1
|
Chen Y, Zhu F, Ding Y, Xing L, Wang E, Fang Y, Sheng R, Tu Q, Guo R. Synthesis and Evaluation of Isosteviol Derivatives: Promising Anticancer Therapies for Colon Cancer. Biomedicines 2025; 13:793. [PMID: 40299336 PMCID: PMC12024579 DOI: 10.3390/biomedicines13040793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/19/2025] [Accepted: 03/22/2025] [Indexed: 04/30/2025] Open
Abstract
Background: Isosteviol, a tetracyclic diterpenoid with a beyerene-type skeleton, exhibited wide pharmacological activities and an inhibitory impact on tumor proliferation in colon cancer; Methods: 22 isosteviol derivatives were synthesized by modifying the C-16 and C-19 position of isosteviol, and then the inhibitory activities of derivatives 2-22 were evaluated by CCK8 method. Next, the structure-activity relationships (SARs) of these isosteviol derivatives in HCT116 cells were discussed in detail. Network pharmacology was employed to predict and analyze the targets of isosteviol in the treatment of colon cancer; Results: The results indicated derivative 8 possessed stronger inhibitory activity against HCT116 and HepG2 cells (IC50 = 6.20 ± 0.61 μM for HCT116, and IC50 = 39.84 ± 0.43 μM for HepG2). Additionally, cell cycle analysis indicated that derivative 8 arrested HCT116 cells at the G1 phase and increased the percentage of apoptotic cells. Moreover, the molecular docking showed that derivative 8 could interact with TP53 through its Tyr-1600 and Leu-1534 residues (docking energy: -11.84 kcal/mol); Conclusions: With these results, we can conclude that derivative 8 may be a promising candidate for anticancer chemotherapy.
Collapse
Affiliation(s)
- Yecang Chen
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow G12 8LT, UK;
| | - Feifei Zhu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (F.Z.); (Y.D.); (L.X.); (E.W.); (Y.F.)
| | - Yuxin Ding
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (F.Z.); (Y.D.); (L.X.); (E.W.); (Y.F.)
| | - Lin Xing
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (F.Z.); (Y.D.); (L.X.); (E.W.); (Y.F.)
| | - Enxiao Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (F.Z.); (Y.D.); (L.X.); (E.W.); (Y.F.)
| | - Yixiang Fang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (F.Z.); (Y.D.); (L.X.); (E.W.); (Y.F.)
| | - Ruilong Sheng
- CQM—Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9000-390 Funchal, Portugal;
| | - Qidong Tu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Ruihua Guo
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (F.Z.); (Y.D.); (L.X.); (E.W.); (Y.F.)
- Marine Biomedical Science and Technology Innovation Platform of Lin-Gang Special Area, Shanghai 201306, China
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
2
|
Liu M, Li N, Wang Z, Wang S, Ren S, Li X. Synthesis of a celastrol derivative as a cancer stem cell inhibitor through regulation of the STAT3 pathway for treatment of ovarian cancer. RSC Med Chem 2024; 15:d4md00468j. [PMID: 39246745 PMCID: PMC11376026 DOI: 10.1039/d4md00468j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024] Open
Abstract
Accumulating evidence suggests that the root of drug chemoresistance in ovarian cancer is tightly associated with subpopulations of cancer stem cells (CSCs), whose activation is largely associated with signal transducer and activator of transcription 3 (STAT3) signaling. Recently, celastrol has shown a significant anti-cancer effect on ovarian cancer, but its clinical translation is very challenging due to its oral bioavailability and high organ toxicity. In this study, a celastrol derivative (Cel-N) was synthesized to augment the overall efficacy, and its underlying mechanisms were also explored. Different ovarian cancer cells, SKOV3 and A2780, were used to evaluate and compare the anticancer effects. Cel-N displayed potent activities against all the tested ovarian cancer cells, with the lowest IC50 value of 0.14-0.25 μM. Further studies showed that Cel-N effectively suppressed the colony formation and sphere formation ability, decreased the percentage of CD44+CD24- and ALDH+ cells, and induced ROS production. Furthermore, western blot analysis indicated that Cel-N significantly inhibited both Tyr705 and Ser727 phosphorylation and reduced the protein expression of STAT3. In addition, Cel-N could dramatically induce apoptosis and cell cycle arrest, and inhibit migration and invasion. Importantly, Cel-N showed a potent antitumor efficacy with no or limited systemic toxicity in mice xenograft models. The anticancer effect of Cel-N is stronger than celastrol. Cel-N attenuates cancer cell stemness, inhibits the STAT3 pathway, and exerts anti-ovarian cancer effects in cell and mouse models. Our data support that Cel-N is a potent drug candidate for ovarian cancer.
