz I, González-Delgado S, Martinez-Fierro ML. Therapeutic Effects of Coumarins with Different Substitution Patterns. Molecules 2023; 28:2413. [PMID: 36903660 PMCID: PMC10005689 DOI: 10.3390/molecules28052413] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
The use of derivatives of natural and synthetic origin has gained attention because of their therapeutic effects against human diseases. Coumarins are one of the most common organic molecules and are used in medicine for their pharmacological and biological effects, such as anti-inflammatory, anticoagulant, antihypertensive, anticonvulsant, antioxidant, antimicrobial, and neuroprotective, among others. In addition, coumarin derivates can modulate signaling pathways that impact several cell processes. The objective of this review is to provide a narrative overview of the use of coumarin-derived compounds as potential therapeutic agents, as it has been shown that substituents on the basic core of coumarin have therapeutic effects against several human diseases and types of cancer, including breast, lung, colorectal, liver, and kidney cancer. In published studies, molecular docking has represented a powerful tool to evaluate and explain how these compounds selectively bind to proteins involved in various cellular processes, leading to specific interactions with a beneficial impact on human health. We also included studies that evaluated molecular interactions to identify potential biological targets with beneficial effects against human diseases.
Collapse
Affiliation(s)
- Virginia Flores-Morales
- Asymmetric Synthesis and Bio-chemoinformatics Laboratory (LSAyB), Ingeniería Química (UACQ), Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km.6. Ejido la Escondida, Zacatecas 98160, Mexico
| | - Ana P. Villasana-Ruíz
- Asymmetric Synthesis and Bio-chemoinformatics Laboratory (LSAyB), Ingeniería Química (UACQ), Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km.6. Ejido la Escondida, Zacatecas 98160, Mexico
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km.6. Ejido La Escondida, Zacatecas 98160, Mexico
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km.6. Ejido La Escondida, Zacatecas 98160, Mexico
| | - Samantha González-Delgado
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km.6. Ejido La Escondida, Zacatecas 98160, Mexico
| | - Margarita L. Martinez-Fierro
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km.6. Ejido La Escondida, Zacatecas 98160, Mexico
| |
Collapse
|
28
|
Reaction of 3-Acetylcoumarin: From Methods to Mechanism. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
29
|
Design, synthesis and anti-inflammatory evaluation of aloe-emodin derivatives as potential modulators of Akt, NF-κB and JNK signaling pathways. Eur J Med Chem 2022; 238:114511. [DOI: 10.1016/j.ejmech.2022.114511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022]
|
30
|
Discovery of 4-((E)-3,5-dimethoxy-2-((E)-2-nitrovinyl)styryl)aniline derivatives as potent and orally active NLRP3 inflammasome inhibitors for colitis. Eur J Med Chem 2022; 236:114357. [DOI: 10.1016/j.ejmech.2022.114357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/26/2022] [Accepted: 04/03/2022] [Indexed: 11/19/2022]
|
31
|
Wu J, Zhu RD, Cao GM, Du JC, Liu X, Diao LZ, Zhang ZY, Hu YS, Liu XH, Shi JB. Discovery of novel paeonol-based derivatives against skin inflammation in vitro and in vivo. J Enzyme Inhib Med Chem 2022; 37:817-831. [PMID: 35220836 PMCID: PMC8890542 DOI: 10.1080/14756366.2022.2043852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
T-LAK-cell-originated protein kinase (TOPK), a novel member of the mitogen-activated protein kinase family, is considered an effective therapeutic target for skin inflammation. In this study, a series (A − D) of paeonol derivatives was designed and synthesised using a fragment growing approach, and their anti-inflammatory activities against lipopolysaccharide (LPS)-induced nitric oxide production in RAW264.7 cells were tested. Among them, compound B12 yielded the best results (IC50 = 2.14 μM) with low toxicity (IC50 > 50 µM). Preliminary mechanistic studies indicated that this compound could inhibit the TOPK-p38/JNK signalling pathway and phosphorylate downstream related proteins. A murine psoriasis-like skin inflammation model was used to determine its therapeutic effect.
