1
|
Zeng P, Huang H, Li D. Combining bioinformatics, network pharmacology, and artificial intelligence to predict the mechanism of resveratrol in the treatment of rheumatoid arthritis. Heliyon 2024; 10:e37371. [PMID: 39309832 PMCID: PMC11416256 DOI: 10.1016/j.heliyon.2024.e37371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/07/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic autoimmune disorder that causes joint inflammation and destruction, resulting in significant physical and economic burdens. Finding effective and targeted therapy for RA remains a top priority. Resveratrol is a potential candidate with anti-inflammatory and immunomodulatory properties for RA treatment. This study aims to determine the therapeutic targets and signaling pathways of resveratrol in the treatment of RA. Methods The GSE205962 dataset downloaded from The Gene Expression Omnibus (GEO) database was used to obtain the differentially expressed genes (DEGs) in blood samples from the patients and the healthy. PharmMapper database and Cytoscape (v3.9.1) were applied to construct the resveratrol pharmacophore target network. Gene functional enrichment analysis, including the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, was based on the BiNGo plug-in of Cytoscape and David's online tool. The intersection of the target genes of resveratrol and the DEGs were considered potential therapeutic genes (PT-genes). The Protein-Protein Interaction (PPI) network of PT-genes was constructed using the STRING tool, and the key therapeutic genes (KT-genes) were determined using the cytoHubba plug-in based on the Maximal Clique Centrality (MCC) algorithms. Molecular docking validation of resveratrol and therapeutic targets was performed based on the protein structure of KT-genes predicted by AlphaFold. Results A total of 2202 DEGs and 47PT-genes were identified. GO analysis showed that the three groups of genes, the DEGs, the resveratrol target genes, and the PT-genes, have similar results for the top-five gene functional enrichment. PT-genes were closely related to the pathways of metabolic pathways, pathways in cancer, proteoglycans in cancer, insulin signaling pathway, and chemokine signaling pathway. The common pathway enriched by KEGG for the DEGs, and the resveratrol target genes was up to 36 %. The nine KT-genes were ABL1, ANXA5, CASP3, HSP90AA1, LCK, MAP2K1, MAPK1, PIK3R1, and RAC1, and the lowest free energy indicating the resveratrol/protein affinity were -8.4, -7.4, -6.4, -6.7, -8.0, -7.9, -7.4, -6.7, and -7.9, respectively. Conclusion Nine KT-genes were identified and validated as the most potential therapeutic targets in the treatment of RA with resveratrol, which provide new insights into therapeutic mechanisms and may improve the efficiency of drug development.
Collapse
Affiliation(s)
- Piaoqi Zeng
- Department of Rheumatology, Ganzhou People's Hospital, Hongqi Avenue, Zhanggong District, Ganzhou City, 341000, Jiangxi Province, China
| | - Haohan Huang
- Department of Orthopaedics, Gongli Hospital of Shanghai Pudong New Area, 219 Miaopu Rd, Shanghai 200011, China
| | - Dongsheng Li
- Department of Rheumatology, Ganzhou People's Hospital, Hongqi Avenue, Zhanggong District, Ganzhou City, 341000, Jiangxi Province, China
| |
Collapse
|
2
|
Bhuyan AJ, Nath PP, Bharali SJ, Saikia L. A novel μ 3-CO 3 bridged linear polymeric Cu-complex ([Cu 3(DMAP) 8(μ 3-CO 3) 2]I 2) n · xH 2O: synthesis, characterization and catalytic applications in the synthesis of phenoxypyrimidines and arylthiopyrimidines via C-O and C-S cross-coupling reactions. RSC Adv 2024; 14:18478-18488. [PMID: 38860258 PMCID: PMC11163513 DOI: 10.1039/d4ra00001c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/25/2024] [Indexed: 06/12/2024] Open
Abstract
This manuscript reports on the synthesis and characterization of a new polymeric copper complex ([Cu3(DMAP)8(μ3-CO3)2]I2) n ·xH2O and its successful application in C-O and C-S cross coupling reactions for the synthesis of biologically important phenoxypyrimidine and arylthiopyrimidine scaffolds. In an attempt to synthesize [Cu(DMAP)4I]I by adopting a procedure reported by Roy et al. with slight modification, the authors discovered a new polymeric Cu-complex that contains μ3-CO3 bridges. The polymeric linear structure of the complex was established using single crystal X-ray analysis. FT-IR, UV-vis and DSC studies were also performed on the polymeric complex. This novel polymeric Cu-complex was found to efficiently catalyse C-O/C-S cross coupling reactions between chloropyrimidines and phenols/thiophenols in an aqueous medium within a short reaction time, delivering their corresponding phenoxypyrimidines and arylthiopyrimidines. Using this protocol, 22 phenoxypyrimidines and 6 arylthiopyrimidines were successfully synthesized. The synthesized novel compounds were well characterized using 1H and 13C NMR spectroscopy and HRMS analysis and were screened for their drug-likeness properties using the SwissADME webtool.
Collapse
Affiliation(s)
- Amar Jyoti Bhuyan
- Department of Chemistry, Rajiv Gandhi University (A Central University) Rono-Hills, Doimukh-791112 India
| | - Partha Pratim Nath
- Department of Chemistry, North Eastern Regional Institute of Science & Technology Nirjuli Itanagar-791109 India
- Department of Chemistry, Indian Institute of Technology Guwahati-781039 India
| | | | - Lakhinath Saikia
- Department of Chemistry, Rajiv Gandhi University (A Central University) Rono-Hills, Doimukh-791112 India
| |
Collapse
|
3
|
Feng ZW, Tang YC, Sheng XY, Wang SH, Wang YB, Liu ZC, Liu JM, Geng B, Xia YY. Screening and identification of potential hub genes and immune cell infiltration in the synovial tissue of rheumatoid arthritis by bioinformatic approach. Heliyon 2023; 9:e12799. [PMID: 36699262 PMCID: PMC9868484 DOI: 10.1016/j.heliyon.2023.e12799] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
Background Rheumatoid arthritis (RA) is an autoimmune disease that affects individuals of all ages. The basic pathological manifestations are synovial inflammation, pannus formation, and erosion of articular cartilage, bone destruction will eventually lead to joint deformities and loss of function. However, the specific molecular mechanisms of synovitis tissue in RA are still unclear. Therefore, this study aimed to screen and explore the potential hub genes and immune cell infiltration in RA. Methods Three microarray datasets (GSE12021, GSE55457, and GSE55235), from the Gene Expression Omnibus (GEO) database, have been analyzed to explore the potential hub genes and immune cell infiltration in RA. First, the LIMMA package was used to screen the differentially expression genes (DEGs) after removing the batch effect. Then the clusterProfiler package was used to perform functional enrichment analyses. Second, through weighted coexpression network analysis (WGCNA), the key module was identified in the coexpression network of the gene set. Third, the protein-protein interaction (PPI) network was constructed through STRING website and the module analysis was performed using Cytoscape software. Fourth, the CIBERSORT and ssGSEA algorithm were used to analyze the immune status of RA and healthy synovial tissue, and the associations between immune cell infiltration and RA-related diagnostic biomarkers were evaluated. Fifth, we used the quantitative reverse transcription-polymerase chain reaction (qRT-PCR) to validate the expression levels of the hub genes, and ROC curve analysis of hub genes for discriminating between RA and healthy tissue. Finally, the gene-drug interaction network was constructed using DrugCentral database, and identification of drug molecules based on hub genes using the Drug Signature Database (DSigDB) by Enrichr. Results A total of 679 DEGs were identified, containing 270 downregulated genes and 409 upregulated genes. DEGs were primarily enriched in immune response and chemokine signaling pathways, according to functional enrichment analysis of DEGs. WGCNA explored the co-expression network of the gene set and identified key modules, the blue module was selected as the key module associated with RA. Seven hub genes are identified when PPI network and WGCNA core modules are intersected. Immune infiltration analysis using CIBERSORT and ssGSEA algorithms revealed that multiple types of immune infiltration were found to be upregulated in RA tissue compared to normal tissue. Furthermore, the levels of 7 hub genes were closely related to the relative proportions of multiple immune cells in RA. The results of the qRT-PCR demonstrated that the relative expression levels of 6 hub genes (CD27, LCK, CD2, GZMB, IL7R, and IL2RG) were up-regulated in RA synovial tissue, compared with normal tissue. Simultaneously, ROC curves indicated that the above 6 hub genes had strong biomarker potential for RA (AUC >0.8). Conclusions Through bioinformatics analysis and qRT-PCR experiment, our study ultimately discovered 6 hub genes (CD27, LCK, CD2, GZMB, IL7R, and IL2RG) that closely related to RA. These findings may provide valuable direction for future RA clinical diagnosis, treatment, and associated research.