Collapse
Affiliation(s)
- Meijuan Liu
- State Key Laboratory for Macromolecule Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University Liaocheng 252059 China
| | - Na Li
- State Key Laboratory for Macromolecule Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University Liaocheng 252059 China
| | - Zhaoxue Wang
- State Key Laboratory for Macromolecule Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University Liaocheng 252059 China
| | - Shuo Wang
- State Key Laboratory for Macromolecule Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University Liaocheng 252059 China
| | - Shaoda Ren
- Liaocheng Tumor Hospital Liaocheng Shandong 252000 China
| | - Xiaojing Li
- State Key Laboratory for Macromolecule Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University Liaocheng 252059 China
| |
Collapse
|
3
|
Su D, Wei RY, Yan ZM, Zhong GH, Qin XQ, Huang ST, Long JY, Zhang FL, He P, Chen ZJ, Yan YQ, Jiang N, Tang WZ. Design, synthesis, and evaluation of antitumor activity of novel C-6 sulfhydryl-substituted and 20-substituted derivatives of celastrol. Chem Biol Drug Des 2023; 102:316-331. [PMID: 37156601 DOI: 10.1111/cbdd.14247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/01/2023] [Accepted: 04/04/2023] [Indexed: 05/10/2023]
Abstract
Celastrol has been identified as a potential candidate for anticancer drug development. In this study, 28 novel celastrol derivatives with C-6 sulfhydryl substitution and 20-substitution were designed and synthesized, and their antiproliferative activity against human cancer cells and non-malignant human cells was evaluated, with cisplatin and celastrol being used as controls. The results showed that most of the derivatives had enhanced in vitro anticancer activity compared to the parent compound celastrol. Specifically, derivative 2f demonstrated the most potent inhibitory potential and selectivity against HOS with an IC50 value of 0.82 μM. Our study provides new insights into the structure-activity relationship of celastrol and suggests that compound 2f may be a promising drug candidate for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Di Su
- Department of Gastrointestinal Surgery, Guangxi Clinical Research Center for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, P.R. China
| | - Rong-Yuan Wei
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Zhi-Ming Yan
- College of Pharmacy, Guangxi Medical University, Nanning, P.R. China
| | - Guo-Hui Zhong
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, P.R. China
| | - Xiang-Qing Qin
- Department of Gastrointestinal Surgery, Guangxi Clinical Research Center for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, P.R. China
| | - Shu-Tong Huang
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, P.R. China
| | - Juan-Yue Long
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, P.R. China
| | - Feng-Ling Zhang
- College of Pharmacy, Guangxi Medical University, Nanning, P.R. China
| | - Ping He
- College of Pharmacy, Guangxi Medical University, Nanning, P.R. China
| | - Zhong-Ji Chen
- College of Pharmacy, Guangxi Medical University, Nanning, P.R. China
| | - Ya-Qian Yan
- College of Pharmacy, Guangxi Medical University, Nanning, P.R. China
| | - Neng Jiang
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, P.R. China
| | - Wei-Zhong Tang
- Department of Gastrointestinal Surgery, Guangxi Clinical Research Center for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, P.R. China
| |
Collapse
|
4
|
Gonçalves BMF, Mendes VIS, Silvestre SM, Salvador JAR. Design, synthesis, and biological evaluation of new arjunolic acid derivatives as anticancer agents. RSC Med Chem 2023; 14:313-331. [PMID: 36846362 PMCID: PMC9945870 DOI: 10.1039/d2md00275b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
Arjunolic acid (AA) is a pentacyclic triterpenoid with promising anticancer properties. A series of novel AA derivatives containing a pentameric A-ring with an enal moiety, combined with additional modifications at C-28, were designed and prepared. The biological activity on the viability of human cancer and non-tumor cell lines was evaluated in order to identify the most promising derivatives. Additionally, a preliminary study of the structure-activity relationship was carried out. The most active derivative, derivative 26, also showed the best selectivity between malignant cells and non-malignant fibroblasts. For compound 26, the anticancer molecular mechanism of action in PANC-1 cells was further studied and the results showed that this derivative induced a cell-cycle arrest at G0/G1 phase and significantly inhibited the wound closure rate of PANC-1 cancer cells in a concentration-dependent manner. Additionally, compound 26 synergistically increased the cytotoxicity of Gemcitabine, especially at a concentration of 0.24 μM. Moreover, a preliminary pharmacological study indicated that at lower doses this compound did not demonstrate toxicity in vivo. Taken together, these findings suggest that compound 26 may be a valuable compound for the development of new pancreatic anticancer treatment, and further studies are needed to explore its full potential.