Collapse
Affiliation(s)
- Jing Wu
- School of Pharmacy, Anhui Medical University, Hefei, P. R. China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, P. R. China
| | - Ren De Zhu
- School of Pharmacy, Anhui Medical University, Hefei, P. R. China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, P. R. China
| | - Guo Min Cao
- School of Pharmacy, Anhui Medical University, Hefei, P. R. China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, P. R. China
| | - Jun Cheng Du
- School of Pharmacy, Anhui Medical University, Hefei, P. R. China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, P. R. China
| | - Xin Liu
- Department of Clinical Medicine, Second Clinical Medical College, Anhui Medical University, Hefei, P. R. China
| | - Liang Zhuo Diao
- School of Pharmacy, Anhui Medical University, Hefei, P. R. China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, P. R. China
| | - Zhao Yan Zhang
- School of Pharmacy, Anhui Medical University, Hefei, P. R. China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, P. R. China
| | - Yang Sheng Hu
- School of Pharmacy, Anhui Medical University, Hefei, P. R. China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, P. R. China
- Department of Medicine, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, P. R. China
| | - Xin Hua Liu
- School of Pharmacy, Anhui Medical University, Hefei, P. R. China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, P. R. China
| | - Jing Bo Shi
- School of Pharmacy, Anhui Medical University, Hefei, P. R. China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, P. R. China
| |
Collapse
|
32
|
Abstract
For several decades, coumarins have attracted considerable attention due to the fact of their application in diverse fields such as medical science and biomedical research as well as several industrial branches. Recently, many compounds containing the coumarin moiety have been intensively studied, mainly due to the fact of their biological activities such as antitumor, antioxidative, anti-HIV, vasorelaxant, antimicrobial, and anticancer. They are also widely used as fluorescent dyes and probes because of their great structural flexibility and large fluorescent quantum yields. For this reason, numerous attempts have been made to develop new and more practical methods for the synthesis of these compounds. This review aims at providing a comprehensive overview of coumarin synthesis methods by direct C–H bond activation in order to demonstrate the current state-of-the-art methods as well as the current limitations.
Collapse
|
33
|
Recent Advances in the One-Pot Synthesis of Coumarin Derivatives from Different Starting Materials Using Nanoparticles: A Review. Top Catal 2022. [DOI: 10.1007/s11244-022-01571-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Kundaliya KN, Patel NH, Brahmbhatt DI. Microwave Assisted Synthesis of Novel Triazolyl Pyrazolyl Pyrazoline Substituted Coumarins and their Antimicrobial Activity. CURRENT MICROWAVE CHEMISTRY 2022. [DOI: 10.2174/2213335609666220118102344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The 1,2,3-triazole, pyrazole and coumarin based derivatives have received much attention due to their wide coverage of biological properties. The present work describes the microwave synthesis of novel triazolyl pyrazolyl pyrazoline substituted coumarins. Structure of all the newly synthesized compounds are characterized by spectral analysis and screened for their in vitro antimicrobial activity by Broth dilution method.
Methods:
In synthetic method , the targets were prepared by reaction of various 3-{3-[3-(5-methyl-1-aryl-1H-1,2,3-triazol-4-yl)-1-phenyl-1H-pyrazol-4-yl]acryloyl} coumarins (coumarin chalcones) (3a-d) with hydrazine hydrate or aryl hydrazine(5a-c) in the presence of acetic/propionic acid under microwave irradiation.
Results:
The structures of all the synthesized compounds were established by IR, 1H-NMR, 13C-APT and selected mass spectral data. The target compounds were also screen for their in vitro antimicrobial efficiency against representative panel of pathogenic strains specifically Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis), Gram-negative bacteria (Escherichia coli, Salmonella typhi) and Fungi (Candida albicans, Aspergillus niger).