Collapse
Affiliation(s)
- Zhi-wei Feng
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China,Gansu Province Orthopaedic Clinical Medicine Research Center, Lanzhou, China,Gansu Province Intelligent Orthopedics Industry Technology Center, Lanzhou, China,Department of Orthopaedics, Nanchong Central Hospital, The Second Clinical Institute of North Sichuan Medical College, Nanchong, China
| | - Yu-chen Tang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China,Gansu Province Orthopaedic Clinical Medicine Research Center, Lanzhou, China,Gansu Province Intelligent Orthopedics Industry Technology Center, Lanzhou, China
| | - Xiao-yun Sheng
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China,Gansu Province Orthopaedic Clinical Medicine Research Center, Lanzhou, China,Gansu Province Intelligent Orthopedics Industry Technology Center, Lanzhou, China
| | - Sheng-hong Wang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China,Gansu Province Orthopaedic Clinical Medicine Research Center, Lanzhou, China,Gansu Province Intelligent Orthopedics Industry Technology Center, Lanzhou, China
| | - Yao-bin Wang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China,Gansu Province Orthopaedic Clinical Medicine Research Center, Lanzhou, China,Gansu Province Intelligent Orthopedics Industry Technology Center, Lanzhou, China
| | - Zhong-cheng Liu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China,Gansu Province Orthopaedic Clinical Medicine Research Center, Lanzhou, China,Gansu Province Intelligent Orthopedics Industry Technology Center, Lanzhou, China
| | - Jin-min Liu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China,Gansu Province Orthopaedic Clinical Medicine Research Center, Lanzhou, China,Gansu Province Intelligent Orthopedics Industry Technology Center, Lanzhou, China
| | - Bin Geng
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China,Gansu Province Orthopaedic Clinical Medicine Research Center, Lanzhou, China,Gansu Province Intelligent Orthopedics Industry Technology Center, Lanzhou, China
| | - Ya-yi Xia
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China,Gansu Province Orthopaedic Clinical Medicine Research Center, Lanzhou, China,Gansu Province Intelligent Orthopedics Industry Technology Center, Lanzhou, China,Corresponding author. No. 82 Cuiyingmen, Chengguan District, Lanzhou City, Gansu Province, China.;
| |
Collapse
|
4
|
Wen J, Wang S, Guo R, Liu D. CSF1R inhibitors are emerging immunotherapeutic drugs for cancer treatment. Eur J Med Chem 2023; 245:114884. [PMID: 36335744 DOI: 10.1016/j.ejmech.2022.114884] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/13/2022] [Accepted: 10/22/2022] [Indexed: 11/16/2022]
|
5
|
Farag AK, Ahn BS, Yoo JS, Karam R, Roh EJ. Design, synthesis, and biological evaluation of pseudo-bicyclic pyrimidine-based compounds as potential EGFR inhibitors. Bioorg Chem 2022; 126:105918. [PMID: 35696765 DOI: 10.1016/j.bioorg.2022.105918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/01/2022] [Accepted: 05/27/2022] [Indexed: 11/29/2022]
Abstract
Cancer is one of the most dangerous diseases harvesting millions of lives every year globally, which mandates the development of new therapies. In this report, we designed and synthesized a novel series of compounds based on the structure of lapatinib and AF8c, a compound we developed and reported previously, to target EGFR kinase. The series was assayed against a panel of 60 cancer cell lines at the National Cancer Institute (NCI). Compounds 4a, 4f, 4 g, and 4 l showed high efficacy against melanoma, colon, and blood cancers, with 4a being the most effective. The evaluation of the potency of 4a against the 60 cell lines in a five-dose assay revealed a significant potency compared to lapatinib against melanoma, colon, and blood cancers. In vitro enzyme assay over 30 kinases showed significant potency against EGFR and high selectivity to EGFR among the tested kinases. A molecular modeling study of 4a and lapatinib inside the pockets of EGFR revealed that both compounds bind strongly inside the ATP-binding pocket of the EGFR kinase domain. Therefore, we present 4a as a novel EGFR kinase inhibitor with potent in vitro cellular activity against diverse types of cancer cells.
Collapse
Affiliation(s)
- Ahmed Karam Farag
- Manufacturing department, Curachem Inc, Chungcheongbuk-do 28161, Republic of Korea.
| | - Byung Sun Ahn
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Je Sik Yoo
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, Republic of Korea
| | - Reham Karam
- Virology department, Faculty of veterinary medicine, Mansoura University, Dakahlia, Egypt
| | - Eun Joo Roh
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, Republic of Korea.
| |
Collapse
|
6
|
Bioinformatics analyses of potential ACLF biological mechanisms and identification of immune-related hub genes and vital miRNAs. Sci Rep 2022; 12:14052. [PMID: 35982134 PMCID: PMC9388648 DOI: 10.1038/s41598-022-18396-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/10/2022] [Indexed: 11/08/2022] Open
Abstract
Acute-on-chronic liver failure (ACLF) is a critical and refractory disease and a hepatic disorder accompanied by immune dysfunction. Thus, it is essential to explore key immune-related genes of ACLF and investigate its mechanisms. We used two public datasets (GSE142255 and GSE168048) to perform various bioinformatics analyses, including WGCNA, CIBERSORT, and GSEA. We also constructed an ACLF immune-related protein-protein interaction (PPI) network to obtain hub differentially expressed genes (DEGs) and predict corresponding miRNAs. Finally, an ACLF rat model was established to verify the results. A total of 388 DEGs were identified in ACLF, including 162 upregulated and 226 downregulated genes. The enrichment analyses revealed that these DEGs were mainly involved in inflammatory-immune responses and biosynthetic metabolic pathways. Twenty-eight gene modules were obtained using WGCNA and the coral1 and darkseagreen4 modules were highly correlated with M1 macrophage polarization. As a result, 10 hub genes and 2 miRNAs were identified to be significantly altered in ACLF. The bioinformatics analyses of the two datasets presented valuable insights into the pathogenesis and screening of hub genes of ACLF. These results might contribute to a better understanding of the potential molecular mechanisms of ACLF. Finally, further studies are required to validate our current findings.