Collapse
Affiliation(s)
- Bruno M F Gonçalves
- CHEM4PHARMA, Biocant - Parque Tecnológico de Cantanhede Núcleo 4, Lote 14 3060-197 Cantanhede Portugal
- Center for Neuroscience and Cell Biology Coimbra Portugal
| | - Vanessa I S Mendes
- CHEM4PHARMA, Biocant - Parque Tecnológico de Cantanhede Núcleo 4, Lote 14 3060-197 Cantanhede Portugal
- Center for Neuroscience and Cell Biology Coimbra Portugal
| | - Samuel M Silvestre
- Center for Neuroscience and Cell Biology Coimbra Portugal
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior Av. Infante D. Henrique 6200-506 Covilhã Portugal
| | - Jorge A R Salvador
- Center for Neuroscience and Cell Biology Coimbra Portugal
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra 3000-548 Coimbra Portugal +351 239 488 503 +351 239 488 400
| |
Collapse
|
5
|
Li N, Li C, Zhang J, Jiang Q, Wang Z, Nie S, Gao Z, Li G, Fang H, Ren S, Li X. Discovery of semisynthetic celastrol derivatives exhibiting potent anti-ovarian cancer stem cell activity and STAT3 inhibition. Chem Biol Interact 2022; 366:110172. [PMID: 36096161 DOI: 10.1016/j.cbi.2022.110172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/03/2022]
Abstract
The hallmark of ovarian cancer is its high mortality rate attributed to the existence of cancer stem cells (CSCs) subpopulations which result in therapy recurrence and metastasis. A series of C-29-substituted and/or different A/B ring of celastrol derivatives were synthesized and displayed potential inhibition against ovarian cancer cells SKOV3, A2780 and OVCAR3. Among them, compound 6c exhibited the most potent anti-proliferative activity and selectivity, gave superior anti-CSC effects through inhibition of the sphere formation and downregulation of the percentage of CD44+CD24- and ALDH+ cells. Further mechanism research demonstrated that compound 6c could attenuate the expression of STAT3 and p-STAT3. The results suggested that the inhibition of celastrol derivative 6c on ovarian cancer cells may be related to resistance to cancer stem-like characters and regulation of STAT3 pathway.
Collapse
Affiliation(s)
- Na Li
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252000, PR China
| | - Chaobo Li
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252000, PR China
| | - Juan Zhang
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252000, PR China
| | - Qian Jiang
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252000, PR China
| | - Zhaoxue Wang
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252000, PR China
| | - Shaozhen Nie
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252000, PR China
| | - Zhenzhen Gao
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252000, PR China
| | - Guangyao Li
- Central Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, PR China
| | - Hao Fang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| | - Shaoda Ren
- Central Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, PR China.
| | - Xiaojing Li
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252000, PR China; Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
6
|
Pacheco DF, Alonso D, Ceballos LG, Castro AZ, Brown Roldán S, García Díaz M, Villa Testa A, Wagner SF, Piloto-Ferrer J, García YC, Olea AF, Espinoza L. Synthesis of Four Steroidal Carbamates with Antitumor Activity against Mouse Colon Carcinoma CT26WT Cells: In Vitro and In Silico Evidence. Int J Mol Sci 2022; 23:ijms23158775. [PMID: 35955909 PMCID: PMC9369283 DOI: 10.3390/ijms23158775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most lethal cancers worldwide. If detected on time, surgery can expand life expectations of patients up to five more years. However, if metastasis has grown deliberately, the use of chemotherapy can play a crucial role in CRC control. Moreover, the lack of selectivity of current anticancer drugs, plus mutations that occur in cancerous cells, demands the development of new chemotherapeutic agents. Several steroids have shown their potentiality as anticancer agents, while some other compounds, such as Taxol and its derivatives bearing a carbamate functionality, have reached the market. In this article, the synthesis, characterization, and antiproliferative activity of four steroidal carbamates on mouse colon carcinoma CT26WT cells are described. Carbamate synthesis occurred via direct reaction between diosgenin, its B-ring modified derivative, and testosterone with phenyl isocyanate under a Brønsted acid catalysis. All obtained compounds were characterized by 1H and 13C Nuclear Magnetic Resonance (NMR), High Resolution Mass Spectroscopy (HRMS); their melting points are also reported. Results obtained from antiproliferative activity assays indicated that carbamates compounds have inhibitory effects on the growth of this colon cancer cell line. A molecular docking study carried out on Human Prostaglandin E Receptor (EP4) showed a high affinity between carbamates and protein, thus providing a valuable theoretical explanation of the in vitro results.
Collapse
Affiliation(s)
- Daylin Fernández Pacheco
- Center for Natural Product Research, Faculty of Chemistry, University of Havana, Zapata and G, Havana 10400, Cuba
| | - Dayana Alonso
- Laboratory of Synthetic and Biomolecular Chemistry, Faculty of Chemistry, University of Havana, Havana 10400, Cuba
| | - Leonardo González Ceballos
- Laboratory of Synthetic and Biomolecular Chemistry, Faculty of Chemistry, University of Havana, Havana 10400, Cuba
| | - Armando Zaldo Castro
- Center for Natural Product Research, Faculty of Chemistry, University of Havana, Zapata and G, Havana 10400, Cuba
| | | | - Mairelys García Díaz
- Center for Natural Product Research, Faculty of Chemistry, University of Havana, Zapata and G, Havana 10400, Cuba
| | | | | | | | - Yamilet Coll García
- Center for Natural Product Research, Faculty of Chemistry, University of Havana, Zapata and G, Havana 10400, Cuba
- Correspondence: (Y.C.G.); (L.E.); Tel.: +53-52952050 (Y.C.G.); +56-32-2654225 (L.E.)