Conclusion:
In conclusion ,the target compounds were obtained by Microwave Irradiation (MWI) technique in good yield with short reaction time. Among all the synthesized compounds ,4c,4h,6a,6h and 6l were found to have significant activity against bacterial and fungal strains.
Collapse
Affiliation(s)
- Kaushik N. Kundaliya
- Department of Chemistry, Government Science College,Vankal,Surat,Gujarat-394430,India
| | - Niraj H Patel
- Organic chemistry Department, Institute of science & Technology for Advanced Studies & Research (ISTAR),CVM university , Vallabh Vidyanagar-388120,Gujarat,India
| | - Dinker I. Brahmbhatt
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar-388120, Gujarat, India
| |
Collapse
|
35
|
Xia D, Liu H, Cheng X, Maraswami M, Chen Y, Lv X. Recent Developments of Coumarin-based Hybrids in Drug Discovery. Curr Top Med Chem 2022; 22:269-283. [PMID: 34986774 DOI: 10.2174/1568026622666220105105450] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/23/2021] [Accepted: 12/05/2021] [Indexed: 11/22/2022]
Abstract
Coumarin scaffold is a highly significant O-heterocycle, namely benzopyran-2-ones, form an elite class of naturally occurring compounds that possess promising therapeutic perspectives. Based on its broad spectrum of biological activities, the privileged coumarin scaffold is applied to medicinal and pharmacological treatments by several rational design strategies and approaches. Structure-activity relationships of the coumarin-based hybrids with various bioactivity fragments revealed significant information toward the further development of highly potent and selective disorder therapeutic agents. The molecular docking studies between coumarins and critical therapeutic enzymes demonstrated mode of action by forming noncovalent interactions with more than one receptor, further rationally confirm information about structure-activity relationships. This review summarizes recent developments relating to coumarin-based hybrids with other pharmacophores aiming to numerous feasible therapeutic enzymatic targets to combat various therapeutic fields, including anticancer, antimicrobic, anti-Alzheimer, anti-inflammatory activities.
Collapse
Affiliation(s)
- Dongguo Xia
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| | - Hao Liu
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| | - Xiang Cheng
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| | - Manikantha Maraswami
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Yiting Chen
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, Minjiang University, 350108, Fuzhou, China
| | - Xianhai Lv
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| |
Collapse
|
36
|
AL-Duhaidahawi D, AL-Zubaidy HF, Al-Khafaji K, Al-Amiery A. Synthesis, anti-inflammatory effects, molecular docking and molecular dynamics studies of 4-hydroxy coumarin derivatives as inhibitors of COX-II enzyme. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
37
|
HWANG S, ROH E. Synthesis of Geranyloxycoumarin Derivatives under Mild Conditions Using Cs2CO3. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2021. [DOI: 10.18596/jotcsa.996363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
38
|
Dorababu A. Pharmacological report of recently designed multifunctional coumarin and coumarin-heterocycle derivatives. Arch Pharm (Weinheim) 2021; 355:e2100345. [PMID: 34693550 DOI: 10.1002/ardp.202100345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 12/23/2022]
Abstract
Coumarin is a naturally available molecule and has been identified as a potent pharmacophore due to its pharmacological activity. Because of this, coumarin has been exploited synthetically to prepare a wide range of derivatives. In fact, most coumarin derivatives have been found to be less toxic, which is the most essential property for a drug molecule. Such molecules are being prepared for therapeutic use as broad-spectrum pharmacological agents. Microbial diseases including viral diseases have become very common and are responsible for many deaths worldwide. In particular, microbial drug resistance is a problem that needs to be tackled in an effective manner. Also, for Alzheimer's disease, which affects most elderly persons, no efficient chemotherapy exists. In addition, although diabetes, a metabolic syndrome, can be treated with many drugs, there is no complete cure. Thus, more potent antidiabetic agents are required for the management of diabetes. Likewise, for the treatment of a wide range of ailments caused by microbes, genetic factors, or lifestyle-related factors, an efficient drug regimen is needed. In view of this, coumarin derivatives are designed and evaluated. Here, coumarin derivatives that have been reported recently are compiled, classified and evaluated critically. This study briefly takes the structure-activity relationship into consideration and suggests the next suitable step. With a focus on the most potent molecules, the pharmacological activity of the evaluated molecules is described.
