1
|
Nakashima H, Kearney BM, Kinoshita M. The Liver X Receptor Promotes Immune Homeostasis via Controlled Activation of the Innate Immune System in the Liver. Biomolecules 2024; 15:25. [PMID: 39858420 PMCID: PMC11764419 DOI: 10.3390/biom15010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025] Open
Abstract
The liver is an indispensable metabolic organ, responsible for accumulating and transporting various nutritional compounds in hepatocytes. However, the transport of these materials from the liver is an energetically intensive task because they contain a considerable number of hydrophobic components, including free cholesterol, and require specialized transfer proteins to shuttle these substances through an aqueous phase. Liver X receptors (LXRs) induce the expression of cholesterol transporters in macrophages to transport free cholesterol derived from apoptotic cells into extracellular space via high-density lipoproteins. Additionally, LXRs control innate immune cells through two major mechanisms: upregulating the phagocytic activity of macrophages and suppressing inflammatory reactions to prevent aggressive activation of immune cells. Therefore, the primary role of LXRs is to accelerate efferocytosis without provoking inflammation and facilitate the transfer of free cholesterol from the intracellular space. This mechanism makes the innate immune system a substantial contributor to systemic metabolic control. Concomitantly, LXRs are important factors in regulating systemic defense mechanisms through the efficient regulation of immune cells. LXR activation, therefore, has great potential for clinical applications in the treatment of metabolic, infectious, and autoimmune diseases. In this review, we discuss the current understanding of the link between LXRs and innate immune cells in the liver, along with prospects for clinical applications of LXR agonists.
Collapse
Affiliation(s)
- Hiroyuki Nakashima
- Department of Immunology and Microbiology, National Defense Medical College, Saitama 359-8513, Japan; (B.M.K.); (M.K.)
| | | | | |
Collapse
|
2
|
Falero-Diaz G, Barboza CDA, Kaiser K, Tallman KA, Montoya C, Patel SB, Hutcheson JD, Lassance-Soares RM. The Systemic Effect of Ischemia Training and Its Impact on Bone Marrow-Derived Monocytes. Cells 2024; 13:1602. [PMID: 39404366 PMCID: PMC11475150 DOI: 10.3390/cells13191602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
OBJECTIVE Monocytes are innate immune cells that play a central role in inflammation, an essential component during neovascularization. Our recent publication demonstrated that ischemia training by 24 h unilateral occlusion of the femoral artery (FA) can modify bone marrow-derived monocytes (BM-Mono), allowing them to improve collateral remodeling in a mouse model of hindlimb ischemia. Here, we expand on our previous findings, investigating a potential systemic effect of ischemia training and how this training can impact BM-Mono. METHODS AND RESULTS BM-Mono from mice exposed to ischemia training (24 h) or Sham (same surgical procedure without femoral artery occlusion-ischemia training) procedures were used as donors in adoptive transfer experiments where recipients were subjected to hindlimb ischemia. Donor cells were divided corresponding to the limb from which they were isolated (left-limb previously subjected to 24 h ischemia and right-contralateral limb). Recipients who received 24 h ischemic-trained monocytes isolated from either limb had remarkable blood flow recovery compared to recipients with Sham monocytes (monocytes isolated from Sham group-no ischemia training). Since these data suggested a systemic effect of ischemic training, circulating extracellular vesicles (EVs) were investigated as potential players. EVs were isolated from both groups, 24 h-trained and Sham, and the former showed increased expression of histone deacetylase 1 (HDAC1), which is known to downregulate 24-dehydrocholesterol reductase (Dhcr24) gene expression. Since we previously revealed that ischemia training downregulates Dhcr24 in BM-Mono, we incubated EVs from 24 h-trained and Sham groups with wild-type (WT) BM-Mono and demonstrated that WT BM-Mono incubated with 24 h-trained EVs had lower gene expression of Dhcr24 and an HDAC1 inhibitor blunted this effect. Next, we repeated the adoptive transfer experiment using Dhcr24 KO mice as donors of BM-Mono for WT mice subjected to hindlimb ischemia. Recipients who received Dhcr24 KO BM-Mono had greater limb perfusion than those who received WT BM-Mono. Further, we focused on the 24 h-trained monocytes (which previously showed downregulation of Dhcr24 gene expression and higher desmosterol) to test the expression of a few genes downstream of the desmosterol pathway, confirm the Dhcr24 protein level and assess its differentiation in M2-like macrophage phenotype. We found that 24 h-trained BM-Mono had greater expression of key genes in the desmosterol pathway, such as liver X receptors (LXRs) and ATP-binding cassette transporter (ABCA1), and we confirmed low protein expression of Dhcr24. Further, we demonstrated that ischemic-trained BM-Mono polarized towards an anti-inflammatory M2 macrophage phenotype. Finally, we demonstrated that 24 h-trained monocytes adhere less to endothelial cells, and the same pattern was shown by WT BM-Mono treated with Dhcr24 inhibitor. CONCLUSIONS Ischemia training leads to a systemic effect that, at least in part, involves circulating EVs and potential epigenetic modification in BM-Mono. These ischemic-trained BM-Mono demonstrated an anti-inflammatory phenotype towards M2 macrophage differentiation and less ability to adhere to endothelial cells, which is associated with the downregulation of Dhcr24 in those cells. These data together suggest that Dhcr24 might be an important target within monocytes to improve the outcomes of hindlimb ischemia.
