1
|
Röhrig UF, Majjigapu SR, Vogel P, Reynaud A, Pojer F, Dilek N, Reichenbach P, Ascenção K, Irving M, Coukos G, Michielin O, Zoete V. Structure-based optimization of type III indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors. J Enzyme Inhib Med Chem 2022; 37:1773-1811. [PMID: 35758198 PMCID: PMC9246256 DOI: 10.1080/14756366.2022.2089665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The haem enzyme indoleamine 2,3-dioxygenase 1 (IDO1) catalyses the rate-limiting step in the kynurenine pathway of tryptophan metabolism and plays an essential role in immunity, neuronal function, and ageing. Expression of IDO1 in cancer cells results in the suppression of an immune response, and therefore IDO1 inhibitors have been developed for use in anti-cancer immunotherapy. Here, we report an extension of our previously described highly efficient haem-binding 1,2,3-triazole and 1,2,4-triazole inhibitor series, the best compound having both enzymatic and cellular IC50 values of 34 nM. We provide enzymatic inhibition data for almost 100 new compounds and X-ray diffraction data for one compound in complex with IDO1. Structural and computational studies explain the dramatic drop in activity upon extension to pocket B, which has been observed in diverse haem-binding inhibitor scaffolds. Our data provides important insights for future IDO1 inhibitor design.
Collapse
Affiliation(s)
- Ute F Röhrig
- SIB Swiss Institute of Bioinformatics, Molecular Modeling Group, Lausanne, Switzerland
| | - Somi Reddy Majjigapu
- SIB Swiss Institute of Bioinformatics, Molecular Modeling Group, Lausanne, Switzerland.,Laboratory of Glycochemistry and Asymmetric Synthesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Pierre Vogel
- Laboratory of Glycochemistry and Asymmetric Synthesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Aline Reynaud
- Protein Production and Structure Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Florence Pojer
- Protein Production and Structure Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Nahzli Dilek
- SIB Swiss Institute of Bioinformatics, Molecular Modeling Group, Lausanne, Switzerland
| | - Patrick Reichenbach
- Department of Oncology UNIL-CHUV, Ludwig Lausanne Branch, Epalinges, Switzerland
| | - Kelly Ascenção
- SIB Swiss Institute of Bioinformatics, Molecular Modeling Group, Lausanne, Switzerland
| | - Melita Irving
- Department of Oncology UNIL-CHUV, Ludwig Lausanne Branch, Epalinges, Switzerland
| | - George Coukos
- Department of Oncology UNIL-CHUV, Ludwig Lausanne Branch, Epalinges, Switzerland
| | - Olivier Michielin
- SIB Swiss Institute of Bioinformatics, Molecular Modeling Group, Lausanne, Switzerland.,Department of Oncology, University Hospital of Lausanne (CHUV), Ludwig Cancer Research-Lausanne Branch, Lausanne, CH-1011, Switzerland
| | - Vincent Zoete
- SIB Swiss Institute of Bioinformatics, Molecular Modeling Group, Lausanne, Switzerland.,Department of Oncology UNIL-CHUV, Ludwig Lausanne Branch, Epalinges, Switzerland
| |
Collapse
|
2
|
Wang PF, Yang LQ, Shi ZH, Li XM, Qiu HY. An updated patent review of IDO1 inhibitors for cancer (2018-2022). Expert Opin Ther Pat 2022; 32:1145-1159. [PMID: 36420761 DOI: 10.1080/13543776.2022.2151894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Indoleamine 2,3-dioxygenase 1 (IDO1) is highly related to the immune evasion of a wide range of malignancies due to its role in the immune suppression caused by the depletion of tryptophan (Trp) and the accumulation of kynurenine (Kyn). The combination of IDO1 inhibitors with other treatments represents a promising strategy in immunotherapy, although considerable challenges lie ahead. AREAS COVERED This review focuses on patent publications searched from Espacenet and Google Scholar, and related to IDO1 inhibitors with potential anti-cancer utilization during the period 2018-2022. EXPERT OPINION Despite the clinical trial failure of the first-in-class IDO1 inhibitor epacadostat in combination with pembrolizumab, numerous studies have been carried on to pursue more efficient IDO1-based immune-modulating therapeutic solutions. A large number of IDO1 inhibitors with new structures and design concepts have been produced with the impetus of crystallographic studies, and have shown great research potential. The elaboration on the combination of IDO1 inhibitors with other targeting agents, the more precise selection of patients, the identification of more reliable biomarkers for evaluating the IDO1 treatment, and the investigation of possible toxicity, are critical factors to promote IDO1-based immunotherapies from bench to bedside.