Collapse
Affiliation(s)
- Atukuri Dorababu
- Department of Chemistry, SRMPP Government First Grade College, Huvinahadagali, Karnataka, India
| |
Collapse
|
39
|
Green synthesis of bis pyrazole-triazole and azo-linked triazole hybrids using an efficient and novel cobalt nanocatalyst. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-021-02076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
40
|
Chen LZ, Zhang XX, Liu MM, Wu J, Ma D, Diao LZ, Li Q, Huang YS, Zhang R, Ruan BF, Liu XH. Discovery of Novel Pterostilbene-Based Derivatives as Potent and Orally Active NLRP3 Inflammasome Inhibitors with Inflammatory Activity for Colitis. J Med Chem 2021; 64:13633-13657. [PMID: 34506712 DOI: 10.1021/acs.jmedchem.1c01007] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Studies have shown that the abnormal activation of the NLRP3 inflammasome is involved in a variety of inflammatory-based diseases. In this study, a high content screening model targeting the activation of inflammasome was first established and pterostilbene was discovered as the active scaffold. Based on this finding, total of 50 pterostilbene derivatives were then designed and synthesized. Among them, compound 47 was found to be the best one for inhibiting cell pyroptosis [inhibitory rate (IR) = 73.09% at 10 μM], showing low toxicity and high efficiency [against interleukin-1β (IL-1β): half-maximal inhibitory concentration (IC50) = 0.56 μM]. Further studies showed that compound 47 affected the assembly of the NLRP3 inflammasomes by targeting NLRP3. The in vivo biological activity showed that this compound significantly alleviated dextran sodium sulfate (DSS)-induced colitis in mice. In general, our study provided a novel lead compound directly targeting the NLRP3 protein, which is worthy of further research and structural optimization.
Collapse
Affiliation(s)
- Liu Zeng Chen
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P.R. China
- Key Lab of Biofabrication of Anhui Higher Education, Hefei University, Hefei 230601, P.R. China
| | - Xing Xing Zhang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P.R. China
| | - Ming Ming Liu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P.R. China
| | - Jing Wu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P.R. China
| | - Duo Ma
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P.R. China
| | - Liang Zhuo Diao
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P.R. China
| | - Qingshan Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230059, P.R. China
| | - Yan Shuang Huang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P.R. China
| | - Rui Zhang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P.R. China
| | - Ban Feng Ruan
- Key Lab of Biofabrication of Anhui Higher Education, Hefei University, Hefei 230601, P.R. China
| | - Xin Hua Liu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P.R. China
| |
Collapse
|
41
|
Liu T, Xing S, Du J, Wang M, Han J, Li Z. Synthesis and evaluation of the anti-inflammatory activity of novel 8-quinolinesulfonamide derivatives as TLR4/MD-2 inhibitors with efficacy in adjuvant-induced arthritis. Bioorg Chem 2021; 114:105037. [PMID: 34120022 DOI: 10.1016/j.bioorg.2021.105037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022]
Abstract
In this study, a series of 8-quinolinesulfonamidederivatives was synthesized, and their anti-inflammatory activity was evaluated. Among them, compound 3l was found to be the best anti-inflammatory agent, with IC50 values of 2.61 ± 0.39, 9.74 ± 0.85, and 12.71 ± 1.34 μM against NO, TNF-α and IL-1β production respectively. And 3l could significantly prevent lipopolysaccharide (LPS)-induced expression of inflammatory mediators (iNOS and COX-2). Molecule docking results showed that 3l could bind to the LPS binding site of toll-like receptor 4 (TLR4)/MD-2, and 3l was then identified as TLR4/MD-2 inhibitor by co-immunoprecipitation (co-IP) and cellular thermal shift assay (CTESA). Preliminary mechanism studies indicated that 3l could prevent TLR4 from being activated by disrupting TLR4/MD-2 heterodimerization and TLR4 homodimerization, thereby blocking the activation of the NF-κB/MAPK signaling pathway. Furthermore, observation of rat foot swelling, joint pathology and serum inflammatory cytokine levels proved that compound 3l had a significant therapeutic effect on adjuvant-induced arthritis (AIA) in rats in vivo. These results indicated that compound 3l is a potential anti-inflammatory agent, from which more effective anti-inflammatory drugs could be developed.