Collapse
Affiliation(s)
- Gustavo Falero-Diaz
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (G.F.-D.); (C.M.)
| | - Catarina de A. Barboza
- Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Katherine Kaiser
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA; (K.K.); (J.D.H.)
| | - Keri A. Tallman
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA;
| | - Christopher Montoya
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (G.F.-D.); (C.M.)
| | - Shailendra B. Patel
- Department of Internal Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Cincinnati, Cincinnati, OH 45221, USA;
| | - Joshua D. Hutcheson
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA; (K.K.); (J.D.H.)
| | - Roberta M. Lassance-Soares
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (G.F.-D.); (C.M.)
| |
Collapse
|
3
|
Ge X, Slütter B, Lambooij JM, Zhou E, Ying Z, Agirman C, Heijink M, Rimbert A, Guigas B, Kuiper J, Müller C, Bracher F, Giera M, Kooijman S, Rensen PC, Wang Y, Schönke M. DHCR24 inhibitor SH42 increases desmosterol without preventing atherosclerosis development in mice. iScience 2024; 27:109830. [PMID: 38770137 PMCID: PMC11103367 DOI: 10.1016/j.isci.2024.109830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/29/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024] Open
Abstract
The liver X receptor (LXR) is considered a therapeutic target for atherosclerosis treatment, but synthetic LXR agonists generally also cause hepatic steatosis and hypertriglyceridemia. Desmosterol, a final intermediate in cholesterol biosynthesis, has been identified as a selective LXR ligand that suppresses inflammation without inducing lipogenesis. Δ24-Dehydrocholesterol reductase (DHCR24) converts desmosterol into cholesterol, and we previously showed that the DHCR24 inhibitor SH42 increases desmosterol to activate LXR and attenuate experimental peritonitis and metabolic dysfunction-associated steatotic liver disease. Here, we aimed to evaluate the effect of SH42 on atherosclerosis development in APOE∗3-Leiden.CETP mice and low-density lipoproteins (LDL) receptor knockout mice, models for lipid- and inflammation-driven atherosclerosis, respectively. In both models, SH42 increased desmosterol without affecting plasma lipids. While reducing liver lipids in APOE∗3-Leiden.CETP mice, and regulating populations of circulating monocytes in LDL receptor knockout mice, SH42 did not attenuate atherosclerosis in either model.
Collapse
Affiliation(s)
- Xiaoke Ge
- Department of Medicine, Div. of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Bram Slütter
- Div. of BioTherapeutics, Leiden Academic Center for Drug Research, Leiden University, Leiden 2333 AL, the Netherlands
| | - Joost M. Lambooij
- Department of Parasitology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Enchen Zhou
- Department of Medicine, Div. of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Zhixiong Ying
- Department of Medicine, Div. of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Ceren Agirman
- Department of Medicine, Div. of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Marieke Heijink
- The Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Antoine Rimbert
- Nantes Université, CNRS, INSERM, l’institut du thorax, F-44000 Nantes, France
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Johan Kuiper
- Div. of BioTherapeutics, Leiden Academic Center for Drug Research, Leiden University, Leiden 2333 AL, the Netherlands
| | - Christoph Müller
- Department of Pharmacy, Center for Drug Research, Ludwig Maximilians Universität München, 80539 Munich, Germany
| | - Franz Bracher
- Department of Pharmacy, Center for Drug Research, Ludwig Maximilians Universität München, 80539 Munich, Germany
| | - Martin Giera
- The Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Sander Kooijman
- Department of Medicine, Div. of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Patrick C.N. Rensen
- Department of Medicine, Div. of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Yanan Wang
- Department of Medicine, Div. of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
- Med-X institute, Center for Immunological and Metabolic Diseases, and Department of Endocrinology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an 710061, China
| | - Milena Schönke
- Department of Medicine, Div. of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| |
Collapse
|
4
|
Peeples ES, Mirnics K, Korade Z. Chemical Inhibition of Sterol Biosynthesis. Biomolecules 2024; 14:410. [PMID: 38672427 PMCID: PMC11048061 DOI: 10.3390/biom14040410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Cholesterol is an essential molecule of life, and its synthesis can be inhibited by both genetic and nongenetic mechanisms. Hundreds of chemicals that we are exposed to in our daily lives can alter sterol biosynthesis. These also encompass various classes of FDA-approved medications, including (but not limited to) commonly used antipsychotic, antidepressant, antifungal, and cardiovascular medications. These medications can interfere with various enzymes of the post-lanosterol biosynthetic pathway, giving rise to complex biochemical changes throughout the body. The consequences of these short- and long-term homeostatic disruptions are mostly unknown. We performed a comprehensive review of the literature and built a catalogue of chemical agents capable of inhibiting post-lanosterol biosynthesis. This process identified significant gaps in existing knowledge, which fall into two main areas: mechanisms by which sterol biosynthesis is altered and consequences that arise from the inhibitions of the different steps in the sterol biosynthesis pathway. The outcome of our review also reinforced that sterol inhibition is an often-overlooked mechanism that can result in adverse consequences and that there is a need to develop new safety guidelines for the use of (novel and already approved) medications with sterol biosynthesis inhibiting side effects, especially during pregnancy.