Collapse
Affiliation(s)
- Peng-Fei Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, People's Republic of China
| | - Li-Qiang Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, People's Republic of China
| | - Zhao-Hang Shi
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, People's Republic of China
| | - Xue-Min Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, People's Republic of China
| | - Han-Yue Qiu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, People's Republic of China
| |
Collapse
|
3
|
Ogbechi J, Huang YS, Clanchy FIL, Pantazi E, Topping LM, Darlington LG, Williams RO, Stone TW. Modulation of immune cell function, IDO expression and kynurenine production by the quorum sensor 2-heptyl-3-hydroxy-4-quinolone (PQS). Front Immunol 2022; 13:1001956. [PMID: 36389710 PMCID: PMC9650388 DOI: 10.3389/fimmu.2022.1001956] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/05/2022] [Indexed: 12/29/2023] Open
Abstract
Many invasive micro-organisms produce 'quorum sensor' molecules which regulate colony expansion and may modulate host immune responses. We have examined the ability of Pseudomonas Quorum Sensor (PQS) to influence cytokine expression under conditions of inflammatory stress. The administration of PQS in vivo to mice with collagen-induced arthritis (CIA) increased the severity of disease. Blood and inflamed paws from treated mice had fewer regulatory T cells (Tregs) but normal numbers of Th17 cells. However, PQS (1μM) treatment of antigen-stimulated lymph node cells from collagen-immunised mice in vitro inhibited the differentiation of CD4+IFNγ+ cells, with less effect on CD4+IL-17+ cells and no change in CD4+FoxP3+Tregs. PQS also inhibited T cell activation by anti-CD3/anti-CD28 antibodies. PQS reduced murine macrophage polarisation and inhibited expression of IL1B and IL6 genes in murine macrophages and human THP-1 cells. In human monocyte-derived macrophages, IDO1 gene, protein and enzyme activity were all inhibited by exposure to PQS. TNF gene expression was inhibited in THP-1 cells but not murine macrophages, while LPS-induced TNF protein release was increased by high PQS concentrations. PQS is known to have iron scavenging activity and its suppression of cytokine release was abrogated by iron supplementation. Unexpectedly, PQS decreased the expression of indoleamine-2, 3-dioxygenase genes (IDO1 and IDO2), IDO1 protein expression and enzyme activity in mouse and human macrophages. This is consistent with evidence that IDO1 inhibition or deletion exacerbates arthritis, while kynurenine reduces its severity. It is suggested that the inhibition of IDO1 and cytokine expression may contribute to the quorum sensor and invasive actions of PQS.
Collapse
Affiliation(s)
- Joy Ogbechi
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculo-skeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Yi-Shu Huang
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculo-skeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Felix I. L. Clanchy
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculo-skeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Eirini Pantazi
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculo-skeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Louise M. Topping
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculo-skeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | | | - Richard O. Williams
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculo-skeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Trevor W. Stone
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculo-skeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Xie C, Pei L, Cai J, Yin P, Pang S. Imidazole-Based Energetic Materials: A Promising Family of N-Heterocyclic Framework. Chem Asian J 2022; 17:e202200829. [PMID: 36074974 DOI: 10.1002/asia.202200829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/25/2022] [Indexed: 11/08/2022]
Abstract
Imidazole represents a fascinating class of explosophoric units with exciting structures and unique properties. As compared to other nitrogen-rich heterocycles, imidazole demonstrates great potential applications due to economic effectiveness and superior energetic performances. The field of traditional chemistry has been extensively explored for imidazole, and thus established bond-building methods and functionalization strategies promote further development as high-energy density materials (HEDMs). This review addresses the development of energetic imidazole compounds in the past decade, summarizes their physiochemical properties, and is divided into three parts (explosives, propellants, and energetic biocides) according to application requirements. Various synthetic strategies for these energetic molecules are highlighted, including the construction of heterocyclic frameworks and following functionalization. The selected and discussed reactions illustrate the versatility of imidazole in energetic applications as building blocks for the future design of new HEDMs.
