1
|
Meng T, Shi X, Chen H, Xu Z, Qin W, Wei K, Yang X, Huang J, Liao C. Mitochondrial-targeted cyclometalated Ir(III)-5,7-dibromo/dichloro-2-methyl-8-hydroxyquinoline complexes and their anticancer efficacy evaluation in Hep-G2 cells. Metallomics 2024; 16:mfae032. [PMID: 38955388 DOI: 10.1093/mtomcs/mfae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/01/2024] [Indexed: 07/04/2024]
Abstract
Both 8-hydroxyquinoline compounds and iridium (Ir) complexes have emerged as potential novel agents for tumor therapy. In this study, we synthesized and characterized two new Ir(III) complexes, [Ir(L1)(bppy)2] (Br-Ir) and [Ir(L2)(bppy)2] (Cl-Ir), with 5,7-dibromo-2-methyl-8-hydroxyquinoline (HL-1) or 5,7-dichloro-2-methyl-8-hydroxyquinoline as the primary ligand. Complexes Br-Ir and Cl-Ir successfully inhibited antitumor activity in Hep-G2 cells. In addition, complexes Br-Ir and Cl-Ir were localized in the mitochondrial membrane and caused mitochondrial damage, autophagy, and cellular immunity in Hep-G2 cells. We tested the proteins related to mitochondrial and mitophagy by western blot analysis, which showed that they triggered mitophagy-mediated apoptotic cell death. Remarkably, complex Br-Ir showed high in vivo antitumor activity, and the tumor growth inhibition rate was 63.0% (P < 0.05). In summary, our study on complex Br-Ir revealed promising results in in vitro and in vivo antitumor activity assays.
Collapse
Affiliation(s)
- Ting Meng
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning Guangxi, China
| | - Xiongzhi Shi
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning Guangxi, China
| | - Hongfen Chen
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning Guangxi, China
| | - Zhong Xu
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning Guangxi, China
| | - Weirong Qin
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning Guangxi, China
| | - Kehua Wei
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning Guangxi, China
| | - Xin Yang
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning Guangxi, China
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing Jiangsu, China
| | - Jin Huang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning Guangxi, China
| | - Chuanan Liao
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning Guangxi, China
| |
Collapse
|
2
|
Palion-Gazda J, Kwiecień A, Choroba K, Penkala M, Kryczka A, Machura B. The Role of Intraligand Charge Transfer Processes in Iridium(III) Complexes with Morpholine-Decorated 4'-Phenyl-2,2':6',2″-terpyridine. Molecules 2024; 29:3074. [PMID: 38999026 PMCID: PMC11243112 DOI: 10.3390/molecules29133074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
To investigate the impact of the electron-donating morpholinyl (morph) group on the ground- and excited-state properties of two different types of Ir(III) complexes, [IrCl3(R-C6H4-terpy-κ3N)] and [Ir(R-C6H4-terpy-κ3N)2](PF6)3, the compounds [IrCl3(morph-C6H4-terpy-κ3N)] (1A), 4[Ir(morph-C6H4-terpy-κ3N)2](PF6)3 (2A), [IrCl3(Ph-terpy-κ3N)] (1B) and [Ir(Ph-terpy-κ3N)2](PF6)3 (2B) were obtained. Their photophysical properties were comprehensively investigated with the aid of static and time-resolved spectroscopic methods accompanied by theoretical DFT/TD-DFT calculations. In the case of bis-terpyridyl iridium(III) complexes, the attachment of the morpholinyl group induced dramatic changes in the absorption and emission characteristics, manifested by the appearance of a new, very strong visible absorption tailing up to 600 nm, and a significant bathochromic shift in the emission of 2A relative to the model chromophore. The emission features of 2A and 2B were found to originate from the triplet excited states of different natures: intraligand charge transfer (3ILCT) for 2A and intraligand with a small admixture of metal-to-ligand charge transfer (3IL-3MLCT) for 2B. The optical properties of the mono-terpyridyl iridium(III) complexes were less significantly impacted by the morpholinyl substituent. Based on UV-Vis absorption spectra, emission wavelengths and lifetimes in different environments, transient absorption studies, and theoretical calculations, it was demonstrated that the visible absorption and emission features of 1A are governed by singlet and triplet excited states of a mixed MLLCT-ILCT nature, with a dominant contribution of the first component, that is, metal-ligand-to-ligand charge transfer (MLLCT). The involvement of ILCT transitions was reflected by an enhancement of the molar extinction coefficients of the absorption bands of 1A in the range of 350-550 nm, and a small red shift in its emission relative to the model chromophore.