Collapse
|
7
|
Bhuyan AJ, Bharali SJ, Sharma A, Dutta D, Gogoi P, Saikia L. Copper-Catalyzed Direct Syntheses of Phenoxypyrimidines from Chloropyrimidines and Arylboronic Acids: A Cascade Avenue and Unconventional Substrate Pairs. J Org Chem 2022; 87:11846-11851. [PMID: 35976814 DOI: 10.1021/acs.joc.2c00658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This letter describes the first synthetic methodology for phenoxypyrimidines that avoids the direct use of phenols or their salts. In contrast to the general trend of delivering Suzuki-Miyaura cross-coupling products in reactions between aryl or alky halides and arylboronic acids, the substrate pairs used herein (chloropyrimidines and arylboronic acids) led to C-O bond formation under the reaction conditions. In total, 25 phenoxypyrimidines were successfully synthesized using the described protocol, 6 of which had a structural resemblance to etravirine.
Collapse
Affiliation(s)
- Amar Jyoti Bhuyan
- Department of Chemistry, Rajiv Gandhi University, Rono-Hills, Doimukh, Arunachal Pradesh 791112, India
| | - Sourav Jyoti Bharali
- Department of Chemistry, Rajiv Gandhi University, Rono-Hills, Doimukh, Arunachal Pradesh 791112, India
| | - Abhilash Sharma
- Applied Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Dhiraj Dutta
- Applied Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Pranjal Gogoi
- Applied Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Lakhinath Saikia
- Department of Chemistry, Rajiv Gandhi University, Rono-Hills, Doimukh, Arunachal Pradesh 791112, India
| |
Collapse
|
8
|
Kozyra P, Pitucha M. Terminal Phenoxy Group as a Privileged Moiety of the Drug Scaffold-A Short Review of Most Recent Studies 2013-2022. Int J Mol Sci 2022; 23:8874. [PMID: 36012142 PMCID: PMC9408176 DOI: 10.3390/ijms23168874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
The terminal phenoxy group is a moiety of many drugs in use today. Numerous literature reports indicated its crucial importance for biological activity; thus, it is a privileged scaffold in medicinal chemistry. This review focuses on the latest achievements in the field of novel potential agents bearing a terminal phenoxy group in 2013-2022. The article provided information on neurological, anticancer, potential lymphoma agent, anti-HIV, antimicrobial, antiparasitic, analgesic, anti-diabetic as well as larvicidal, cholesterol esterase inhibitors, and antithrombotic or agonistic activities towards the adrenergic receptor. Additionally, for selected agents, the Structure-Activity-Relationship (SAR) is also discussed. Thus, this study may help the readers to better understand the nature of the phenoxy group, which will translate into rational drug design and the development of a more efficient drug. To the best of our knowledge, this is the first review devoted to an in-depth analysis of the various activities of compounds bearing terminal phenoxy moiety.
Collapse
Affiliation(s)
- Paweł Kozyra
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland
| | - Monika Pitucha
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
9
|
Al-Harbi NO, Ahmad SF, Almutairi M, Alanazi AZ, Ibrahim KE, Alqarni SA, Alqahtani F, Alhazzani K, Alharbi M, Alasmari F, Nadeem A. Lck signaling inhibition causes improvement in clinical features of psoriatic inflammation through reduction in inflammatory cytokines in CD4+ T cells in imiquimod mouse model. Cell Immunol 2022; 376:104531. [DOI: 10.1016/j.cellimm.2022.104531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/06/2022] [Accepted: 04/18/2022] [Indexed: 12/15/2022]
|
10
|
Abdelgawad MA, Mohamed FEA, Lamie PF, Bukhari SNA, Al-Sanea MM, Musa A, Elmowafy M, Nayl AA, Karam Farag A, Ali SM, Shaker ME, Omar HA, Abdelhameid MK, Kandeel MM. Design, synthesis, and biological evaluation of novel pyrido-dipyrimidines as dual topoisomerase II/FLT3 inhibitors in leukemia cells. Bioorg Chem 2022; 122:105752. [PMID: 35339926 DOI: 10.1016/j.bioorg.2022.105752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/30/2022] [Accepted: 03/18/2022] [Indexed: 11/24/2022]
Abstract
Dual inhibition of topoisomerase (topo) II and FLT3 kinase, as in the case of C-1311, was shown to overcome the shortcomings of using topo II inhibitors solely. In the present study, we designed and synthesized two series of pyrido-dipyrimidine- and pseudo-pyrido-acridone-containing compounds. The two series were evaluated against topo II and FLT3 as well as the HL-60 promyelocytic leukemia cell line in vitro. Compounds 6, 7, and 20 showed higher potency against topo II than the standard amsacrine (AMSA), whereas compounds 19 and 20 were stronger FLT3 inhibitors than the standard DACA. Compounds 19 and 20 showed to be dual inhibitors of both enzymes. Compounds 6, 7, 19, and 20 were more potent inhibitors of the HL-60 cell line than the standard AMSA. The results of the in vitro DNA flow cytometry analysis assay and Annexin V-FITC apoptosis analysis showed that 19 and 20 induced cell cycle arrest at the G2/M phase, significantly higher total percentage of apoptosis, and late-stage apoptosis in HL-60 cell lines than AMSA. Furthermore, 19 and 20 upregulated several apoptosis biomarkers such as p53, TNFα, caspase 3/7 and increased the Bax/Bcl-2 ratio. These results showed that 19 and 20 deserve further evaluation of their antiproliferative activities, particularly in leukemia. Molecular docking studies were performed for selected compounds against topo II and FLT3 enzymes to investigate their binding patterns. Compound 19 exerted dual fitting inside the active site of both enzymes.