Collapse
Affiliation(s)
- Eric S. Peeples
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Child Health Research Institute, Omaha, NE 68198, USA;
- Division of Neonatology, Children’s Nebraska, Omaha, NE 68114, USA
| | - Karoly Mirnics
- Child Health Research Institute, Omaha, NE 68198, USA;
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zeljka Korade
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Child Health Research Institute, Omaha, NE 68198, USA;
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
5
|
Fu X, Wang Z. DHCR24 in Tumor Diagnosis and Treatment: A Comprehensive Review. Technol Cancer Res Treat 2024; 23:15330338241259780. [PMID: 38847653 PMCID: PMC11162140 DOI: 10.1177/15330338241259780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2024] Open
Abstract
As an important nutrient in the human body, cholesterol can not only provide structural components for the body's cells, but also can be transformed into a variety of active substances to regulate cell signaling pathways. As an important cholesterol synthase, DHCR24 participates in important regulatory processes in the body. The application of DHCR24 in tumor clinical diagnosis and treatment also attracts much attention. This article reviews the structure and regulatory characteristics of DHCR24, and the research of DHCR24 on tumor progression. We summarize the possible mechanisms of DHCR24 promoting tumor progression through reactive oxygen species (ROS), p53, Ras and PI3K-AKT pathways. Through our review, we hope to provide more research ideas and reference value for the application of DHCR24 in tumor prevention and treatment.
Collapse
Affiliation(s)
- Xin Fu
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhaosong Wang
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Laboratory Animal Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
6
|
Zhou E, Ge X, Nakashima H, Li R, van der Zande HJP, Liu C, Li Z, Müller C, Bracher F, Mohammed Y, de Boer JF, Kuipers F, Guigas B, Glass CK, Rensen PCN, Giera M, Wang Y. Inhibition of DHCR24 activates LXRα to ameliorate hepatic steatosis and inflammation. EMBO Mol Med 2023; 15:e16845. [PMID: 37357756 PMCID: PMC10405065 DOI: 10.15252/emmm.202216845] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/27/2023] Open
Abstract
Liver X receptor (LXR) agonism has theoretical potential for treating NAFLD/NASH, but synthetic agonists induce hyperlipidemia in preclinical models. Desmosterol, which is converted by Δ24-dehydrocholesterol reductase (DHCR24) into cholesterol, is a potent endogenous LXR agonist with anti-inflammatory properties. We aimed to investigate the effects of DHCR24 inhibition on NAFLD/NASH development. Here, by using APOE*3-Leiden. CETP mice, a well-established translational model that develops diet-induced human-like NAFLD/NASH characteristics, we report that SH42, a published DHCR24 inhibitor, markedly increases desmosterol levels in liver and plasma, reduces hepatic lipid content and the steatosis score, and decreases plasma fatty acid and cholesteryl ester concentrations. Flow cytometry showed that SH42 decreases liver inflammation by preventing Kupffer cell activation and monocyte infiltration. LXRα deficiency completely abolishes these beneficial effects of SH42. Together, the inhibition of DHCR24 by SH42 prevents diet-induced hepatic steatosis and inflammation in a strictly LXRα-dependent manner without causing hyperlipidemia. Finally, we also showed that SH42 treatment decreased liver collagen content and plasma alanine transaminase levels in an established NAFLD model. In conclusion, we anticipate that pharmacological DHCR24 inhibition may represent a novel therapeutic strategy for treatment of NAFLD/NASH.
Collapse
Affiliation(s)
- Enchen Zhou
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
- Department of Cellular and Molecular Medicine and Department of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Xiaoke Ge
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Hiroyuki Nakashima
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Rumei Li
- Department of PediatricsUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | | | - Cong Liu
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Zhuang Li
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Christoph Müller
- Department of Pharmacy, Center for Drug ResearchLudwig Maximilians UniversityMunichGermany
| | - Franz Bracher
- Department of Pharmacy, Center for Drug ResearchLudwig Maximilians UniversityMunichGermany
| | - Yassene Mohammed
- The Center for Proteomics and MetabolomicsLeiden University Medical CenterLeidenThe Netherlands
| | - Jan Freark de Boer
- Department of PediatricsUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
- Department of Laboratory MedicineUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Folkert Kuipers
- Department of PediatricsUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
- Department of Laboratory MedicineUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Bruno Guigas
- Department of ParasitologyLeiden University Medical CenterLeidenThe Netherlands
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine and Department of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
- Med‐X Institute, Center for Immunological and Metabolic Diseases, and Department of EndocrinologyFirst Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong UniversityXi'anChina
| | - Martin Giera
- The Center for Proteomics and MetabolomicsLeiden University Medical CenterLeidenThe Netherlands
| | - Yanan Wang
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
- Med‐X Institute, Center for Immunological and Metabolic Diseases, and Department of EndocrinologyFirst Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
7
|
Yang M, Luo J, Zhang S, Huang Q, Cao Q. Knockdown of circ_0113656 assuages oxidized low-density lipoprotein-induced vascular smooth muscle cell injury through the miR-188-3p/IGF2 pathway. Open Med (Wars) 2023; 18:20230687. [PMID: 37415611 PMCID: PMC10320571 DOI: 10.1515/med-2023-0687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 07/08/2023] Open
Abstract
Circular RNA (circRNA) is involved in the pathogenesis of atherosclerosis (AS). The present work analyzed the RNA expression of circ_0113656, microRNA-188-3p (miR-188-3p), and insulin-like growth factor 2 (IGF2) by quantitative real-time polymerase chain reaction. The protein expression of proliferating cell nuclear antigen (PCNA), matrix metalloprotein 2 (MMP2), and IGF2 was detected by Western blotting. Cell viability, proliferation, invasion, and migration were analyzed using the cell counting kit-8, 5-ethynyl-2'-deoxyuridine, transwell invasion, and wound-healing assays, respectively. The interactions among circ_0113656, miR-188-3p, and IGF2 were identified by dual-luciferase reporter assay and RNA immunoprecipitation assay. The results showed that circ_0113656 and IGF2 expression were significantly upregulated, while miR-188-3p was downregulated in the blood of AS patients and oxidized low-density lipoprotein (ox-LDL)-treated HVSMCs in comparison with controls. The ox-LDL treatment induced HVSMC proliferation, migration, and invasion accompanied by increases in PCNA and MMP2 expression; however, these effects were attenuated after circ_0113656 knockdown. Circ_0113656 acted as a miR-188-3p sponge and it regulated ox-LDL-induced HVSMC disorders by binding to miR-188-3p. Besides, the regulation of miR-188-3p in ox-LDL-induced HVSMC injury involved IGF2. Further, the depletion of circ_0113656 inhibited IGF2 expression by interacting with miR-188-3p. Thus, the circ_0113656/miR-188-3p/IGF2 axis may mediate ox-LDL-induced HVSMC disorders in AS, providing a new therapeutic strategy for AS.