Collapse
Affiliation(s)
- Joanna Palion-Gazda
- Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice, Poland
| | - Aleksandra Kwiecień
- Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice, Poland
| | - Katarzyna Choroba
- Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice, Poland
| | - Mateusz Penkala
- Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice, Poland
| | - Anna Kryczka
- Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice, Poland
| | - Barbara Machura
- Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice, Poland
| |
Collapse
|
3
|
Zowiślok B, Świtlicka A, Maroń A, Siwy M. Synthesis, X-ray Studies and Photophysical Properties of Iridium(III) Complexes Incorporating Functionalized 2,2':6',2″ Terpyridines and 2,6-Bis(thiazol-2-yl)pyridines. Molecules 2024; 29:2496. [PMID: 38893372 PMCID: PMC11173833 DOI: 10.3390/molecules29112496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
A series of iridium(III) triimine complexes incorporating 2,2':6',2″-terpyridine (terpy) and 2,6-bis(thiazol-2-yl)pyridine (dtpy) derivatives were successfully designed and synthesized to investigate the impact of the peripheral rings (pyridine, thiazole) and substituents (thiophene, bithiophene, EDOT) attached to the triimine skeleton on their photophysical properties. The Ir(III) complexes were fully characterized using IR, 1H, elemental analysis and single crystal X-ray analysis. Their thermal properties were evaluated using TGA measurements. Photoluminescence spectra of [IrCl3L1-6] were investigated in solution at 298 and 77 K. The experimental studies were accompanied by DFT/TDDFT calculations. The photophysical properties of the synthesized triimine ligands and Ir(III) complexes were studied in detail by electronic absorption and emission. In solution, they exhibited photoluminescence quantum yields ranging from 1.27% to 5.30% depending on the chemical structure. The experimental research included DFT/TDDFT calculations. The photophysical properties of the synthesized triimine ligands and Ir(III) complexes were conducted using electronic absorption and emission techniques. In solution, they displayed photoluminescence quantum yields ranging from 1.27% to 5.30% depending on the chemical structure.
Collapse
Affiliation(s)
- Bartosz Zowiślok
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland;
| | - Anna Świtlicka
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland;
| | - Anna Maroń
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland;
| | - Mariola Siwy
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819 Zabrze, Poland;
| |
Collapse
|
4
|
Ni K, Montesdeoca N, Karges J. Highly cytotoxic Cu(II) terpyridine complexes as chemotherapeutic agents. Dalton Trans 2024; 53:8223-8228. [PMID: 38652088 DOI: 10.1039/d4dt00759j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Cancer is considered as the biggest medicinal challenge worldwide. During a typical treatment, the tumorous tissue is removed in a surgical procedure and the patient further treated by chemotherapy. One of the most frequently applied drugs are platinum complexes. Despite their clinical success, these compounds are associated with severe side effects and low therapeutic efficiency. To overcome these limitations, herein, the synthesis and biological evaluation of Cu(II) terpyridine complexes as chemotherapeutic drug candidates is suggested. The compounds were found to be highly cytotoxic in the nanomolar range against various cancer cell lines. Mechanistic insights revealed that the compounds primarily accumulated in the cytoplasm and generated reactive oxygen species in this organelle, triggering cell death by apoptosis. Based on their high therapeutic effect, these metal complexes could serve as a starting point for further drug development.
Collapse
Affiliation(s)
- Kaixin Ni
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany.
| | - Nicolás Montesdeoca
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany.
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany.
| |
Collapse
|
5
|
Joshi B, Shivashankar M. Recent Advancement in the Synthesis of Ir-Based Complexes. ACS OMEGA 2023; 8:43408-43432. [PMID: 38027378 PMCID: PMC10666285 DOI: 10.1021/acsomega.3c04867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/20/2023] [Indexed: 12/01/2023]
Abstract
Cancer is a devastating disease with over 100 types, including lung and breast cancer. Cisplatin and metal-based drugs are limited due to their drug resistance and side effects. Iridium-based compounds have emerged as promising candidates due to their unique chemical properties and resemblance to platinum compounds. The objective of this study is to investigate the synthesis and categorization of iridium complexes, with a particular emphasis on their potential use as anticancer agents. The major focus of this research is to examine the synthesis of these complexes and their relevance to the field of cancer treatment. The negligible side effects and flexibility of cyclometalated iridium(III) complexes have garnered significant interest. Organometallic half-sandwich Ir(III) complexes have notable benefits in cancer research and treatment. The review places significant emphasis on categorizing iridium complexes according to their ligand environment, afterward considering the ligand density and coordination number. This study primarily focuses on several methods for synthesizing cyclometalated and half-sandwich Ir complexes, divided into subgroups based on ligand denticity. The coordination number of iridium complexes determines the number of ligands coordinated to the central iridium atom, which impacts their stability and reactivity. Understanding these complexes is crucial for designing compounds with desired properties and investigating their potential as anticancer agents. Cyclometalated iridium(III) complexes, which contain a meta-cycle with the E-M-C order σ bond, were synthesized in 1999. These complexes have high quantum yields, significant stock shifts, luminescence qualities, cell permeability, and strong photostability. They have been promising in biosensing, bioimaging, and phosphorescence of heavy metal complexes.