Collapse
Affiliation(s)
- Changpeng Xie
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.,Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401120, P. R. China
| | - Le Pei
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.,Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401120, P. R. China
| | - Jinxiong Cai
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Ping Yin
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.,Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401120, P. R. China
| | - Siping Pang
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
5
|
Zheng Y, Stafford PM, Stover KR, Mohan DC, Gupta M, Keske EC, Schiavini P, Villar L, Wu F, Kreft A, Thomas K, Raaphorst E, Pasangulapati JP, Alla SR, Sharma S, Mittapalli RR, Sagamanova I, Johnson SL, Reed MA, Weaver DF. A Series of 2-((1-Phenyl-1H-imidazol-5-yl)methyl)-1H-indoles as Indoleamine 2,3-Dioxygenase 1 (IDO1) Inhibitors. ChemMedChem 2021; 16:2195-2205. [PMID: 33759400 DOI: 10.1002/cmdc.202100107] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/19/2021] [Indexed: 12/17/2022]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is a promising therapeutic target in cancer immunotherapy and neurological disease. Thus, searching for highly active inhibitors for use in human cancers is now a focus of widespread research and development efforts. In this study, we report the structure-based design of 2-(5-imidazolyl)indole derivatives, a series of novel IDO1 inhibitors which have been designed and synthesized based on our previous study using N1-substituted 5-indoleimidazoles. Among these, we have identified one with a strong IDO1 inhibitory activity (IC50 =0.16 μM, EC50 =0.3 μM). Structural-activity relationship (SAR) and computational docking simulations suggest that a hydroxyl group favorably interacts with a proximal Ser167 residue in Pocket A, improving IDO1 inhibitory potency. The brain penetrance of potent compounds was estimated by calculation of the Blood Brain Barrier (BBB) Score and Brain Exposure Efficiency (BEE) Score. Many compounds had favorable scores and the two most promising compounds were advanced to a pharmacokinetic study which demonstrated that both compounds were brain penetrant. We have thus discovered a flexible scaffold for brain penetrant IDO1 inhibitors, exemplified by several potent, brain penetrant, agents. With this promising scaffold, we provide herein a basis for further development of brain penetrant IDO1 inhibitors.
Collapse
Affiliation(s)
- Yong Zheng
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Paul M Stafford
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Kurt R Stover
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Darapaneni Chandra Mohan
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Mayuri Gupta
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Eric C Keske
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Paolo Schiavini
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Laura Villar
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Fan Wu
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Alexander Kreft
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Kiersten Thomas
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Elana Raaphorst
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Jagadeesh P Pasangulapati
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Siva R Alla
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Simmi Sharma
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Ramana R Mittapalli
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Irina Sagamanova
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Shea L Johnson
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Mark A Reed
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada.,Department of Chemistry, University of Toronto, Toronto, ON M55 3H6, Canada
| | - Donald F Weaver
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada.,Department of Chemistry, University of Toronto, Toronto, ON M55 3H6, Canada.,Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
6
|
Röhrig UF, Majjigapu SR, Reynaud A, Pojer F, Dilek N, Reichenbach P, Ascencao K, Irving M, Coukos G, Vogel P, Michielin O, Zoete V. Azole-Based Indoleamine 2,3-Dioxygenase 1 (IDO1) Inhibitors. J Med Chem 2021; 64:2205-2227. [PMID: 33557523 DOI: 10.1021/acs.jmedchem.0c01968] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The heme enzyme indoleamine 2,3-dioxygenase 1 (IDO1) plays an essential role in immunity, neuronal function, and aging through catalysis of the rate-limiting step in the kynurenine pathway of tryptophan metabolism. Many IDO1 inhibitors with different chemotypes have been developed, mainly targeted for use in anti-cancer immunotherapy. Lead optimization of direct heme iron-binding inhibitors has proven difficult due to the remarkable selectivity and sensitivity of the heme-ligand interactions. Here, we present experimental data for a set of closely related small azole compounds with more than 4 orders of magnitude differences in their inhibitory activities, ranging from millimolar to nanomolar levels. We investigate and rationalize their activities based on structural data, molecular dynamics simulations, and density functional theory calculations. Our results not only expand the presently known four confirmed chemotypes of sub-micromolar heme binding IDO1 inhibitors by two additional scaffolds but also provide a model to predict the activities of novel scaffolds.