Collapse
Affiliation(s)
- Ming Yang
- Department of Vasculocardiology, People’s Hospital of Jiangxi Provincial, Nanchang, China
| | - Jun Luo
- Department of Vasculocardioloy, People’s Hospital of Ganzhou City, Ganzhou, China
| | - Shuhua Zhang
- Department of Vasculocardiology, People’s Hospital of Jiangxi Provincial, Nanchang, China
| | - Qing Huang
- Department of Vasculocardiology, People’s Hospital of Jiangxi Provincial, Nanchang, China
| | - Qianqiang Cao
- Department of Vasculocardiology, People’s Hospital of Jiangxi Provincial, No. 266,
Fenhe North Road, Nanchang, China
| |
Collapse
|
8
|
Virtual Screening of Novel 24-Dehydroxysterol Reductase (DHCR24) Inhibitors and the Biological Evaluation of Irbesartan in Cholesterol-Lowering Effect. Molecules 2023; 28:molecules28062643. [PMID: 36985615 PMCID: PMC10053925 DOI: 10.3390/molecules28062643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023] Open
Abstract
Hyperlipidemia is a risk factor for the development of fatty liver and cardiovascular diseases such as atherosclerosis and coronary heart disease, and hence, cholesterol-lowering drugs are considered important and effective in preventing cardiovascular diseases. Thus, researchers in the field of new drug development are endeavoring to identify new types of cholesterol-lowering drugs. 3β-hydroxysterol-Δ(24)-reductase (DHCR24) catalyzes the conversion of desmosterol to cholesterol, which is the last step in the cholesterol biosynthesis pathway. We speculated that blocking the catalytic activity of DHCR24 could be a novel therapeutic strategy for treating hyperlipidemia. In the present study, by virtually screening the DrugBank database and performing molecular dynamics simulation analysis, we selected four potential DHCR24 inhibitor candidates: irbesartan, risperidone, tolvaptan, and conivaptan. All four candidates showed significant cholesterol-lowering activity in HepG2 cells. The experimental mouse model of hyperlipidemia demonstrated that all four candidates improved high blood lipid levels and fat vacuolation in the livers of mice fed with a high-fat diet. In addition, Western blot analysis results suggested that irbesartan reduced cholesterol levels by downregulating the expression of the low-density lipoprotein receptor. Finally, the immune complex activity assay confirmed the inhibitory effect of irbesartan on the enzymatic activity of DHCR24 with its half-maximal inhibitory concentration (IC50) value of 602 nM. Thus, to the best of our knowledge, this is the first study to report that blocking the enzymatic activity of DHCR24 via competitive inhibition is a potential strategy for developing new cholesterol-lowering drugs against hyperlipidemia or multiple cancers. Furthermore, considering that irbesartan is currently used to treat hypertension combined with type 2 diabetes, we believe that irbesartan should be a suitable choice for patients with both hypertension and hyperlipidemia.
Collapse
|
9
|
Liver X Receptor Regulation of Glial Cell Functions in the CNS. Biomedicines 2022; 10:biomedicines10092165. [PMID: 36140266 PMCID: PMC9496004 DOI: 10.3390/biomedicines10092165] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/19/2022] [Accepted: 08/29/2022] [Indexed: 11/22/2022] Open
Abstract
In this review, we discuss the role of liver X receptors (LXRs) in glial cells (microglia, oligodendrocytes and astrocytes) in the central nervous system (CNS). LXRs are oxysterol-activated nuclear receptors that, in adults, regulate genes involved in cholesterol homeostasis, the modulation of inflammatory responses and glutamate homeostasis. The study of LXR knockout mice has revealed that LXRβ plays a key role in maintaining the health of dopaminergic neurons in the substantia nigra, large motor neurons in the spinal cord and retinal ganglion cells in the eye. In the peripheral nervous system (PNS), LXRβ is responsible for the health of the spiral ganglion neurons (SGNs) in the cochlea. In addition, LXRs are essential for the homeostasis of the cerebrospinal fluid (CSF), and in LXRαβ−/− mice, the lateral ventricles are empty and lined with lipid-laden cells. As LXRαβ−/− mice age, lipid vacuoles accumulate in astrocytes surrounding blood vessels. By seven months of age, motor coordination becomes impaired, and there is a loss of motor neurons in the spinal cord of LXRβ−/− mice. During development, migration of neurons in the cortex and cerebellum is retarded in LXRβ−/− mice. Since LXRs are not expressed in dopaminergic or motor neurons in adult mice, the neuroprotective effects of LXRs appear to come from LXRs in glial cells where they are expressed. However, despite the numerous neurological deficits in LXR−/− rodents, multiple sclerosis has the clear distinction of being the only human neurodegenerative disease in which defective LXR signaling has been identified. In this review, we summarize the regulation and functions of LXRs in glial cells and analyze how targeting LXRs in glial cells might, in the future, be used to treat neurodegenerative diseases and, perhaps, disorders caused by aberrant neuronal migration during development.