Collapse
Affiliation(s)
- Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia.
| | - Fatma E A Mohamed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Phoebe F Lamie
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Syed N A Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Mohammad M Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Arafa Musa
- Department of Pharmacognosy, College of Pharmacy, Jouf University, 72341 Sakaka, Saudi Arabia
| | - Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - A A Nayl
- Department of Chemistry, College of Science, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Ahmed Karam Farag
- Manufacturing Department, Curachem Inc., Chungcheongbuk-do 28161, Republic of Korea
| | - Sameeha M Ali
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mohamed E Shaker
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Hany A Omar
- College of Pharmacy, University of Sharjah, United Arab Emirates
| | - Mohammed K Abdelhameid
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Manal M Kandeel
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
11
|
Elkamhawy A, Ammar UM, Paik S, Abdellattif MH, Elsherbeny MH, Lee K, Roh EJ. Scaffold Repurposing of In-House Small Molecule Candidates Leads to Discovery of First-in-Class CDK-1/HER-2 Dual Inhibitors: In Vitro and In Silico Screening. Molecules 2021; 26:molecules26175324. [PMID: 34500757 PMCID: PMC8433807 DOI: 10.3390/molecules26175324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
Recently, multitargeted drugs are considered a potential approach in treating cancer. In this study, twelve in-house indole-based derivatives were preliminary evaluated for their inhibitory activities over VEGFR-2, CDK-1/cyclin B and HER-2. Compound 15l showed the most inhibitory activities among the tested derivatives over CDK-1/cyclin B and HER-2. Compound 15l was tested for its selectivity in a small kinase panel. It showed dual selectivity for CDK-1/cyclin B and HER-2. Moreover, in vitro cytotoxicity assay was assessed for the selected series against nine NCI cell lines. Compound 15l showed the most potent inhibitory activities among the tested compounds. A deep in silico molecular docking study was conducted for compound 15l to identify the possible binding modes into CDK-1/cyclin B and HER-2. The docking results revealed that compound 15l displayed interesting binding modes with the key amino acids in the binding sites of both kinases. In vitro and in silico studies demonstrate the indole-based derivative 15l as a selective dual CDK-1 and HER-2 inhibitor. This emphasizes a new challenge in drug development strategies and signals a significant milestone for further structural and molecular optimization of these indole-based derivatives in order to achieve a drug-like property.
Collapse
Affiliation(s)
- Ahmed Elkamhawy
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Correspondence: or (A.E.); (K.L.); (E.J.R.)
| | - Usama M. Ammar
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0NR, UK;
| | - Sora Paik
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (S.P.); (M.H.E.)
| | - Magda H. Abdellattif
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mohamed H. Elsherbeny
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (S.P.); (M.H.E.)
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Korea
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza 12566, Egypt
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea
- Correspondence: or (A.E.); (K.L.); (E.J.R.)
| | - Eun Joo Roh
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (S.P.); (M.H.E.)
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Korea
- Correspondence: or (A.E.); (K.L.); (E.J.R.)
| |
Collapse
|
12
|
Development of New Meridianin/Leucettine-Derived Hybrid Small Molecules as Nanomolar Multi-Kinase Inhibitors with Antitumor Activity. Biomedicines 2021; 9:biomedicines9091131. [PMID: 34572319 PMCID: PMC8468039 DOI: 10.3390/biomedicines9091131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/23/2021] [Accepted: 08/27/2021] [Indexed: 12/31/2022] Open
Abstract
Although the sea ecosystem offers a broad range of bioactivities including anticancer, none of the FDA-approved antiproliferative protein kinase inhibitors are derived from a marine source. In a step to develop new marine-inspired potent kinase inhibitors with antiproliferative activities, a new series of hybrid small molecules (5a–5g) was designed and synthesized based on chemical moieties derived from two marine natural products (Meridianin E and Leucettamine B). Over a panel of 14 cancer-related kinases, a single dose of 10 µM of the parent hybrid 5a possessing the benzo[d][1,3]dioxole moiety of Leucettamine B was able to inhibit the activity of FMS, LCK, LYN, and DAPK1 kinases with 82.5 ± 0.6, 81.4 ± 0.6, 75.2 ± 0.0, and 55 ± 1.1%, respectively. Further optimization revealed the most potent multiple kinase inhibitor of this new series (5g) with IC50 values of 110, 87.7, and 169 nM against FMS, LCK, and LYN kinases, respectively. Compared to imatinib (FDA-approved multiple kinase inhibitor), compound 5g was found to be ~ 9- and 2-fold more potent than imatinib over both FMS and LCK kinases, respectively. In silico docking simulation models of the synthesized compounds within the active site of FMS, LCK, LYN, and DAPK1 kinases offered reasonable explanations of the elicited biological activities. In an in vitro anticancer assay using a library of 60 cancer cell lines that include blood, lung, colon, CNS, skin, ovarian, renal, prostate, and breast cancers, it was found that compound 5g was able to suppress 60 and 70% of tumor growth in leukemia SR and renal RXF 393 cell lines, respectively. Moreover, an ADME study indicated a suitable profile of compound 5g concerning cell permeability and blood-brain barrier (BBB) impermeability, avoiding possible CNS side effects. Accordingly, compound 5g is reported as a potential lead towards novel antiproliferative marine-derived kinase modulators.
Collapse
|
13
|
Finke AO, Ravaeva MY, Krasnov VI, Cheretaev IV, Chuyan EN, Baev DS, Shults EE. Cross‐Coupling‐Cyclocondensation Reaction Sequence to Access a Library of Ring‐C Bridged Pyrimidino‐tetrahydrothebaines and Pyrimidinotetrahydrooripavines. ChemistrySelect 2021. [DOI: 10.1002/slct.202101790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Anastasija O. Finke
- Laboratory of Medicinal Chemistry Laboratory of Pharmaceutical reseach Laboratory of magnetic radiospectroscopy Novosibirsk institute of Organic Chemistry Lavrentyev Ave 9 630090 Novosibirsk Russian Federation
| | - Marina Y. Ravaeva
- Biology and chemical department V.I. Vernadsky Crimean Federal University Republic of Crimea Vernadskogo Avenue, 4 Simferopol 295007 Russian Federation
| | - Vyacheslav I. Krasnov
- Laboratory of Medicinal Chemistry Laboratory of Pharmaceutical reseach Laboratory of magnetic radiospectroscopy Novosibirsk institute of Organic Chemistry Lavrentyev Ave 9 630090 Novosibirsk Russian Federation
| | - Igor V. Cheretaev
- Biology and chemical department V.I. Vernadsky Crimean Federal University Republic of Crimea Vernadskogo Avenue, 4 Simferopol 295007 Russian Federation
| | - Elena N. Chuyan
- Biology and chemical department V.I. Vernadsky Crimean Federal University Republic of Crimea Vernadskogo Avenue, 4 Simferopol 295007 Russian Federation
| | - Dmitry S. Baev
- Laboratory of Medicinal Chemistry Laboratory of Pharmaceutical reseach Laboratory of magnetic radiospectroscopy Novosibirsk institute of Organic Chemistry Lavrentyev Ave 9 630090 Novosibirsk Russian Federation
| | - Elvira E. Shults
- Laboratory of Medicinal Chemistry Laboratory of Pharmaceutical reseach Laboratory of magnetic radiospectroscopy Novosibirsk institute of Organic Chemistry Lavrentyev Ave 9 630090 Novosibirsk Russian Federation
| |
Collapse
|
14
|
Elkamhawy A, Ali EMH, Lee K. New horizons in drug discovery of lymphocyte-specific protein tyrosine kinase (Lck) inhibitors: a decade review (2011-2021) focussing on structure-activity relationship (SAR) and docking insights. J Enzyme Inhib Med Chem 2021; 36:1574-1602. [PMID: 34233563 PMCID: PMC8274522 DOI: 10.1080/14756366.2021.1937143] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lymphocyte-specific protein tyrosine kinase (Lck), a non-receptor Src family kinase, has a vital role in various cellular processes such as cell cycle control, cell adhesion, motility, proliferation, and differentiation. Lck is reported as a key factor regulating the functions of T-cell including the initiation of TCR signalling, T-cell development, in addition to T-cell homeostasis. Alteration in expression and activity of Lck results in numerous disorders such as cancer, asthma, diabetes, rheumatoid arthritis, atherosclerosis, and neuronal diseases. Accordingly, Lck has emerged as a novel target against different diseases. Herein, we amass the research efforts in literature and pharmaceutical patents during the last decade to develop new Lck inhibitors. Additionally, structure-activity relationship studies (SAR) and docking models of these new inhibitors within the active site of Lck were demonstrated offering deep insights into their different binding modes in a step towards the identification of more potent, selective, and safe Lck inhibitors.