| | - Andrés F. Olea
- Grupo QBAB, Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Llano Subercaseaux 2801, San Miguel, Santiago 7500912, Chile
| | - Luis Espinoza
- Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile
- Correspondence: (Y.C.G.); (L.E.); Tel.: +53-52952050 (Y.C.G.); +56-32-2654225 (L.E.)
| |
Collapse
|
7
|
Scaffold hopping of celastrol provides derivatives containing pepper ring, pyrazine and oxazole substructures as potent autophagy inducers against breast cancer cell line MCF-7. Eur J Med Chem 2022; 234:114254. [DOI: 10.1016/j.ejmech.2022.114254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/18/2022] [Accepted: 03/02/2022] [Indexed: 01/07/2023]
|
8
|
Li N, Xu M, Zhang L, Lei Z, Chen C, Zhang T, Chen L, Sun J. Discovery of Novel Celastrol-Imidazole Derivatives with Anticancer Activity In Vitro and In Vivo. J Med Chem 2022; 65:4578-4589. [PMID: 35238566 DOI: 10.1021/acs.jmedchem.1c01293] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
To discover celastrol (CEL) derivatives with enhanced Hsp90-Cdc37 inhibition, C-20-COOH was introduced with various substituted imidazoles, which might affect the Michael addition of CEL by nucleophilic attack. The most potent compound 9, which showed higher antiproliferation, covalent-binding ability, and Hsp90-Cdc37 inhibition than CEL, was selected from 28 new target compounds. Then, the binding sites and the docking mode of 9 to Hsp90 and Cdc37 were studied. Furthermore, the activity of 9 sharply decreased or even disappeared in the Hsp90- and/or Cdc37-overexpressing A549 cells, indicating that the activity was related to its combination with Hsp90 and Cdc37. Moreover, 9 could more effectively induce apoptosis and inhibit tumor growth than CEL in vivo. This study first found that imidazoles linked to C-20 of CEL might affect its Michael addition, which will provide support of CEL or even the other Michael acceptors for the development as antitumor agents.
Collapse
Affiliation(s)
- Na Li
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Manyi Xu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Lulu Zhang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Zhichao Lei
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Cheng Chen
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Tianyuan Zhang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Li Chen
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Jianbo Sun
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| |
Collapse
|
9
|
Feng Y, Wang W, Zhang Y, Fu X, Ping K, Zhao J, Lei Y, Mou Y, Wang S. Synthesis and biological evaluation of celastrol derivatives as potential anti-glioma agents by activating RIP1/RIP3/MLKL pathway to induce necroptosis. Eur J Med Chem 2021; 229:114070. [PMID: 34968902 DOI: 10.1016/j.ejmech.2021.114070] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 11/15/2022]
Abstract
Celastrol, a quinone methide triterpenoid, possesses potential anti-glioma activity. However, its relatively low activity limit its application as an effective agent for glioma treatment. In search for effective anti-glioma agents, this work designed and synthesized two series of celastrol C-3 OH and C-20 COOH derivatives 4a-4o and 6a-6o containing 1, 2, 3-triazole moiety. Their anti-glioma activities against four human glioma cell lines (A172, LN229, U87, and U251) were then evaluated using MTT assay in vitro. Results showed that compound 6i (IC50 = 0.94 μM) exhibited substantial antiproliferative activity against U251 cell line, that was 4.7-fold more potent than that of celastrol (IC50 = 4.43 μM). In addition, compound 6i remarkably inhibited the colony formation and migration of U251 cells. Further transmission electron microscopy and mitochondrial depolarization assays in U251 cells indicated that the potent anti-glioma activity of 6i was attributed to necroptosis. Mechanism investigation revealed that compound 6i induced necroptosis mainly by activating the RIP1/RIP3/MLKL pathway. Additionally, compound 6i exerted acceptable BBB permeability in mice and inhibited U251 cell proliferation in an in vivo zebrafish xenograft model, obviously. In summary, compound 6i might be a promising lead compound for potent celastrol derivatives as anti-glioma agents.
Collapse
Affiliation(s)
- Yao Feng
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Wenbao Wang
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, Heilongjiang, China
| | - Yan Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Xuefeng Fu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Kunqi Ping
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Jiaxing Zhao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Yu Lei
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Yanhua Mou
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China.
| | - Shaojie Wang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China.
| |
Collapse
|
10
|
Xu S, Fan R, Wang L, He W, Ge H, Chen H, Xu W, Zhang J, Xu W, Feng Y, Fan Z. Synthesis and biological evaluation of celastrol derivatives as potent antitumor agents with STAT3 inhibition. J Enzyme Inhib Med Chem 2021; 37:236-251. [PMID: 34894961 PMCID: PMC8667935 DOI: 10.1080/14756366.2021.2001805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Using STAT3 inhibitors as a potential strategy in cancer therapy have attracted much attention. Recently, celastrol has been reported that it could directly bind to and suppress the activity of STAT3 in the cardiac dysfunction model. To explore more effective STAT3 inhibiting anti-tumour drug candidates, we synthesised a series of celastrol derivatives and biologically evaluated them with several human cancer cell lines. The western blotting analysis showed that compound 4 m, the most active derivative, could suppress the STAT3's phosphorylation as well as its downstream genes. SPR analysis, molecular docking and dynamics simulations' results indicated that the 4m could bind with STAT3 protein more tightly than celastrol. Then we found that the 4m could block cell-cycle and induce apoptosis on HCT-116 cells. Furthermore, the anti-tumour effect of 4m was verified on colorectal cancer organoid. This is the first research that discovered effective STAT3 inhibitors as potent anti-tumour agents from celastrol derivatives.