Collapse
Affiliation(s)
- Bhumika Joshi
- Department of Chemistry,
School of Advance Science, VIT University, Vellore 632014, India
| | - Murugesh Shivashankar
- Department of Chemistry,
School of Advance Science, VIT University, Vellore 632014, India
| |
Collapse
|
6
|
Ali JH, Walter M. Combining old and new concepts in targeting telomerase for cancer therapy: transient, immediate, complete and combinatory attack (TICCA). Cancer Cell Int 2023; 23:197. [PMID: 37679807 PMCID: PMC10483736 DOI: 10.1186/s12935-023-03041-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Telomerase can overcome replicative senescence by elongation of telomeres but is also a specific element in most cancer cells. It is expressed more vastly than any other tumor marker. Telomerase as a tumor target inducing replicative immortality can be overcome by only one other mechanism: alternative lengthening of telomeres (ALT). This limits the probability to develop resistance to treatments. Moreover, telomerase inhibition offers some degree of specificity with a low risk of toxicity in normal cells. Nevertheless, only one telomerase antagonist reached late preclinical studies. The underlying causes, the pitfalls of telomerase-based therapies, and future chances based on recent technical advancements are summarized in this review. Based on new findings and approaches, we propose a concept how long-term survival in telomerase-based cancer therapies can be significantly improved: the TICCA (Transient Immediate Complete and Combinatory Attack) strategy.
Collapse
Affiliation(s)
- Jaber Haj Ali
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, Universitätsmedizin Rostock, Ernst-Heydemann-Straße 6, 18057, Rostock, Germany
| | - Michael Walter
- Institute of Clinical Chemistry and Laboratory Medicine, Universitätsmedizin Rostock, Ernst-Heydemann-Straße 6, 18057, Rostock, Germany.
| |
Collapse
|
7
|
Zegers J, Peters M, Albada B. DNA G-quadruplex-stabilizing metal complexes as anticancer drugs. J Biol Inorg Chem 2023; 28:117-138. [PMID: 36456886 PMCID: PMC9981530 DOI: 10.1007/s00775-022-01973-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/17/2022] [Indexed: 12/04/2022]
Abstract
Guanine quadruplexes (G4s) are important targets for cancer treatments as their stabilization has been associated with a reduction of telomere ends or a lower oncogene expression. Although less abundant than purely organic ligands, metal complexes have shown remarkable abilities to stabilize G4s, and a wide variety of techniques have been used to characterize the interaction between ligands and G4s. However, improper alignment between the large variety of experimental techniques and biological activities can lead to improper identification of top candidates, which hampers progress of this important class of G4 stabilizers. To address this, we first review the different techniques for their strengths and weaknesses to determine the interaction of the complexes with G4s, and provide a checklist to guide future developments towards comparable data. Then, we surveyed 74 metal-based ligands for G4s that have been characterized to the in vitro level. Of these complexes, we assessed which methods were used to characterize their G4-stabilizing capacity, their selectivity for G4s over double-stranded DNA (dsDNA), and how this correlated to bioactivity data. For the biological activity data, we compared activities of the G4-stabilizing metal complexes with that of cisplatin. Lastly, we formulated guidelines for future studies on G4-stabilizing metal complexes to further enable maturation of this field.
Collapse
Affiliation(s)
- Jaccoline Zegers
- grid.4818.50000 0001 0791 5666Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Maartje Peters
- grid.4818.50000 0001 0791 5666Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Bauke Albada
- Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| |
Collapse
|
8
|
Yang T, Zhu M, Jiang M, Yang F, Zhang Z. Current status of iridium-based complexes against lung cancer. Front Pharmacol 2022; 13:1025544. [PMID: 36210835 PMCID: PMC9538862 DOI: 10.3389/fphar.2022.1025544] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/09/2022] [Indexed: 11/22/2022] Open
Abstract
Lung cancer is one of the most common malignant tumors, with the highest mortality rate in the world, and its incidence is second only to breast cancer. It has posed a serious threat to human health. Cisplatin, a metal-based drug, is one of the most widely used chemotherapeutic agents for the treatment of various cancers. However, its clinical efficacy is seriously limited by numerous side effects and drug resistance. This has led to the exploration and development of other transition metal complexes for the treatment of malignant tumors. In recent years, iridium-based complexes have attracted extensive attention due to their potent anticancer activities, limited side effects, unique antitumor mechanisms, and rich optical properties, and are expected to be potential antitumor drugs. In this review, we summarize the recent progress of iridium complexes against lung cancer and introduce their anti-tumor mechanisms, including apoptosis, cycle arrest, inhibition of lung cancer cell migration, induction of immunogenic cell death, etc.