Collapse
Affiliation(s)
- Tongtong Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Siqi Xing
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jiyu Du
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Min Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jianfei Han
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Zeng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
42
|
Nguyen HT, Vu TY, Vijay Kumar A, Hoang VNH, My PTN, Mandal PS, Tatipamula VB. N-Aryl iminochromenes inhibit cyclooxygenase enzymes via π-π stacking interactions and present a novel class of anti-inflammatory drugs. RSC Adv 2021; 11:29385-29393. [PMID: 35479538 PMCID: PMC9040635 DOI: 10.1039/d1ra04407a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/15/2021] [Indexed: 11/30/2022] Open
Abstract
Cyclooxygenase enzymes (COX1/2) have been widely studied and noted for their role in the biosynthesis of inflammation-induced proteins, prostaglandins and thromboxane. Multiple anti-inflammatory drugs have been developed to target these two enzymes, but most of them appeared to have notable adverse effects, especially on the cardiovascular system and lower gastrointestinal tract, suggesting an urgent need for new potent anti-inflammatory drugs. In this study, we screened twenty-two previously synthesized N-aryl iminochromenes (NAIs) for their anti-inflammatory activity by performing COX-1/2 inhibitory assays. Five compounds (1, 10, 14, 15, and 20) that gave the best in vitro anti-inflammatory results were subjected to an in vivo anti-inflammatory assay using the formalin-induced hind rat paw oedema method, followed by in silico studies using indomethacin and celecoxib as standard drugs. Among them, compound 10 stood out as the best candidate, and the percentage reduction in paw oedema at the dose of 20 mg kg-1 body weight was found to be substantially higher with compound 10 than that with indomethacin. This is mostly due to the excellent suitability of the chromene-phenyl scaffold with a highly concentrated area of aromatic residues, which produced good π-π stacking interactions. Taken together, this study strongly suggests compound 10 as a potential candidate for anti-inflammatory drug research.