Collapse
Affiliation(s)
- Shaohua Xu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, P.R. China
| | - Ruolan Fan
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, P.R. China
| | - Lu Wang
- National Center of Colorectal Disease, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Weishen He
- Biology Department, Boston College, Brighton, MA, USA
| | - Haixia Ge
- School of Life Sciences, Huzhou University, Huzhou, P.R. China
| | - Hailan Chen
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, P.R. China
| | - Wen Xu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, P.R. China
| | - Jian Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Wei Xu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, P.R. China
| | - Yaqian Feng
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, P.R. China
| | - Zhimin Fan
- National Center of Colorectal Disease, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, P.R. China
| |
Collapse
|
11
|
Shang FF, Wang MY, Ai JP, Shen QK, Guo HY, Jin CM, Chen FE, Quan ZS, Jin L, Zhang C. Synthesis and evaluation of mycophenolic acid derivatives as potential anti-Toxoplasma gondii agents. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02803-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
Shang FF, Wang JY, Xu Q, Deng H, Guo HY, Jin X, Li X, Shen QK, Quan ZS. Design, synthesis of novel celastrol derivatives and study on their antitumor growth through HIF-1α pathway. Eur J Med Chem 2021; 220:113474. [PMID: 33930802 DOI: 10.1016/j.ejmech.2021.113474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 12/16/2022]
Abstract
Four series of hypoxia-inducible factor-1 alpha (HIF-1α) functioning derivatives stemming from modifications to the C-29 carboxyl group of celastrol were designed and synthesized, and their anticancer activities were evaluated. To address the structure and activity relationship of each derivative, extensive structural changes were made. HRE luciferase reporter assay demonstrated that 12 modified compounds showed superior HIF-1α inhibitory activity. Among them, compound C6 exhibited the best features: firstly, the strongest HIF-1α inhibitory activity (IC50 = 0.05 μM, 5-fold higher than that of celastrol); secondly, lower cytotoxicity (22-fold lower, C6-16.85 μM vs celastrol-0.76 μM). Thus, the safety factor of C6 was about 112 times higher than that of celastrol. Western blot assay indicated that C6 may inhibit the expression of HIF-1α protein in cells. Additionally, C6 hindered tumor cell cloning, migration and induced cell apoptosis. It is worth mentioning that in the mouse tumor xenograft model, C6 (10 mg/kg) displayed good antitumor activity in vivo, showing a better inhibition rate (74.03%) than the reference compound 5-fluorouracil (inhibition rate, 59.58%). However, the celastrol treatment group experienced collective death after four doses of the drug. Moreover, C6 minimally affected the mouse weight, indicating that its application in vivo has little toxic effect. H&E staining experiments show that it could also exacerbate the degree of tumor cell damage. The results of water solubility experiment show that the solubility of C6 is increased by 1.36 times than that of celastrol. In conclusion, C6 is a promising antitumor agent through HIF-1α pathway.
Collapse
Affiliation(s)
- Fan-Fan Shang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Jing Ying Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Qian Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Hao Deng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Xuejun Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Xiaoting Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China; Department of Pharmaceutical Analysis, Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China.
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
| |
Collapse
|
13
|
Li N, Chen C, Zhu H, Shi Z, Sun J, Chen L. Discovery of novel celastrol-triazole derivatives with Hsp90-Cdc37 disruption to induce tumor cell apoptosis. Bioorg Chem 2021; 111:104867. [PMID: 33845380 DOI: 10.1016/j.bioorg.2021.104867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
To enhance the disruption of Hsp90-Cdc37, we designed and synthesized a series (27) of CEL-triazole derivatives. Most of the target compounds showed enhanced anti-proliferative activity on four cancer cell lines (MDA-MB-231, MCF-7, HepG2 and A459). Among them, compound 6 showed the best anti-proliferation (IC50 = 0.34 ± 0.01 μM) on MDA-MB-231. Pharmacological studies had found that compound 6 showed a higher ability to disrupt Hsp90-Cdc37 interaction in cells and inhibited the expression of the key Hsp90-Cdc37 clients in a concentration-dependent manner. Further studies indicated that an enhanced covalent binding between compound 6 and thiols (cysteine) might be one of the reasons for the increased activity. Furthermore, compound 6 arrested cells in the G0/G1 phase and induced tumor cell apoptosis significantly. Overall, for cancer treatment, compound 6 was worth further exploring.