Collapse
|
10
|
Pflugfelder A, Yong XLH, Jagirdar K, Eigentler TK, Soyer HP, Sturm RA, Flatz L, Duffy DL. Genome-Wide Association Study Suggests the Variant rs7551288*A within the DHCR24 Gene Is Associated with Poor Overall Survival in Melanoma Patients. Cancers (Basel) 2022; 14:cancers14102410. [PMID: 35626014 PMCID: PMC9139953 DOI: 10.3390/cancers14102410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/27/2022] [Accepted: 05/10/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary The aim of this work was to investigate prognostic genetic factors in melanoma patients. Phenotypic and disease data as well as biomaterial were collected after informed consent from patients followed up in a Skin Cancer Center of a University clinic. Genome-wide analysis (GWAS) was performed with survival data of 556 melanoma patients and genetic data including more than 300,000 common polymorphisms. The SNP rs7551288 reached suggestive genome-wide significance (p = 2 × 10−6). This intronic variant of the DHCR24 gene is involved in the cholesterol synthesis pathway. Further analyses and a literature review suggest an important role of this locus for the clinical course of disease in melanoma patients. Abstract Melanoma incidence rates are high among individuals with fair skin and multiple naevi. Established prognostic factors are tumour specific, and less is known about prognostic host factors. A total of 556 stage I to stage IV melanoma patients from Germany with phenotypic and disease-specific data were analysed; 64 of these patients died of melanoma after a median follow-up time of 8 years. Germline DNA was assessed by the HumanCoreExome BeadChip and data of 356,384 common polymorphisms distributed over all 23 chromosomes were used for a genome-wide analysis. A suggestive genome-wide significant association of the intronic allele rs7551288*A with diminished melanoma-specific survival was detected (p = 2 × 10−6). The frequency of rs7551288*A was 0.43 and was not associated with melanoma risk, hair and eye colour, tanning and total naevus count. Cox regression multivariate analyses revealed a 5.31-fold increased risk of melanoma-specific death for patients with the rs7551288 A/A genotype, independent of tumour thickness, ulceration and stage of disease at diagnoses. The variant rs7551288 belongs to the DHCR24 gene, which encodes Seladin-1, an enzyme involved in the biosynthesis of cholesterol. Further investigations are needed to confirm this genetic variant as a novel prognostic biomarker and to explore whether specific treatment strategies for melanoma patients might be derived from it.
Collapse
Affiliation(s)
- Annette Pflugfelder
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD 4102, Australia; (X.L.H.Y.); (K.J.); (H.P.S.); (R.A.S.); (D.L.D.)
- Center of Dermatooncology, Department of Dermatology, University of Tübingen, 72076 Tübingen, Germany;
- Correspondence:
| | - Xuan Ling Hilary Yong
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD 4102, Australia; (X.L.H.Y.); (K.J.); (H.P.S.); (R.A.S.); (D.L.D.)
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, QLD 4072, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kasturee Jagirdar
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD 4102, Australia; (X.L.H.Y.); (K.J.); (H.P.S.); (R.A.S.); (D.L.D.)
- Biochemistry and Molecular Biology Department, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Thomas K. Eigentler
- Department of Dermatology, Venereology and Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10177 Berlin, Germany;
| | - H. Peter Soyer
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD 4102, Australia; (X.L.H.Y.); (K.J.); (H.P.S.); (R.A.S.); (D.L.D.)
- Department of Dermatology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
| | - Richard A. Sturm
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD 4102, Australia; (X.L.H.Y.); (K.J.); (H.P.S.); (R.A.S.); (D.L.D.)
| | - Lukas Flatz
- Center of Dermatooncology, Department of Dermatology, University of Tübingen, 72076 Tübingen, Germany;
| | - David L. Duffy
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD 4102, Australia; (X.L.H.Y.); (K.J.); (H.P.S.); (R.A.S.); (D.L.D.)
- Genetic Epidemiology, QIMR Berghofer Institute of Medical Research, Herston, QLD 4006, Australia
| |
Collapse
|
11
|
Madan B, Virshup DM, Nes WD, Leaver DJ. Unearthing the Janus-face cholesterogenesis pathways in cancer. Biochem Pharmacol 2021; 196:114611. [PMID: 34010597 DOI: 10.1016/j.bcp.2021.114611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/23/2022]
Abstract
Cholesterol biosynthesis, primarily associated with eukaryotes, occurs as an essential component of human metabolism with biosynthetic deregulation a factor in cancer viability. The segment that partitions between squalene and the C27-end cholesterol yields the main cholesterogenesis branch subdivided into the Bloch and Kandutsch-Russell pathways. Their importance in cell viability, in normal growth and development originates primarily from the amphipathic property and shape of the cholesterol molecule which makes it suitable as a membrane insert. Cholesterol can also convert to variant oxygenated product metabolites of distinct function producing a complex interplay between cholesterol synthesis and overall steroidogenesis. In this review, we disassociate the two sides of cholesterogenesisis affecting the type and amounts of systemic sterols-one which is beneficial to human welfare while the other dysfunctional leading to misery and disease that could result in premature death. Our focus here is first to examine the cholesterol biosynthetic genes, enzymes, and order of biosynthetic intermediates in human cholesterogenesis pathways, then compare the effect of proximal and distal inhibitors of cholesterol biosynthesis against normal and cancer cell growth and metabolism. Collectively, the inhibitor studies of druggable enzymes and specific biosynthetic steps, suggest a potential role of disrupted cholesterol biosynthesis, in coordination with imported cholesterol, as a factor in cancer development and as discussed some of these inhibitors have chemotherapeutic implications.