Collapse
Affiliation(s)
- Ahmed Elkamhawy
- College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea.,Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Eslam M H Ali
- Center for Biomaterials, Korea Institute of Science & Technology (KIST School), Seoul, Republic of Korea.,University of Science & Technology (UST), Daejeon, Republic of Korea.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, Egypt
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| |
Collapse
|
15
|
Farag AK, Hassan AHE, Ahn BS, Park KD, Roh EJ. Reprofiling of pyrimidine-based DAPK1/CSF1R dual inhibitors: identification of 2,5-diamino-4-pyrimidinol derivatives as novel potential anticancer lead compounds. J Enzyme Inhib Med Chem 2020; 35:311-324. [PMID: 31809612 PMCID: PMC6913669 DOI: 10.1080/14756366.2019.1699554] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/21/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022] Open
Abstract
Hybridization of reported weakly active antiproliferative hit 5-amino-4-pyrimidinol derivative with 2-anilino-4-phenoxypyrimidines suggests a series of 2,5-diamino-4-pyrimidinol derivatives as potential antiproliferative agents. Few compounds belonging to the proposed series were reported as CSF1R/DAPK1 inhibitors as anti-tauopathies. However, the correlation between CSF1R/DAPK1 signalling pathways and cancer progression provides motives to reprofile them against cancer therapy. The compounds were synthesised, characterized, and evaluated against M-NFS-60 cells and a kinase panel which bolstered predictions of their antiproliferative activity and suggested the involvement of diverse molecular targets. Compound 6e, the most potent in the series, showed prominent broad-spectrum antiproliferative activity inhibiting the growth of hematological, NSCLC, colon, CNS, melanoma, ovarian, renal, prostate and breast cancers by 84.1, 52.79, 72.15, 66.34, 66.48, 51.55, 55.95, 61.85, and 60.87%, respectively. Additionally, it elicited an IC50 value of 1.97 µM against M-NFS-60 cells and good GIT absorption with Pe value of 19.0 ± 1.1 × 10-6 cm/s (PAMPA-GIT). Molecular docking study for 6e with CSF1R and DAPK1 was done to help to understand the binding mode with both kinases. Collectively, compound 6e could be a potential lead compound for further development of anticancer therapies.
Collapse
Affiliation(s)
- Ahmed K. Farag
- RI Translational Research Team, Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, Republic of Korea
| | - Ahmed H. E. Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Byung Sun Ahn
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul, Republic of Korea
| | - Ki Duk Park
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul, Republic of Korea
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Eun Joo Roh
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul, Republic of Korea
| |
Collapse
|
16
|
Cheremnykh KP, Savelyev VA, Borisov SA, Ivanov ID, Baev DS, Tolstikova TG, Vavilin VA, Shults EE. Hybrides of Alkaloid Lappaconitine with Pyrimidine Motif on the Anthranilic Acid Moiety: Design, Synthesis, and Investigation of Antinociceptive Potency. Molecules 2020; 25:E5578. [PMID: 33261161 PMCID: PMC7730767 DOI: 10.3390/molecules25235578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/13/2020] [Accepted: 11/25/2020] [Indexed: 12/17/2022] Open
Abstract
Convenient and efficient routes to construct hybrid molecules containing diterpene alkaloid lappaconitine and pyrimidine fragments are reported. One route takes place via first converting of lappaconitine to 1-ethynyl-lappaconitine, followed by the Sonogashira cross-coupling-cyclocondensation sequences. The other involves the palladium-catalyzed carbonylative Sonogashira reaction of 5'-iodolappaconitine with aryl acetylene and Mo (CO)6 as the CO source in acetonitrile and subsequent cyclocondensation reaction of the generated alkynone with amidines. The reaction proceeded cleanly in the presence of the PdCl2-(1-Ad)2PBn∙HBr catalytic system. The protocol provides mild reaction conditions, high yields, and high atom and step-economy. Pharmacological screening of lappaconitine-pyrimidine hybrids for antinociceptive activity in vivo revealed that these compounds possessed high activity in experimental pain models, which was dependent on the nature of the substituent in the 2 and 6 positions of the pyrimidine nucleus. Docking studies were undertaken to gain insight into the possible binding mode of these compounds with the voltage-gated sodium channel 1.7. The moderate toxicity of the leading compound 12 (50% lethal dose (LD50) value was more than 600 mg/kg in vivo) and cytotoxicity to cancer cell lines in vitro encouraged the further design of therapeutically relevant analogues based on this novel type of lappaconitine-pyrimidine hybrids.