Collapse
Affiliation(s)
- Ha Thi Nguyen
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
- Faculty of Medicine, Duy Tan University Da Nang 550000 Vietnam
| | - Thien-Y Vu
- Faculty of Pharmacy, Ton Duc Thang University Ho Chi Minh City 700000 Vietnam
| | - A Vijay Kumar
- Department of Chemistry, Institute of Chemical Technology Mumbai 400019 India
| | - Vo Nguyen Huy Hoang
- Faculty of Pharmacy, Ton Duc Thang University Ho Chi Minh City 700000 Vietnam
| | - Pham Thi Ngoc My
- Faculty of Pharmacy, Ton Duc Thang University Ho Chi Minh City 700000 Vietnam
| | - Prashant S Mandal
- Department of Chemistry, Institute of Chemical Technology Mumbai 400019 India
| | - Vinay Bharadwaj Tatipamula
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
- Faculty of Medicine, Duy Tan University Da Nang 550000 Vietnam
| |
Collapse
|
43
|
Bouhaoui A, Eddahmi M, Dib M, Khouili M, Aires A, Catto M, Bouissane L. Synthesis and Biological Properties of Coumarin Derivatives. A Review. ChemistrySelect 2021. [DOI: 10.1002/slct.202101346] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Abderrazzak Bouhaoui
- Organic and Analytical Chemistry Laboratory Faculty of Sciences and Technologies Sultan Moulay Slimane University BP 523 23000 Beni-Mellal Morocco
| | - Mohammed Eddahmi
- Organic and Analytical Chemistry Laboratory Faculty of Sciences and Technologies Sultan Moulay Slimane University BP 523 23000 Beni-Mellal Morocco
| | - Mustapha Dib
- Organic and Analytical Chemistry Laboratory Faculty of Sciences and Technologies Sultan Moulay Slimane University BP 523 23000 Beni-Mellal Morocco
| | - Mostafa Khouili
- Organic and Analytical Chemistry Laboratory Faculty of Sciences and Technologies Sultan Moulay Slimane University BP 523 23000 Beni-Mellal Morocco
| | - Alfredo Aires
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences CITAB University of Trás-os-Montes e Alto Douro UTAD Vila Real Portugal
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences University of Bari Aldo Moro via E. Orabona 4 70125 Bari Italy
| | - Latifa Bouissane
- Organic and Analytical Chemistry Laboratory Faculty of Sciences and Technologies Sultan Moulay Slimane University BP 523 23000 Beni-Mellal Morocco
| |
Collapse
|
44
|
BASAPPA VAGISHCHANNA, PENUBOLU SUDEEP, ACHUTHA DILEEPKUMAR, KARIYAPPA AJAYKUMAR. Synthesis, characterization and antioxidant activity studies of new coumarin tethered 1,3,4-oxadiazole analogues. J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01914-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Vellakkaran M, Hong S. Visible‐light‐induced Reactions Driven by Photochemical Activity of Quinolinone and Coumarin Scaffolds. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mari Vellakkaran
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) 34141 Daejeon Korea
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) 34141 Daejeon Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) 34141 Daejeon Korea
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) 34141 Daejeon Korea
| |
Collapse
|
46
|
Discovery of novel 2H-chromene-3-carbonyl derivatives as selective estrogen receptor degraders (SERDs): Design, synthesis and biological evaluation. Bioorg Chem 2021; 109:104714. [PMID: 33618254 DOI: 10.1016/j.bioorg.2021.104714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 11/23/2022]
Abstract
Selective estrogen receptor degraders (SERDs) not only block ERα activity but degrade this receptor at the same time and are effective in relapsed ERα positive breast cancer patients who have accepted other endocrine therapies. Herein, through scaffold hopping of coumarin skeleton, a series of 2H-chromene-3-carbonyl-based SERDs with phenyl acrylic acid group as the side chain were designed and synthesized. Compound XH04 containing 7-hydroxy-2H-chromene-3-carbonyl skeleton exhibited the most potent activities in 2D (IC50 = 0.8 μM) and 3D cells culture models (MCF-7) and had the best ERα binding affinity as well. Furthermore, the significant antiestrogen property of compound XH04 was confirmed by inhibiting the expression of progesterone receptor (PgR) mRNA in MCF-7 cells. On the other hand, the outgoing ERα degradation property of compound XH04 was qualitatively and quantificationally verified by immunofluorescence analysis and Western blot assay in MCF-7 cells. Besides, compound XH04 repressed the expression level of Ki67 in MCF-7 cells and induced the apoptosis increase of this tumor cells in a dose-dependent manner like approved-SERD fulvestrant (2), while compound XH04 exhibited better preliminary pharmacokinetics in human and rat liver microsomes in vitro and a lower LogD7.4 value than fulvestrant. And further molecular docking study revealed that compound XH04 possessed a proverbial and typical binding model with ERα like other reported SERD. All these results confirmed that 7-hydroxy-2H-chromene-3-carbonyl structure could be a feasible skeleton for design of ERα antagonists including SERDs and compound XH04 is a promising candidate for further development of ERα + breast cancer therapy agents.