Collapse
Affiliation(s)
- Babita Madan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - David M Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore; Department of Pediatrics, Duke University, Durham, NC, USA
| | - W David Nes
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA.
| | - David J Leaver
- Department of Biology, Geology, and Physical Sciences, Sul Ross State University, Alpine, TX, USA.
| |
Collapse
|
12
|
Ohta-Shimizu M, Fuwa F, Tomitsuka E, Nishiwaki T, Aihara K, Sato S, Nakagawa S. New Inhibitory Effect of Latilactobacillus sakei UONUMA on the Cholesterol Biosynthesis Pathway in Human HepG2 Cells. Biol Pharm Bull 2021; 44:485-493. [PMID: 33790100 DOI: 10.1248/bpb.b20-00663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many pharmaceuticals and dietary foods have been reported to inhibit cholesterol biosynthesis, mainly by inhibiting the presqualene enzyme 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase rather than a postsqualene enzyme. In this study, we examined the inhibitory effects of Latilactobacillus sakei UONUMA on cholesterol biosynthesis, especially postsqualene, in human HepG2 hepatoma cells. We quantified cholesterol and its precursors, and the mRNA and protein levels of enzymes involved in cholesterol biosynthesis. Three L. sakei UONUMA strains exhibited new inhibitory effects on cholesterol biosynthesis and inhibited the mRNA level of sterol-delta24-reductase (DHCR24), which is involved in the postsqualene cholesterol biosynthesis pathway. These strains will be useful for the prevention and treatment of hyperlipidemia.
Collapse
Affiliation(s)
- Miho Ohta-Shimizu
- Department of Bio-Analytical Chemistry, Niigata University of Pharmacy and Applied Life Sciences
| | - Fumiko Fuwa
- Department of Bio-Analytical Chemistry, Niigata University of Pharmacy and Applied Life Sciences
| | - Eriko Tomitsuka
- Department of Health Chemistry, Niigata University of Pharmacy and Applied Sciences
| | | | - Kotaro Aihara
- Niigata Agricultural Research Institute Food Research Center
| | - Shinji Sato
- Functional and Analytical Food Sciences, Niigata University of Pharmacy and Applied Life Sciences
| | - Saori Nakagawa
- Department of Bio-Analytical Chemistry, Niigata University of Pharmacy and Applied Life Sciences
| |
Collapse
|
13
|
Snodgrass RG, Benatzy Y, Schmid T, Namgaladze D, Mainka M, Schebb NH, Lütjohann D, Brüne B. Efferocytosis potentiates the expression of arachidonate 15-lipoxygenase (ALOX15) in alternatively activated human macrophages through LXR activation. Cell Death Differ 2020; 28:1301-1316. [PMID: 33177619 PMCID: PMC8027700 DOI: 10.1038/s41418-020-00652-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 12/31/2022] Open
Abstract
Macrophages acquire anti-inflammatory and proresolving functions to facilitate resolution of inflammation and promote tissue repair. While alternatively activated macrophages (AAMs), also referred to as M2 macrophages, polarized by type 2 (Th2) cytokines IL-4 or IL-13 contribute to the suppression of inflammatory responses and play a pivotal role in wound healing, contemporaneous exposure to apoptotic cells (ACs) potentiates the expression of anti-inflammatory and tissue repair genes. Given that liver X receptors (LXRs), which coordinate sterol metabolism and immune cell function, play an essential role in the clearance of ACs, we investigated whether LXR activation following engulfment of ACs selectively potentiates the expression of Th2 cytokine-dependent genes in primary human AAMs. We show that AC uptake simultaneously upregulates LXR-dependent, but suppresses SREBP-2-dependent gene expression in macrophages, which are both prevented by inhibiting Niemann–Pick C1 (NPC1)-mediated sterol transport from lysosomes. Concurrently, macrophages accumulate sterol biosynthetic intermediates desmosterol, lathosterol, lanosterol, and dihydrolanosterol but not cholesterol-derived oxysterols. Using global transcriptome analysis, we identify anti-inflammatory and proresolving genes including interleukin-1 receptor antagonist (IL1RN) and arachidonate 15-lipoxygenase (ALOX15) whose expression are selectively potentiated in macrophages upon concomitant exposure to ACs or LXR agonist T0901317 (T09) and Th2 cytokines. We show priming macrophages via LXR activation enhances the cellular capacity to synthesize inflammation-suppressing specialized proresolving mediator (SPM) precursors 15-HETE and 17-HDHA as well as resolvin D5. Silencing LXRα and LXRβ in macrophages attenuates the potentiation of ALOX15 expression by concomitant stimulation of ACs or T09 and IL-13. Collectively, we identify a previously unrecognized mechanism of regulation whereby LXR integrates AC uptake to selectively shape Th2-dependent gene expression in AAMs.