Collapse
Affiliation(s)
- Kirill P. Cheremnykh
- Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia; (K.P.C.); (V.A.S.); (S.A.B.); (D.S.B.); (T.G.T.)
| | - Victor A. Savelyev
- Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia; (K.P.C.); (V.A.S.); (S.A.B.); (D.S.B.); (T.G.T.)
| | - Sergey A. Borisov
- Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia; (K.P.C.); (V.A.S.); (S.A.B.); (D.S.B.); (T.G.T.)
| | - Igor D. Ivanov
- The Federal Research Center Insitute of Molecular Biology and Biophysics, 2/12, Timakov St., 630117 Novosibirsk, Russia; (I.D.I.); (V.A.V.)
| | - Dmitry S. Baev
- Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia; (K.P.C.); (V.A.S.); (S.A.B.); (D.S.B.); (T.G.T.)
| | - Tatyana G. Tolstikova
- Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia; (K.P.C.); (V.A.S.); (S.A.B.); (D.S.B.); (T.G.T.)
| | - Valentin A. Vavilin
- The Federal Research Center Insitute of Molecular Biology and Biophysics, 2/12, Timakov St., 630117 Novosibirsk, Russia; (I.D.I.); (V.A.V.)
| | - Elvira E. Shults
- Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia; (K.P.C.); (V.A.S.); (S.A.B.); (D.S.B.); (T.G.T.)
| |
Collapse
|
17
|
Denny WA, Flanagan JU. Small-molecule CSF1R kinase inhibitors; review of patents 2015-present. Expert Opin Ther Pat 2020; 31:107-117. [PMID: 33108917 DOI: 10.1080/13543776.2021.1839414] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Colony stimulating factor 1 receptor (CSF-1R, also known as c-FMS kinase) is in the class III receptor tyrosine kinase family, along with c-Kit, Flt3 and PDGFRα. CSF-1/CSF-1R signaling promotes the differentiation and survival of myeloid progenitors into populations of monocytes, macrophages, dendritic cells and osteoclasts, as well as microglial cells and also recruits host macrophages to develop into tumor-associated macrophages (TAMs), which promote tumor progression and metastasis. AREAS COVERED In the last 5 years, and recently stimulated by the approval of pexidartinib (Turalio™, Daiichi Sankyo) in 2019 for the treatment of tenosynovial giant cell tumors, there has been a large increase in activity (both journal articles and patent applications) around small molecule inhibitors of CSF1R. Features of this work have been the surprising diversity of chemical classes shown to be potent and selective inhibitors, and the breadth of disease states (cancer, arthritis, and 'cytokine storm' syndromes) covered by CSF1R inhibitors. All these aspects are covered in the following sections. EXPERT OPINION The field has developed rapidly from 2014 to the present, with many different chemotypes proving to be potent inhibitors. The range of potential utilities of CSF1R inhibitors has also expanded to include dementia, ulcerative colitis/Crohn's disease, rheumatoid arthritis inflammation, and fibrosis.
Collapse
Affiliation(s)
- William A Denny
- Auckland Cancer Society Research Centre, School of Medical Sciences and Maurice Wilkins Centre, University of Auckland , Auckland, New Zealand
| | - Jack U Flanagan
- Auckland Cancer Society Research Centre, School of Medical Sciences and Maurice Wilkins Centre, University of Auckland , Auckland, New Zealand.,Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, University of Auckland , Auckland, New Zealand
| |
Collapse
|
18
|
Farag AK, Hassan AH, Chung KS, Lee JH, Gil HS, Lee KT, Roh EJ. Diarylurea derivatives comprising 2,4-diarylpyrimidines: Discovery of novel potential anticancer agents via combined failed-ligands repurposing and molecular hybridization approaches. Bioorg Chem 2020; 103:104121. [DOI: 10.1016/j.bioorg.2020.104121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/19/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022]
|
19
|
Vitale P, Cicco L, Cellamare I, Perna FM, Salomone A, Capriati V. Regiodivergent synthesis of functionalized pyrimidines and imidazoles through phenacyl azides in deep eutectic solvents. Beilstein J Org Chem 2020; 16:1915-1923. [PMID: 32802208 PMCID: PMC7418094 DOI: 10.3762/bjoc.16.158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/20/2020] [Indexed: 11/23/2022] Open
Abstract
We report that phenacyl azides are key compounds for a regiodivergent synthesis of valuable, functionalized imidazole (32–98% yield) and pyrimidine derivatives (45–88% yield), with a broad substrate scope, when using deep eutectic solvents [choline chloride (ChCl)/glycerol (1:2 mol/mol) and ChCl/urea (1:2 mol/mol)] as environmentally benign and non-innocent reaction media, by modulating the temperature (25 or 80 °C) in the presence or absence of bases (Et3N).
Collapse
Affiliation(s)
- Paola Vitale
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, I-70125 Bari, Italy
| | - Luciana Cicco
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, I-70125 Bari, Italy
| | - Ilaria Cellamare
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, I-70125 Bari, Italy
| | - Filippo M Perna
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, I-70125 Bari, Italy
| | - Antonio Salomone
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Prov.le Lecce-Monteroni, 73100 Lecce, Italy.,Dipartimento di Chimica, Università di Bari "Aldo Moro", Via E. Orabona 4, I-70125 Bari, Italy
| | - Vito Capriati
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, I-70125 Bari, Italy
| |
Collapse
|
20
|
Tan XJ, Wang D, Hei XM, Yang FC, Zhu YL, Xing DX, Ma JP. Synthesis, crystal structures, antiproliferative activities and reverse docking studies of eight novel Schiff bases derived from benzil. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2020; 76:44-63. [PMID: 31919307 DOI: 10.1107/s2053229619015687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/19/2019] [Indexed: 12/15/2022]
Abstract
Eight novel Schiff bases derived from benzil dihydrazone (BDH) or benzil monohydrazone (BMH) and four fused-ring carbonyl compounds (3-formylindole, FI; 3-acetylindole, AI; 3-formyl-1-methylindole, MFI; 1-formylnaphthalene, FN) were synthesized and characterized by elemental analysis, ESI-QTOF-MS, 1H and 13C NMR spectroscopy, as well as single-crystal X-ray diffraction. They are (1Z,2Z)-1,2-bis{(E)-[(1H-indol-3-yl)methylidene]hydrazinylidene}-1,2-diphenylethane (BDHFI), C32H24N6, (1Z,2Z)-1,2-bis{(E)-[1-(1H-indol-3-yl)ethylidene]hydrazinylidene}-1,2-diphenylethane (BDHAI), C34H28N6, (1Z,2Z)-1,2-bis{(E)-[(1-methyl-1H-indol-3-yl)methylidene]hydrazinylidene}-1,2-diphenylethane (BMHMFI) acetonitrile hemisolvate, C34H28N6·0.5CH3CN, (1Z,2Z)-1,2-bis{(E)-[(naphthalen-1-yl)methylidene]hydrazinylidene}-1,2-diphenylethane (BDHFN), C36H26N4, (Z)-2-{(E)-[(1H-indol-3-yl)methylidene]hydrazinylidene}-1,2-diphenylethanone (BMHFI), C23H17N3O, (Z)-2-{(E)-[1-(1H-indol-3-yl)ethylidene]hydrazinylidene}-1,2-diphenylethanone (BMHAI), C24H19N3O, (Z)-2-{(E)-[(1-methyl-1H-indol-3-yl)methylidene]hydrazinylidene}-1,2-diphenylethanone (BMHMFI), C24H19N3O, and (Z)-2-{(E)-[(naphthalen-1-yl)methylidene]hydrazinylidene}-1,2-diphenylethanone (BMHFN) C25H18N2O. Moreover, the in vitro cytotoxicity of the eight title compounds was evaluated against two tumour cell lines (A549 human lung cancer and 4T1 mouse breast cancer) and two normal cell lines (MRC-5 normal lung cells and NIH 3T3 fibroblasts) by MTT assay. The results indicate that four (BDHMFI, BDHFN, BMHMFI and BMHFN) are inactive and the other four (BDHFI, BDHAI, BMHFI and BMHAI) show severe toxicities against human A549 and mouse 4T1 cells, similar to the standard cisplatin. All the compounds exhibited weaker cytotoxicity against normal cells than cancer cells. The Swiss Target Prediction web server was applied for the prediction of protein targets. After analyzing the differences in frequency hits between these active and inactive Schiff bases, 18 probable targets were selected for reverse docking with the Surflex-dock function in SYBYL-X 2.0 software. Three target proteins, i.e. human ether-á-go-go-related (hERG) potassium channel, the inhibitor of apoptosis protein 3 and serine/threonine-protein kinase PIM1, were chosen as the targets. Finally, the ligand-based structure-activity relationships were analyzed based on the putative protein target (hERG) docking results, which will be used to design and synthesize novel hERG ion channel inhibitors.