Collapse
Affiliation(s)
- Na Li
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Cheng Chen
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Huiting Zhu
- National Colorectal Disease Center of Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, Jiangsu Province, People's Republic of China
| | - Zhixian Shi
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Jianbo Sun
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China.
| | - Li Chen
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China.
| |
Collapse
|
14
|
Lu Y, Liu Y, Zhou J, Li D, Gao W. Biosynthesis, total synthesis, structural modifications, bioactivity, and mechanism of action of the quinone-methide triterpenoid celastrol. Med Res Rev 2020; 41:1022-1060. [PMID: 33174200 DOI: 10.1002/med.21751] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/06/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022]
Abstract
Celastrol, a quinone-methide triterpenoid, was extracted from Tripterygium wilfordii Hook. F. in 1936 for the first time. Almost 70 years later, it is considered one of the molecules most likely to be developed into modern drugs, as it exhibits notable bioactivity, including anticancer and anti-inflammatory activity, and exerts antiobesity effects. In addition, the molecular mechanisms underlying its bioactivity are being widely studied, which offers new avenues for its development as a pharmaceutical reagent. Owing to its potential therapeutic effects and unique chemical structure, celastrol has attracted considerable interest in the fields of organic, biosynthesis, and medicinal chemistry. As several steps in the biosynthesis of celastrol have been revealed, the mechanisms of key enzymes catalyzing the formation and postmodifications of the celastrol scaffold have been gradually elucidated, which lays a good foundation for the future heterogeneous biosynthesis of celastrol. Chemical synthesis is also an effective approach to obtain celastrol. The total synthesis of celastrol was realized for the first time in 2015, which established a new strategy to obtain celastroid natural products. However, owing to the toxic effects and suboptimal pharmacological properties of celastrol, its clinical applications remain limited. To search for drug-like derivatives, several structurally modified compounds were synthesized and tested. This review focuses primarily on the latest research progress in the biosynthesis, total synthesis, structural modifications, bioactivity, and mechanism of action of celastrol. We anticipate that this paper will facilitate a more comprehensive understanding of this promising compound and provide constructive references for future research in this field.
Collapse
Affiliation(s)
- Yun Lu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Yuan Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Jiawei Zhou
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Dan Li
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,School of Pharmaceutical Sciences, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Zhang H, Lu G. Synthesis of celastrol derivatives as potential non-nucleoside hepatitis B virus inhibitors. Chem Biol Drug Des 2020; 96:1380-1386. [PMID: 32573976 DOI: 10.1111/cbdd.13746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 01/30/2020] [Accepted: 06/05/2020] [Indexed: 12/19/2022]
Abstract
A series of para-quinone methide (pQM) moiety and C-20- modified derivatives of celastrol were synthesized and evaluated for their inhibitory effect on the secretion of HBsAg and HBeAg as well as the inhibitory effect against HBV DNA replication. The results suggested that amidation of C-20 carboxylic group could generate derivatives with good anti-HBV profile, among them compound 14 showed the best inhibitory activity on the secretion of HBsAg (IC50 = 11.9 µμ) and HBeAg (IC50 = 13.1 µμ) with SI of 3.3 and 3.0, respectively. In addition, 14 also showed potent inhibitory effect against HBV DNA replication (48.5 ± 15.1%, 25 µM). This is, to our knowledge, the first report of celastrol derivatives as potential non-nucleoside HBV inhibitors.
Collapse
Affiliation(s)
- He Zhang
- Beijing BeiqinBiotech Co. Ltd., Xinggu Economic Development Zone, Beijing, China
| | - Gongxi Lu
- Beijing BeiqinBiotech Co. Ltd., Xinggu Economic Development Zone, Beijing, China
| |
Collapse
|
16
|
Ma H, Chen B, Wang Y, Wang C, Yao J, Zhang W, Miao Z. Design, Synthesis and Biological Activity of (20S,21S)-7-Cyclohexyl-21-fluorocamptothecin Carbamates as Potential Antitumor Agents. Chem Biodivers 2020; 17:e2000068. [PMID: 32342605 DOI: 10.1002/cbdv.202000068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/24/2020] [Indexed: 11/08/2022]
Abstract
(20S,21S)-7-Cyclohexyl-21-fluorocamptothecin was discovered by a fluorine drug design strategy with potent antitumor activity and increased metabolic stability. In continuous efforts to find novel antitumor agents derived from natural product camptothecin, 20-carbamates of the active compound (20S,21S)-7-cyclohexyl-21-fluorocamptothecin have been designed and synthesized. Among them, one compound with the diethylamino group showed greater antiproliferative activity than the other 20-carbamate derivatives. The following biological activity assays indicated that the above compound is a valuable lead compound with excellent Topo I inhibitory activity and solution stability.