Collapse
Affiliation(s)
- Ute F Röhrig
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Somi Reddy Majjigapu
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.,Laboratory of Glycochemistry and Asymmetric Synthesis, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Aline Reynaud
- Protein Production and Structure Core Facility, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Florence Pojer
- Protein Production and Structure Core Facility, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Nahzli Dilek
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Patrick Reichenbach
- Department of Oncology UNIL-CHUV, Ludwig Lausanne Branch, University of Lausanne, 1066 Epalinges, Switzerland
| | - Kelly Ascencao
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Melita Irving
- Department of Oncology UNIL-CHUV, Ludwig Lausanne Branch, University of Lausanne, 1066 Epalinges, Switzerland
| | - George Coukos
- Department of Oncology UNIL-CHUV, Ludwig Lausanne Branch, University of Lausanne, 1066 Epalinges, Switzerland.,Department of Oncology, Ludwig Cancer Research-Lausanne Branch, University Hospital of Lausanne (CHUV), 1011 Lausanne, Switzerland
| | - Pierre Vogel
- Laboratory of Glycochemistry and Asymmetric Synthesis, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Olivier Michielin
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.,Department of Oncology, Ludwig Cancer Research-Lausanne Branch, University Hospital of Lausanne (CHUV), 1011 Lausanne, Switzerland
| | - Vincent Zoete
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.,Department of Oncology UNIL-CHUV, Ludwig Lausanne Branch, University of Lausanne, 1066 Epalinges, Switzerland
| |
Collapse
|
7
|
Ge S, Zhong H, Ma X, Zheng Y, Zou Y, Wang F, Wang Y, Hu Y, Li Y, Liu W, Guo W, Xu Q, Lai Y. Discovery of secondary sulphonamides as IDO1 inhibitors with potent antitumour effects in vivo. J Enzyme Inhib Med Chem 2021; 35:1240-1257. [PMID: 32466694 PMCID: PMC7336998 DOI: 10.1080/14756366.2020.1765165] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) as a key rate-limiting enzyme in the kynurenine pathway of tryptophan metabolism plays an important role in tumour immune escape. Herein, a variety of secondary sulphonamides were synthesised and evaluated in the HeLa cell-based IDO1/kynurenine assay, leading to the identification of new IDO1 inhibitors. Among them, compounds 5d, 5l and 8g exhibited the strongest inhibitory effect with significantly improved activity over the hit compound BS-1. The in vitro results showed that these compounds could restore the T cell proliferation and inhibit the differentiation of naïve CD4+ T cell into highly immunosuppressive FoxP3+ regulatory T (Treg) cell without affecting the viability of HeLa cells and the expression of IDO1 protein. Importantly, the pharmacodynamic assay showed that compound 5d possessed potent antitumour effect in both CT26 and B16F1 tumours bearing immunocompetent mice but not in immunodeficient mice. Functionally, subsequent experiments demonstrated that compound 5d could effectively inhibit tumour cell proliferation, induce apoptosis, up-regulate the expression of IFN-γ and granzyme B, and suppress FoxP3+ Treg cell differentiation, thereby activate the immune system. Thus, compound 5d could be a potential and efficacious agent for further evaluation.
Collapse
Affiliation(s)
- Shushan Ge
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, PR China
| | - Haiqing Zhong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Xuewei Ma
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, PR China
| | - Yingbo Zheng
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, PR China
| | - Yi Zou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, PR China
| | - Fang Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, PR China
| | - Yan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Yue Hu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Yuezhen Li
- Department of Organic Chemistry, School of Science, China Pharmaceutical University, Nanjing, PR China
| | - Wen Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Yisheng Lai
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, PR China
| |
Collapse
|
8
|
Feng X, Liao D, Liu D, Ping A, Li Z, Bian J. Development of Indoleamine 2,3-Dioxygenase 1 Inhibitors for Cancer Therapy and Beyond: A Recent Perspective. J Med Chem 2020; 63:15115-15139. [PMID: 33215494 DOI: 10.1021/acs.jmedchem.0c00925] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) has received increasing attention due to its immunosuppressive function in connection with various diseases, including cancer. A recent increase in the understanding of IDO1 has significantly contributed to the discovery of numerous novel inhibitors, but the latest clinical outcomes raised questions and have indicated a future direction of IDO1 inhibition for therapeutic approaches. Herein, we present a comprehensive review of IDO1, discussing the latest advances in understanding the IDO1 structure and mechanism, an overview of recent IDO1 inhibitor discoveries and potential therapeutic applications to provide helpful information for medicinal chemists investigating IDO1 inhibitors.