Collapse
Affiliation(s)
- Xue Jie Tan
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province 250353, People's Republic of China
| | - Di Wang
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province 250353, People's Republic of China
| | - Xiao Ming Hei
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province 250353, People's Republic of China
| | - Feng Cun Yang
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province 250353, People's Republic of China
| | - Ya Ling Zhu
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province 250353, People's Republic of China
| | - Dian Xiang Xing
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province 250353, People's Republic of China
| | - Jian Ping Ma
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
| |
Collapse
|
21
|
Elkamhawy A, Kim NY, Hassan AHE, Park JE, Paik S, Yang JE, Oh KS, Lee BH, Lee MY, Shin KJ, Pae AN, Lee KT, Roh EJ. Thiazolidine-2,4-dione-based irreversible allosteric IKK-β kinase inhibitors: Optimization into in vivo active anti-inflammatory agents. Eur J Med Chem 2019; 188:111955. [PMID: 31893550 DOI: 10.1016/j.ejmech.2019.111955] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
Selective kinase inhibitors development is a cumbersome task because of ATP binding sites similarities across kinases. On contrast, irreversible allosteric covalent inhibition offers opportunity to develop novel selective kinase inhibitors. Previously, we reported thiazolidine-2,4-dione lead compounds eliciting in vitro irreversible allosteric inhibition of IKK-β. Herein, we address optimization into in vivo active anti-inflammatory agents. We successfully developed potent IKK-β inhibitors with the most potent compound eliciting IC50 = 0.20 μM. Cellular assay of a set of active compounds using bacterial endotoxin lipopolysaccharide (LPS)-stimulated macrophages elucidated significant in vitro anti-inflammatory activity. In vitro evaluation of microsomal and plasma stabilities showed that the promising compound 7a is more stable than compound 7p. Finally, in vivo evaluation of 7a, which has been conducted in a model of LPS-induced septic shock in mice, showed its ability to protect mice against septic shock induced mortality. Accordingly, this study presents compound 7a as a novel potential irreversible allosteric covalent inhibitor of IKK-β with verified in vitro and in vivo anti-inflammatory activity.
Collapse
Affiliation(s)
- Ahmed Elkamhawy
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Nam Youn Kim
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Ahmed H E Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Jung-Eun Park
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Sora Paik
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Department of Fundamental Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jeong-Eun Yang
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Kwang-Seok Oh
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong, Daejeon, 34114, Republic of Korea
| | - Byung Ho Lee
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong, Daejeon, 34114, Republic of Korea
| | - Mi Young Lee
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong, Daejeon, 34114, Republic of Korea
| | - Kye Jung Shin
- Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Ae Nim Pae
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Kyung-Tae Lee
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Eun Joo Roh
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
22
|
Hassan AH, Yoo SY, Lee KW, Yoon YM, Ryu HW, Jeong Y, Shin JS, Kang SY, Kim SY, Lee HH, Park BY, Lee KT, Lee YS. Repurposing mosloflavone/5,6,7-trimethoxyflavone-resveratrol hybrids: Discovery of novel p38-α MAPK inhibitors as potent interceptors of macrophage-dependent production of proinflammatory mediators. Eur J Med Chem 2019; 180:253-267. [DOI: 10.1016/j.ejmech.2019.07.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/21/2019] [Accepted: 07/08/2019] [Indexed: 12/17/2022]
|
23
|
Huang Y, Zheng S, Wang R, Tang C, Zhu J, Li J. CCL5 and related genes might be the potential diagnostic biomarkers for the therapeutic strategies of rheumatoid arthritis. Clin Rheumatol 2019; 38:2629-2635. [PMID: 31011897 DOI: 10.1007/s10067-019-04533-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/07/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is a common disease of rheumatic diseases. The aim of this study was to identify gene signatures in RA and uncover their potential mechanisms. METHOD Gene expression profiles of GSE1919, GSE55235, GSE55457, and GSE77928 were downloaded from GEO database. The above four series contained 76 samples, including 44 RA patients and 32 normal controls. The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed, and protein-protein interaction (PPI) network of the differentially expressed genes (DEGs) was constructed by Cytoscape software. RESULTS Up-regulated DEGs were significantly enriched in biological processes, including immune response, positive regulation of immune system process and regulation of immune system process, while down-regulated DEGs were significantly enriched in biological processes, including response to oxygen-containing compound, cellular lipid metabolic process, and lipid metabolic process. KEGG pathway analysis showed the up-regulated DEGs were enriched in cytokine-cytokine receptor interaction, chemokine signaling pathway, and primary immunodeficiency. The 104 hub genes, which were significantly differently expressed between patients and normal controls in at least two datasets, were identified from the PPI network, and subnetworks revealed that these genes were involved in significant pathways, including cytokine-cytokine receptor interaction, chemokine signaling pathway, and primary immunodeficiency. CONCLUSION The present study indicated that the identified DEGs and hub genes promote our understanding of molecular mechanisms underlying the development of RA, such as C-C motif chemokine 5 (CCL5), might have a negative impact in the development of RA. CCL5 and its related genes might be the potential diagnostic biomarkers for the therapeutic strategies of RA.