Collapse
Affiliation(s)
- Haijun Ma
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, P. R. China
| | - Baobao Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, P. R. China
| | - Yuan Wang
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, P. R. China
| | - Chuanhao Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, P. R. China
| | - Jianzhong Yao
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, P. R. China
| | - Wannian Zhang
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, P. R. China.,School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, P. R. China
| | - Zhenyuan Miao
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, P. R. China
| |
Collapse
|
17
|
Hou W, Liu B, Xu H. Celastrol: Progresses in structure-modifications, structure-activity relationships, pharmacology and toxicology. Eur J Med Chem 2020; 189:112081. [DOI: 10.1016/j.ejmech.2020.112081] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 12/13/2022]
|
18
|
Liang HJ, Cheng YJ, Wang LX, Huang BQ, Zhang NN, Liang J, Yan M. Exploration of (3-benzyl-5-hydroxyphenyl)carbamates as new antibacterial agents against Gram-positive bacteria. Arch Pharm (Weinheim) 2020; 353:e1900294. [PMID: 31894862 DOI: 10.1002/ardp.201900294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/24/2019] [Accepted: 12/08/2019] [Indexed: 11/06/2022]
Abstract
A series of (3-benzyl-5-hydroxyphenyl)carbamates were evaluated as new antibacterial agents. Several compounds showed potent inhibitory activity against sensitive and drug-resistant Gram-positive bacteria. The compounds are ineffective against all tested Gram-negative bacteria. The structure of the ester group exerted a profound effect on antibacterial activity. 4,4-Dimethylcyclohexanyl carbamate 6h exhibited the most potent inhibitory activity against the standard and clinically isolated Staphylococcus aureus, Staphylococcus epidermidis, and Enterococcus faecalis (minimum inhibitory concentration = 4-8 µg/ml) strains. The preliminary experimental evidence indicated that these carbamates target the bacterial cell wall and share a similar mechanism of action with vancomycin.
Collapse
Affiliation(s)
- Hua-Ju Liang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ya-Juan Cheng
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lu-Xia Wang
- Department of Clinical Laboratory, Guangzhou Liuhuaqiao Hospital, Guangzhou, China
| | - Bao-Qin Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Niu-Niu Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jie Liang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ming Yan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
19
|
Cai D, Zhang Z, Chen Y, Zhang Y, Sun Y, Gong Y. Exploring New Structural Features of the 18β-Glycyrrhetinic Acid Scaffold for the Inhibition of Anaplastic Lymphoma Kinase. Molecules 2019; 24:molecules24193631. [PMID: 31597403 PMCID: PMC6803848 DOI: 10.3390/molecules24193631] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/19/2022] Open
Abstract
Novel 18β-glycyrrhetinic acid derivatives possessing a carbamate moiety and structurally similar ester derivatives were developed and evaluated for their efficacy as antitumor inhibitors. In the cellular assays, most of the N-substituted carbamate derivatives at the C3-position exhibited potent activities. The results of SAR investigation revealed that the introduction of the morpholine group at the C30-COOH led to a significant loss of the inhibitory potency. Among the ester derivatives, the ester group at C3-position also determined a noticeable reduction in the efficacy. Compound 3j exhibited the most prominent antiproliferative activity against six human cancer cells (A549, HT29, HepG2, MCF-7, PC-3, and Karpas299). Furthermore, compound 3j exerted a moderate inhibiting effect on the ALK. The results of molecular docking analyses suggested that it could bind well to the active site of the receptor ALK, which was consistent with the biological data. These results might inspire further structural optimization of 18β-glycyrrhetinic acid aiming at the development of potent antitumor agents. The structures 4d, 4g, 4h, 4j, and 4n were studied by X-ray crystallographic analyses.
Collapse
Affiliation(s)
- Dong Cai
- College of Public Basic Sciences, Jinzhou Medical University, Jinzhou 121001, China.
| | - ZhiHua Zhang
- School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou 121001, China.
| | - Yu Chen
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - YanYan Zhang
- School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou 121001, China.
| | - YuQi Sun
- School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou 121001, China.
| | - YiXia Gong
- College of Public Basic Sciences, Jinzhou Medical University, Jinzhou 121001, China.
| |
Collapse
|
20
|
Chen Z, Zhang D, Yan S, Hu C, Huang Z, Li Z, Peng S, Li X, Zhu Y, Yu H, Lian B, Kang Q, Li M, Zeng Z, Zhang XK, Su Y. SAR study of celastrol analogs targeting Nur77-mediated inflammatory pathway. Eur J Med Chem 2019; 177:171-187. [DOI: 10.1016/j.ejmech.2019.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 01/19/2023]
|
21
|
Li X, Ding J, Li N, Liu W, Ding F, Zheng H, Ning Y, Wang H, Liu R, Ren S. Synthesis and biological evaluation of celastrol derivatives as anti-ovarian cancer stem cell agents. Eur J Med Chem 2019; 179:667-679. [PMID: 31279299 DOI: 10.1016/j.ejmech.2019.06.086] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 12/13/2022]
Abstract
Ovarian cancer is associated with a high percentage of recurrence of tumors and resistance to chemotherapy. Cancer stem cells (CSCs) are responsible for cancer progression, tumor recurrence, metastasis, and chemoresistance. Thus, developing CSC-targeting therapy is an urgent need in cancer research and clinical application. In an attempt to achieve potent and selective anti-CSC agents, a series of celastrol derivatives with cinnamamide chains were synthesized and evaluated for their anti-ovarian cancer activities. Most of the compounds exhibited stronger antiproliferative activity than celastrol, and celastrol derivative 7g with a 3,4,5-trimethoxycinnamamide side chain was found to be the most potent antiproliferative agent against ovarian cancer cells with an IC50 value of 0.6 μM. Additionally, compound 7g significantly inhibited the colony formation ability and reduced the number of tumor spheres. Furthermore, compound 7g decreased the percentage of CD44+, CD133+ and ALDH+ cells. Thus, compound 7g is a promising anti-CSC agent and could serve as a candidate for the development of new anti-ovarian cancer drugs.