Collapse
|
47
|
Das A, Das A, Banik BK. Influence of dipole moments on the medicinal activities of diverse organic compounds. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
48
|
Design and synthesis of 7-O-1,2,3-triazole hesperetin derivatives to relieve inflammation of acute liver injury in mice. Eur J Med Chem 2021; 213:113162. [PMID: 33493826 DOI: 10.1016/j.ejmech.2021.113162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 02/07/2023]
Abstract
Based on the previous research results of our research group, to further improve the anti-inflammatory activity of hesperetin, we substituted triazole at the 7-OH branch of hesperetin. We also evaluated the anti-inflammatory activity of 39 new hesperetin derivatives. All compounds showed inhibitory effects on nitric oxide (NO) and inflammatory factors in lipopolysaccharide-induced RAW264.7 cells. Compound d5 showed a strong inhibitory effect on NO (half maximal inhibitory concentration = 2.34 ± 0.7 μM) and tumor necrosis factor-α, interleukin (IL)-1β, and (IL-6). Structure-activity relationships indicate that 7-O-triazole is buried in a medium-sized hydrophobic cavity that binds to the receptor. Compound d5 can also reduce the reactive oxygen species production and significantly inhibit the expression of inducible NO synthase and cyclooxygenase-2 through the nuclear factor-κB signaling pathway. In vivo results indicate that d5 can reduce liver inflammation in mice with acute liver injury (ALI) induced by CCI4. In conclusion, d5 may be a candidate drug for treating inflammation associated with ALI.
Collapse
|
49
|
Novel Fluorinated 7-Hydroxycoumarin Derivatives Containing an Oxime Ether Moiety: Design, Synthesis, Crystal Structure and Biological Evaluation. Molecules 2021; 26:molecules26020372. [PMID: 33445777 PMCID: PMC7828289 DOI: 10.3390/molecules26020372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 11/16/2022] Open
Abstract
A series of fluorinated 7-hydroxycoumarin derivatives containing an oxime ether moiety have been designed, synthesized and evaluated for their antifungal activity. All the target compounds were determined by 1H-NMR, 13C-NMR, FTIR and HR-MS spectra. The single-crystal structures of compounds 4e, 4h, 5h and 6c were further confirmed using X-ray diffraction. The antifungal activities against Botrytis cinerea (B. cinerea), Alternariasolani (A. solani), Gibberella zeae (G. zeae), Rhizoctorzia solani (R. solani), Colletotrichum orbiculare (C. orbiculare) and Alternaria alternata (A. alternata) were evaluated in vitro. The preliminary bioassays showed that some of the designed compounds displayed the promising antifungal activities against the above tested fungi. Strikingly, the target compounds 5f and 6h exhibited outstanding antifungal activity against B. cinerea at 100 μg/mL, with the corresponding inhibition rates reached 90.1 and 85.0%, which were better than the positive control Osthole (83.6%) and Azoxystrobin (46.5%). The compound 5f was identified as the promising fungicide candidate against B. cinerea with the EC50 values of 5.75 μg/mL, which was obviously better than Osthole (33.20 μg/mL) and Azoxystrobin (64.95 μg/mL). Meanwhile, the compound 5f showed remarkable antifungal activities against R. solani with the EC50 values of 28.96 μg/mL, which was better than Osthole (67.18 μg/mL) and equivalent to Azoxystrobin (21.34 μg/mL). The results provide a significant foundation for the search of novel fluorinated 7-hydroxycoumarin derivatives with good antifungal activity.
Collapse
|
50
|
Yang G, Shi L, Pan Z, Wu L, Fan L, Wang C, Xu C, Liang J. The synthesis of coumarin thiazoles containing a trifluoromethyl group and their antifungal activities. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2020.10.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|