Collapse
Affiliation(s)
- Xi Feng
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, People's Republic of China
| | - Dongdong Liao
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, People's Republic of China
| | - Dongyu Liu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, People's Republic of China
| | - An Ping
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, People's Republic of China
| | - Zhiyu Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, People's Republic of China
| | - Jinlei Bian
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, People's Republic of China
| |
Collapse
|
9
|
Crescenzi C, Fuchss T, Ippoliti D, Langella A, Di Mola A, Massa A, Rozzi D. Reiterative Chiral Resolution/Racemization/Recycle (RRR Synthesis) for an Effective and Scalable Process for the Enantioselective Synthesis of a Dual IDO1/TDO2 Inhibitor Imidazoisoindole Derivative. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cristina Crescenzi
- Merck Serono S.p.A., Via Luigi Einaudi, 11, 00012 Guidonia Montecelio, RM, Italy, an affiliate of Merck KGaA, Darmstadt, Germany
| | - Thomas Fuchss
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Dimitri Ippoliti
- Merck Serono S.p.A., Via Luigi Einaudi, 11, 00012 Guidonia Montecelio, RM, Italy, an affiliate of Merck KGaA, Darmstadt, Germany
| | - Annunziata Langella
- Merck Serono S.p.A., Via Luigi Einaudi, 11, 00012 Guidonia Montecelio, RM, Italy, an affiliate of Merck KGaA, Darmstadt, Germany
| | - Antonia Di Mola
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università degli studi di Salerno, Via Giovanni Paolo II, 84084 Fisciano, SA, Italy
| | - Antonio Massa
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università degli studi di Salerno, Via Giovanni Paolo II, 84084 Fisciano, SA, Italy
| | - Diego Rozzi
- Merck Serono S.p.A., Via Luigi Einaudi, 11, 00012 Guidonia Montecelio, RM, Italy, an affiliate of Merck KGaA, Darmstadt, Germany
| |
Collapse
|
10
|
Huang YS, Ogbechi J, Clanchy FI, Williams RO, Stone TW. IDO and Kynurenine Metabolites in Peripheral and CNS Disorders. Front Immunol 2020; 11:388. [PMID: 32194572 PMCID: PMC7066259 DOI: 10.3389/fimmu.2020.00388] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/18/2020] [Indexed: 12/12/2022] Open
Abstract
The importance of the kynurenine pathway in normal immune system function has led to an appreciation of its possible contribution to autoimmune disorders such as rheumatoid arthritis. Indoleamine-2,3-dioxygenase (IDO) activity exerts a protective function, limiting the severity of experimental arthritis, whereas deletion or inhibition exacerbates the symptoms. Other chronic disorder with an inflammatory component, such as atherosclerosis, are also suppressed by IDO activity. It is suggested that this overall anti-inflammatory activity is mediated by a change in the relative production or activity of Th17 and regulatory T cell populations. Kynurenines may play an anti-inflammatory role also in CNS disorders such as Huntington's disease, Alzheimer's disease and multiple sclerosis, in which signs of inflammation and neurodegeneration are involved. The possibility is discussed that in Huntington's disease kynurenines interact with other anti-inflammatory molecules such as Human Lymphocyte Antigen-G which may be relevant in other disorders. Kynurenine involvement may account for the protection afforded to animals with cerebral malaria and trypanosomiasis when they are treated with an inhibitor of kynurenine-3-monoxygenase (KMO). There is some evidence that changes in IL-10 may contribute to this protection and the relationship between kynurenines and IL-10 in arthritis and other inflammatory conditions should be explored. In addition, metabolites of kynurenine downstream of KMO, such as anthranilic acid and 3-hydroxy-anthranilic acid can influence inflammation, and the ratio of these compounds is a valuable biomarker of inflammatory status although the underlying molecular mechanisms of the changes require clarification. Hence it is essential that more effort be expended to identify their sites of action as potential targets for drug development. Finally, we discuss increasing awareness of the epigenetic regulation of IDO, for example by DNA methylation, a phenomenon which may explain differences between individuals in their susceptibility to arthritis and other inflammatory disorders.