Collapse
Affiliation(s)
- Xiaojing Li
- School of Pharmacy, Liaocheng University, Shandong, 252000, People's Republic of China.
| | - Jie Ding
- Central Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, People's Republic of China
| | - Ning Li
- School of Pharmacy, Liaocheng University, Shandong, 252000, People's Republic of China
| | - Wenxia Liu
- School of Pharmacy, Liaocheng University, Shandong, 252000, People's Republic of China
| | - Fuhao Ding
- School of Pharmacy, Liaocheng University, Shandong, 252000, People's Republic of China
| | - Huijuan Zheng
- School of Pharmacy, Liaocheng University, Shandong, 252000, People's Republic of China
| | - Yanyan Ning
- School of Pharmacy, Liaocheng University, Shandong, 252000, People's Republic of China
| | - Hongmin Wang
- School of Pharmacy, Liaocheng University, Shandong, 252000, People's Republic of China
| | - Renmin Liu
- School of Pharmacy, Liaocheng University, Shandong, 252000, People's Republic of China.
| | - Shaoda Ren
- Central Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, People's Republic of China.
| |
Collapse
|
22
|
Shan WG, Wang HG, Wu R, Zhan ZJ, Ma LF. Synthesis and anti-tumor activity study of water-soluble PEG-celastrol coupling derivatives as self-assembled nanoparticles. Bioorg Med Chem Lett 2019; 29:685-687. [DOI: 10.1016/j.bmcl.2019.01.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 11/29/2022]
|
23
|
Discovery of novel NO-releasing celastrol derivatives with Hsp90 inhibition and cytotoxic activities. Eur J Med Chem 2018; 160:1-8. [DOI: 10.1016/j.ejmech.2018.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 11/19/2022]
|
24
|
Valdeira ASC, Ritt DA, Morrison DK, McMahon JB, Gustafson KR, Salvador JAR. Synthesis and Biological Evaluation of New Madecassic Acid Derivatives Targeting ERK Cascade Signaling. Front Chem 2018; 6:434. [PMID: 30324102 PMCID: PMC6172662 DOI: 10.3389/fchem.2018.00434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/03/2018] [Indexed: 01/29/2023] Open
Abstract
In the present study, a series of novel madecassic acid derivatives was synthesized and screened against the National Cancer Institute's 60 human cancer cell line panel. Among them, compounds 5, 12, and 17 displayed potent and highly differential antiproliferative activity against 80% of the tumor cells harboring the B-RafV600E mutation within the nanomolar range. Structure-activity analysis revealed that a 5-membered A ring containing an α,β-unsaturated aldehyde substituted at C-23 with a 2-furoyl group seems to be crucial to produce this particular growth inhibition signature. In silico analysis of the cytotoxicity pattern of these compounds identified two highly correlated clinically approved drugs with known B-RafV600E inhibitory activity. Follow-up analysis revealed inhibition of the ERK signaling pathway through the reduction of cellular Raf protein levels is a key mechanism of action of these compounds. In particular, 17 was the most potent compound in suppressing tumor growth of B-RafV600E-mutant cell lines and displayed the highest reduction of Raf protein levels among the tested compounds. Taken together, this study revealed that modifications of madecassic acid structure can provide molecules with potent anticancer activity against cell lines harboring the clinically relevant B-RafV600E mutation, with compound 17 identified as a promising lead for the development of new anticancer drugs.
Collapse
Affiliation(s)
- Ana S C Valdeira
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Daniel A Ritt
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Deborah K Morrison
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - James B McMahon
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Kirk R Gustafson
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Jorge A R Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
25
|
Pang C, Luo J, Liu C, Wu X, Wang D. Synthesis and Biological Evaluation of a Series of Novel Celastrol Derivatives with Amino Acid Chain. Chem Biodivers 2018; 15:e1800059. [DOI: 10.1002/cbdv.201800059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/03/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Chaohai Pang
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Science; Haikou 571101 P. R. China
| | - Jinhui Luo
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Science; Haikou 571101 P. R. China
| | - Chunhua Liu
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Science; Haikou 571101 P. R. China
| | - Xuejin Wu
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Science; Haikou 571101 P. R. China
| | - Dingyong Wang
- College of Pharmacy; Guangdong Pharmaceutical University; Guangzhou Guangdong 510006 P. R. China
| |
Collapse
|