Collapse
Affiliation(s)
- Yinger Huang
- The Department of Internal Medicine of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Songyuan Zheng
- The Department of Internal Medicine of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Ran Wang
- The Department of Internal Medicine of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Cuiping Tang
- The Department of Internal Medicine of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Junqing Zhu
- The Department of Internal Medicine of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
- The Department of Rheumatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Juan Li
- The Department of Internal Medicine of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- The Department of Rheumatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
24
|
Xiong Y, Mi BB, Liu MF, Xue H, Wu QP, Liu GH. Bioinformatics Analysis and Identification of Genes and Molecular Pathways Involved in Synovial Inflammation in Rheumatoid Arthritis. Med Sci Monit 2019; 25:2246-2256. [PMID: 30916045 PMCID: PMC6448456 DOI: 10.12659/msm.915451] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) has a high prevalence in the elderly population. The genes and pathways in the inflamed synovium in patients with RA are poorly understood. This study aimed to identify differentially expressed genes (DEGs) linked to the progression of synovial inflammation in RA using bioinformatics analysis. MATERIAL AND METHODS Gene expression profiles of datasets GSE55235 and GSE55457 were acquired from the Gene Expression Omnibus (GEO) database. DEGs were identified using Morpheus software, and co-expressed DEGs were identified with Venn diagrams. Protein-protein interaction (PPI) networks were assembled with Cytoscape software and separated into subnetworks using the Molecular Complex Detection (MCODE) algorithm. The functions of the top module were assessed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID). The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed. RESULTS DEGs that were upregulated were significantly enhanced in protein binding, the cell cytosol, organization of the extracellular matrix (ECM), regulation of RNA transcription, and cell adhesion. DEGs that were downregulated were associated with control of the immune response, B-cell and T-cell receptor signaling pathway regulation. KEGG pathway analysis showed that upregulated DEGs enhanced pathways associated with the cell adherens junction, osteoclast differentiation, and hereditary cardiomyopathies. Downregulated DEGs were enriched in primary immunodeficiency, cell adhesion molecules (CAMs), cytokine-cytokine receptor interaction, and hematopoietic cell lineages. CONCLUSIONS The findings from this bioinformatics network analysis study identified molecular mechanisms and the key hub genes that may contribute to synovial inflammation in patients with RA.
Collapse
Affiliation(s)
- Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Bo-Bin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Meng-Fei Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Hang Xue
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Qi-Peng Wu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Guo-Hui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| |
Collapse
|
25
|
Farag AK, Hassan AHE, Jeong H, Kwon Y, Choi JG, Oh MS, Park KD, Kim YK, Roh EJ. First-in-class DAPK1/CSF1R dual inhibitors: Discovery of 3,5-dimethoxy-N-(4-(4-methoxyphenoxy)-2-((6-morpholinopyridin-3-yl)amino)pyrimidin-5-yl)benzamide as a potential anti-tauopathies agent. Eur J Med Chem 2018; 162:161-175. [PMID: 30445265 DOI: 10.1016/j.ejmech.2018.10.057] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/15/2018] [Accepted: 10/23/2018] [Indexed: 01/06/2023]
Abstract
Kinase irregularity has been correlated with several complex neurodegenerative tauopathies. Development of selective inhibitors of these kinases might afford promising anti-tauopathy therapies. While DAPK1 inhibitors halt the formation of tau aggregates and counteract neuronal death, CSF1R inhibitors could alleviate the tauopathies-associated neuroinflammation. Herein, we report the design, synthesis, biological evaluation, mechanistic study, and molecular docking study of novel CSF1R/DAPK1 dual inhibitors as multifunctional molecules inhibiting the formation of tau aggregates and neuroinflammation. Compound 3l, the most potent DAPK1 inhibitor in the in vitro kinase assay (IC50 = 1.25 μM) was the most effective tau aggregates formation inhibitor in the cellular assay (IC50 = 5.0 μM). Also, compound 3l elicited potent inhibition of CSF1R in the in vitro kinase assay (IC50 = 0.15 μM) and promising inhibition of nitric oxide production in LPS-induced BV-2 cells (55% inhibition at 10 μM concentration). Kinase profiling and hERG binding assay anticipated the absence of off-target toxicities while the PAMPA-BBB assay predicted potentially high BBB permeability. The mechanistic study and selectivity profile suggest compound 3l as a non-ATP-competitive DAPK1 inhibitor and an ATP-competitive CSF1R inhibitor while the in silico calculations illustrated binding of compound 3l to the substrate-binding site of DAPK1. Hence, compound 3l might act as a protein-protein interaction inhibitor by hindering DAPK1 kinase reaction through preventing the binding of DAPK1 substrates.
Collapse
Affiliation(s)
- Ahmed Karam Farag
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Bio-Medical Science &Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Ahmed H E Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt; Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hyeanjeong Jeong
- Brain Science Institute, Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, 02791, Republic of Korea; Department of Life Science, Korea University, Seoul, 02841, Republic of Korea
| | - Youngji Kwon
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Jin Gyu Choi
- BK21 PLUS Integrated Education and Research Center for Nature-inspired Drug Development Targeting Healthy Aging, Kyung Hee University, Seoul, Republic of Korea
| | - Myung Sook Oh
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Ki Duk Park
- Division of Bio-Medical Science &Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea; Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Republic of Korea
| | - Yun Kyung Kim
- Division of Bio-Medical Science &Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea; Brain Science Institute, Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, 02791, Republic of Korea
| | - Eun Joo Roh
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Bio-Medical Science &Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
26
|
Xiong B, Wang G, Xiong T, Wan L, Zhou C, Liu Y, Zhang P, Yang C, Tang K. Direct synthesis of N-arylamides via the coupling of aryl diazonium tetrafluoroborates and nitriles under transition-metal-free conditions. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.07.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Farag AK, Roh EJ. Death-associated protein kinase (DAPK) family modulators: Current and future therapeutic outcomes. Med Res Rev 2018; 39:349-385. [PMID: 29949198 DOI: 10.1002/med.21518] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/06/2018] [Accepted: 06/03/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Ahmed Karam Farag
- Chemical Kinomics Research Center; Korea Institute of Science and Technology (KIST); Seoul Republic of Korea
- Division of Bio-Medical Science &Technology, Korea Institute of Science and Technology (KIST) School; University of Science and Technology; Seoul Republic of Korea
| | - Eun Joo Roh
- Chemical Kinomics Research Center; Korea Institute of Science and Technology (KIST); Seoul Republic of Korea
- Division of Bio-Medical Science &Technology, Korea Institute of Science and Technology (KIST) School; University of Science and Technology; Seoul Republic of Korea
| |
Collapse
|
28
|
Wang D, Shen M, Wang Y, Hu J, Zhao J, Yu P. Access to Furo[2,3‐
b
]pyridines by Transition‐Metal‐Free Intramolecular Cyclization of C3‐substituted Pyridine
N
‐oxides. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800082] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Dong Wang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of BiotechnologyTianjin University of Science and Technology No. 29, 13th Avenue, TEDA Tianjin 300457 China
| | - Meng Shen
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of BiotechnologyTianjin University of Science and Technology No. 29, 13th Avenue, TEDA Tianjin 300457 China
| | - Yuxi Wang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of BiotechnologyTianjin University of Science and Technology No. 29, 13th Avenue, TEDA Tianjin 300457 China
| | - Jianyong Hu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of BiotechnologyTianjin University of Science and Technology No. 29, 13th Avenue, TEDA Tianjin 300457 China
| | - Junjie Zhao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of BiotechnologyTianjin University of Science and Technology No. 29, 13th Avenue, TEDA Tianjin 300457 China
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of BiotechnologyTianjin University of Science and Technology No. 29, 13th Avenue, TEDA Tianjin 300457 China
| |
Collapse
|