Collapse
Affiliation(s)
- Ryan G Snodgrass
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Yvonne Benatzy
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Tobias Schmid
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Dmitry Namgaladze
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Malwina Mainka
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Dieter Lütjohann
- Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany.
| |
Collapse
|
14
|
Feltrin S, Ravera F, Traversone N, Ferrando L, Bedognetti D, Ballestrero A, Zoppoli G. Sterol synthesis pathway inhibition as a target for cancer treatment. Cancer Lett 2020; 493:19-30. [DOI: 10.1016/j.canlet.2020.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 07/05/2020] [Accepted: 07/09/2020] [Indexed: 12/21/2022]
|
15
|
Heerdegen D, Reuter D, Kornmayer MM, Kriegler KN, Müller C, Mayer P, Bracher F. Synthesis of
Seco
‐Analogues of the DHCR24 Inhibitor SH‐42. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Desirée Heerdegen
- Department of Pharmacy ‐ Center for Drug Research Ludwig‐Maximilians University Butenandtstr. 5‐13 81377 Munich Germany
| | - Doreen Reuter
- Department of Chemistry Ludwig‐Maximilians University Butenandtstr. 5‐13 81377 Munich Germany
| | - Moritz M. Kornmayer
- Department of Pharmacy ‐ Center for Drug Research Ludwig‐Maximilians University Butenandtstr. 5‐13 81377 Munich Germany
| | - Katharina N. Kriegler
- Department of Pharmacy ‐ Center for Drug Research Ludwig‐Maximilians University Butenandtstr. 5‐13 81377 Munich Germany
| | - Christoph Müller
- Department of Pharmacy ‐ Center for Drug Research Ludwig‐Maximilians University Butenandtstr. 5‐13 81377 Munich Germany
| | - Peter Mayer
- Department of Chemistry Ludwig‐Maximilians University Butenandtstr. 5‐13 81377 Munich Germany
| | - Franz Bracher
- Department of Pharmacy ‐ Center for Drug Research Ludwig‐Maximilians University Butenandtstr. 5‐13 81377 Munich Germany
| |
Collapse
|
16
|
Inhibition of Δ24-dehydrocholesterol reductase activates pro-resolving lipid mediator biosynthesis and inflammation resolution. Proc Natl Acad Sci U S A 2019; 116:20623-20634. [PMID: 31548397 DOI: 10.1073/pnas.1911992116] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Targeting metabolism through bioactive key metabolites is an upcoming future therapeutic strategy. We questioned how modifying intracellular lipid metabolism could be a possible means for alleviating inflammation. Using a recently developed chemical probe (SH42), we inhibited distal cholesterol biosynthesis through selective inhibition of Δ24-dehydrocholesterol reductase (DHCR24). Inhibition of DHCR24 led to an antiinflammatory/proresolving phenotype in a murine peritonitis model. Subsequently, we investigated several omics layers in order to link our phenotypic observations with key metabolic alterations. Lipidomic analysis revealed a significant increase in endogenous polyunsaturated fatty acid (PUFA) biosynthesis. These data integrated with gene expression analysis, revealing increased expression of the desaturase Fads6 and the key proresolving enzyme Alox-12/15 Protein array analysis, as well as immune cell phenotype and functional analysis, substantiated these results confirming the antiinflammatory/proresolving phenotype. Ultimately, lipid mediator (LM) analysis revealed the increased production of bioactive lipids, channeling the observed metabolic alterations into a key class of metabolites known for their capacity to change the inflammatory phenotype.
Collapse
|
17
|
A gas chromatography–mass spectrometry-based whole-cell screening assay for target identification in distal cholesterol biosynthesis. Nat Protoc 2019; 14:2546-2570. [DOI: 10.1038/s41596-019-0193-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 05/16/2019] [Indexed: 12/14/2022]
|
18
|
Dufresne J, Bowden P, Thavarajah T, Florentinus-Mefailoski A, Chen ZZ, Tucholska M, Norzin T, Ho MT, Phan M, Mohamed N, Ravandi A, Stanton E, Slutsky AS, Dos Santos CC, Romaschin A, Marshall JC, Addison C, Malone S, Heyland D, Scheltens P, Killestein J, Teunissen CE, Diamandis EP, Michael Siu KW, Marshall JG. The plasma peptides of ovarian cancer. Clin Proteomics 2018; 15:41. [PMID: 30598658 PMCID: PMC6302491 DOI: 10.1186/s12014-018-9215-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022] Open
Abstract
Background It may be possible to discover new diagnostic or therapeutic peptides or proteins from blood plasma by using liquid chromatography and tandem mass spectrometry to identify, quantify and compare the peptides cleaved ex vivo from different clinical populations. The endogenous tryptic peptides of ovarian cancer plasma were compared to breast cancer and female cancer normal controls, other diseases with their matched or normal controls, plus ice cold plasma to control for pre-analytical variation. Methods The endogenous tryptic peptides or tryptic phospho peptides (i.e. without exogenous digestion) were analyzed from 200 μl of EDTA plasma. The plasma peptides were extracted by a step gradient of organic/water with differential centrifugation, dried, and collected over C18 for analytical HPLC nano electrospray ionization and tandem mass spectrometry (LC–ESI–MS/MS) with a linear quadrupole ion trap. The endogenous peptides of ovarian cancer were compared to multiple disease and normal samples from different institutions alongside ice cold controls. Peptides were randomly and independently sampled by LC–ESI–MS/MS. Precursor ions from peptides > E4 counts were identified by the SEQUEST and X!TANDEM algorithms, filtered in SQL Server, before testing of frequency counts by Chi Square (χ2), for analysis with the STRING algorithm, and comparison of precursor intensity by ANOVA in the R statistical system with the Tukey-Kramer Honestly Significant Difference (HSD) test. Results Peptides and/or phosphopeptides of common plasma proteins such as HPR, HP, HPX, and SERPINA1 showed increased observation frequency and/or precursor intensity in ovarian cancer. Many cellular proteins showed large changes in frequency by Chi Square (χ2 > 60, p < 0.0001) in the ovarian cancer samples such as