Collapse
Affiliation(s)
- Yi-Shu Huang
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Joy Ogbechi
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Felix I Clanchy
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Richard O Williams
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Trevor W Stone
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Chen S, Guo W, Liu X, Sun P, Wang Y, Ding C, Meng L, Zhang A. Design, synthesis and antitumor study of a series of N-Cyclic sulfamoylaminoethyl substituted 1,2,5-oxadiazol-3-amines as new indoleamine 2, 3-dioxygenase 1 (IDO1) inhibitors. Eur J Med Chem 2019; 179:38-55. [DOI: 10.1016/j.ejmech.2019.06.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 11/16/2022]
|
12
|
Hu H, Li M, Wu D, Li Z, Miao R, Liu Y, Gong P. Design, synthesis and biological evaluation of novel aryl-acrylic derivatives as novel indoleamine-2,3-dioxygenase 1 (IDO1) inhibitors. Bioorg Med Chem 2019; 27:3135-3144. [PMID: 31178268 DOI: 10.1016/j.bmc.2019.05.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/25/2019] [Accepted: 05/30/2019] [Indexed: 01/29/2023]
Abstract
Two series of novel aryl-acrylic derivatives were designed, synthesized, and screened in enzymatic and cellular inhibitory activities. All compounds showed moderate to significant potency. The SAR analyses indicated that the semicarbazone linker is better than the 1,2,3-triazole linker. Among semicarbazone compounds that R1 bearing di-chain amino groups exhibited superior activities to those with morpholino group. Furthermore, compounds with electron-withdrawing groups at the 2-position or 4-position on the terminal phenyl ring were more active. Among these, compounds 7g, 7i, 7m and 7n exhibited the inhibitory potency in the low micromolar range and displayed negligible level of cytotoxicity against normal HeLa cells. In addition, the study suggested that the aryl-acrylic is an interesting novel scaffold for IDO1 inhibition for further development.
Collapse
Affiliation(s)
- Hao Hu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Ming Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Di Wu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Zhiwei Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Ruifeng Miao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Yajing Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| | - Ping Gong
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
13
|
Alexandre JAC, Swan MK, Latchem MJ, Boyall D, Pollard JR, Hughes SW, Westcott J. New 4-Amino-1,2,3-Triazole Inhibitors of Indoleamine 2,3-Dioxygenase Form a Long-Lived Complex with the Enzyme and Display Exquisite Cellular Potency. Chembiochem 2018; 19:552-561. [PMID: 29240291 DOI: 10.1002/cbic.201700560] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Indexed: 11/09/2022]
Abstract
Indoleamine-2,3 dioxygenase 1 (IDO1) has emerged as a central regulator of immune responses in both normal and disease biology. Due to its established role in promoting tumour immune escape, IDO1 has become an attractive target for cancer treatment. A novel series of highly cell potent IDO1 inhibitors based on a 4-amino-1,2,3-triazole core have been identified. Comprehensive kinetic, biochemical and structural studies demonstrate that compounds from this series have a noncompetitive kinetic mechanism of action with respect to the tryptophan substrate. In co-complex crystal structures, the compounds bind in the tryptophan pocket and make a direct ligand interaction with the haem iron of the porphyrin cofactor. It is proposed that these data can be rationalised by an ordered-binding mechanism, in which the inhibitor binds an apo form of the enzyme that is not competent to bind tryptophan. These inhibitors also form a very tight, long-lived complex with the enzyme, which partially explains their exquisite cellular potency. This novel series represents an attractive starting point for the future development of potent IDO1-targeted drugs.
Collapse
Affiliation(s)
| | - Michael Kenneth Swan
- Vertex Pharmaceuticals (Europe) Limited, 86-88 Jubilee Avenue, Abingdon, Oxfordshire, OX14 4RW, UK
| | - Mike John Latchem
- Vertex Pharmaceuticals (Europe) Limited, 86-88 Jubilee Avenue, Abingdon, Oxfordshire, OX14 4RW, UK
| | - Dean Boyall
- Vertex Pharmaceuticals (Europe) Limited, 86-88 Jubilee Avenue, Abingdon, Oxfordshire, OX14 4RW, UK
| | - John Robert Pollard
- Vertex Pharmaceuticals (Europe) Limited, 86-88 Jubilee Avenue, Abingdon, Oxfordshire, OX14 4RW, UK
| | - Stuart Wynn Hughes
- Vertex Pharmaceuticals (Europe) Limited, 86-88 Jubilee Avenue, Abingdon, Oxfordshire, OX14 4RW, UK
| | - James Westcott
- Vertex Pharmaceuticals (Europe) Limited, 86-88 Jubilee Avenue, Abingdon, Oxfordshire, OX14 4RW, UK
| |
Collapse
|