ZNF91, ZNF254, F13A1, LOC102723511, ZNF253, QSER1, P4HA1, GPC6, LMNB2, PYGB, NBR1, CCNI2, LOC101930455, TRPM5, IGSF1, ITGB1, CHD6, SIRT1, NEFM, SKOR2, SUPT20HL1, PLCE1, CCDC148, CPSF3, MORN3, NMI, XTP11, LOC101927572, SMC5, SEMA6B, LOXL3, SEZ6L2, and DHCR24. The protein gene symbols with large Chi Square values were significantly enriched in proteins that showed a complex set of previously established functional and structural relationships by STRING analysis. Analysis of the frequently observed proteins by ANOVA confirmed increases in mean precursor intensity in ZFN91, TRPM5, SIRT1, CHD6, RIMS1, LOC101930455 (XP_005275896), CCDC37 and GIMAP4 between ovarian cancer versus normal female and other diseases or controls by the Tukey–Kramer HSD test. Conclusion Here we show that separation of endogenous peptides with a step gradient of organic/water and differential centrifugation followed by random and independent sampling by LC–ESI–MS/MS with analysis of peptide frequency and intensity by SQL Server and R revealed significant difference in the ex vivo cleavage of peptides between ovarian cancer and other clinical treatments. There was striking agreement between the proteins discovered from cancer plasma versus previous biomarkers discovered in tumors by genetic or biochemical methods. The results indicate that variation in plasma proteins from ovarian cancer may be directly discovered by LC–ESI–MS/MS that will be a powerful tool for clinical research. Electronic supplementary material The online version of this article (10.1186/s12014-018-9215-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jaimie Dufresne
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| | - Pete Bowden
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| | - Thanusi Thavarajah
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| | | | - Zhuo Zhen Chen
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| | - Monika Tucholska
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| | - Tenzin Norzin
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| | - Margaret Truc Ho
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| | - Morla Phan
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| | - Nargiz Mohamed
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| | - Amir Ravandi
- 2Institute of Cardiovascular Sciences, St Boniface Hospital Research Center, University of Manitoba, Winnipeg, Canada
| | - Eric Stanton
- 3Division of Cardiology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Arthur S Slutsky
- 4Keenan Chair in Medicine, St. Michael's Hospital, University of Toronto, Toronto, Canada
| | - Claudia C Dos Santos
- 5Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| | - Alexander Romaschin
- 5Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| | - John C Marshall
- 5Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| | - Christina Addison
- 6Program for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Shawn Malone
- 6Program for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Daren Heyland
- 7Clinical Evaluation Research Unit, Kingston General Hospital, Kingston, Canada
| | - Philip Scheltens
- 8Alzheimer Center, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands
| | - Joep Killestein
- 9MS Center, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- 10Neurochemistry Lab and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | - John G Marshall
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Ryerson University, Toronto, Canada.,13International Biobank of Luxembourg (IBBL), Luxembourg Institute of Health (formerly CRP Sante Luxembourg), Strassen, Luxembourg.,14Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| |
Collapse
|
19
|
El-Darzi N, Astafev A, Mast N, Saadane A, Lam M, Pikuleva IA. N, N-Dimethyl-3β-hydroxycholenamide Reduces Retinal Cholesterol via Partial Inhibition of Retinal Cholesterol Biosynthesis Rather Than its Liver X Receptor Transcriptional Activity. Front Pharmacol 2018; 9:827. [PMID: 30090064 PMCID: PMC6069453 DOI: 10.3389/fphar.2018.00827] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/09/2018] [Indexed: 12/19/2022] Open
Abstract
N,N-dimethyl-3β-hydroxycholenamide (DMHCA) is an experimental pharmaceutical and a steroidal liver X receptor (LXR) agonist, which does not induce undesired hepatic lipogenesis. Herein, DMHCA was evaluated for its retinal effects on normal C57BL/6J and Cyp27a1−/−Cyp46a1−/− mice; the latter having higher retinal total and esterified cholesterol in addition to retinal vascular abnormalities. Different doses and two formulations were used for DMHCA delivery either via drinking water (C57BL/6J mice) or by oral gavage (Cyp27a1−/−Cyp46a1−/− mice). The duration of treatment was 1 week for C57BL/6J mice and 2 or 4 weeks for Cyp27a1−/−Cyp46a1−/− mice. In both genotypes, the higher DMHCA doses (37–80 mg/kg of body weight/day) neither increased serum triglycerides nor serum cholesterol but altered the levels of retinal sterols. Total retinal cholesterol was decreased in the DMHCA-treated mice, mainly due to a decrease in retinal unesterified cholesterol. In addition, retinal levels of cholesterol precursors lanosterol, zymosterol, desmosterol, and lathosterol were changed in Cyp27a1−/−Cyp46a1−/− mice. In both genotypes, DMHCA effect on retinal expression of the LXR target genes was only moderate and gender-specific. Collectively, the data obtained provide evidence for a decrease in retinal cholesterol as a result of DMHCA acting in the retina as an enzyme inhibitor of cholesterol biosynthesis rather than a LXR transcriptional activator. Specifically, DMHCA appears to partially inhibit the cholesterol biosynthetic enzyme Δ24-dehydrocholesterol reductase rather than upregulate the expression of LXR target genes involved in reverse cholesterol transport. The identified DMHCA dosages, formulations, and routes of delivery as well as the observed effects on the retina should be considered in future studies using DMHCA as a potential therapeutic for age-related macular degeneration and diabetic retinopathy.
Collapse
Affiliation(s)
- Nicole El-Darzi
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Artem Astafev
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Aicha Saadane
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Morrie Lam
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|