Collapse
Affiliation(s)
- Tongfu Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China
| | - Minghui Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China
| | - Ming Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China
- School of food and biochemical engineering, Guangxi Science and Technology Normal University, Laibin, Guangxi, China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China
| | - Zhenlei Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China
- *Correspondence: Zhenlei Zhang,
| |
Collapse
|
9
|
Lu JJ, Ma XR, Xie K, Chen MR, Huang B, Li RT, Ye RR. Lysosome-targeted cyclometalated iridium(III) complexes: JMJD inhibition, dual induction of apoptosis and autophagy. METALLOMICS : INTEGRATED BIOMETAL SCIENCE 2022; 14:6694002. [PMID: 36073756 DOI: 10.1093/mtomcs/mfac068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/28/2022] [Indexed: 11/14/2022]
Abstract
A series of cyclometalated iridium(III) complexes with the formula [Ir(C^N)2 L](PF6) (C^N = 2-phenylpyridine (ppy, in Ir-1), 2-(2-thienyl)pyridine (thpy, in Ir-2), 2-(2,4-difluorophenyl)pyridine (dfppy, in Ir-3), L = 2-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)quinolin-8-ol) were designed and synthesized, which utilize 8-hydroxyquinoline derivative as N^N ligands to chelate the cofactor Fe2+ of the Jumonji domain-containing protein (JMJD) histone demethylase. As expected, the results of UV/Vis titration analysis confirm the chelating capabilities of Ir-1-3 for Fe2+, and molecular docking studies also show that Ir-1-3 can interact with the active pocket of JMJD protein, and treatment of cells with Ir-1-3 results in significant upregulation of trimethylated histone 3 lysine 9 (H3K9Me3), indicating the inhibition of JMJD activity. Meanwhile, Ir-1-3 exhibit much higher cytotoxicity against the tested tumor cell lines compared with the clinical chemotherapeutic agent cisplatin. And Ir-1-3 can block the cell cycle at G2/M phase and inhibit cell migration and colony formation. Further studies show that Ir-1-3 can specifically accumulate in lysosomes, damage the integrity of lysosomes, and induce apoptosis and autophagy. Reduction of mitochondrial membrane potential (MMP) and elevation of reactive oxygen species (ROS) also contribute to the antitumor effects of Ir-1-3. Finally, Ir-1 can inhibit tumor growth effectively in vivo and increase the expression of H3K9Me3 in tumor tissues. Our study demonstrates that these iridium(III) complexes are promising anticancer agents with multiple functions, including the inhibition of JMJD and induction of apoptosis and autophagy.
Collapse
Affiliation(s)
- Jun-Jian Lu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Xiu-Rong Ma
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Kai Xie
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Mei-Ru Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Bo Huang
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, P. R. China
| | - Rong-Tao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Rui-Rong Ye
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| |
Collapse
|
10
|
Remarkably flexible 2,2′:6′,2″-terpyridines and their group 8–10 transition metal complexes – Chemistry and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Kuzin S, Bogomolov D, Berechikidze I, Larina S, Sakharova T. Peculiar features of bone marrow cell proliferation in Djungarian hamsters with genetic disorders under thiotepa effect. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e77353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The paper aims to examine the proliferation of bone marrow cell pool in Djungarian hamsters and the subsequent restoration of their genetic stability after the action of thiotepa (TT). The study involved 36 animals, of which 16 were in the control group (injected with 0.25 ml of physiological solution), and 20 in the experimental group (0.25 ml of thiotepa at a dose of 1.5 mg per 1 kg of body weight). The maximum number of cells with CA amounting to 30.0% was observed 13 hours after TT injection (p≤0.05 between the control and experimental groups) and rapidly declined to 5.7% over subsequent periods by the 37th hour of the experiment (p≤0.05). The results suggest that the restoration of cell pool genetic stability is largely associated with the cell selection mechanisms, which confers an advantage over cell proliferation without chromosome anomalies.
Collapse
|
12
|
Dickenson JC, Haley ME, Hyde JT, Reid ZM, Tarring TJ, Iovan DA, Harrison DP. Fine-Tuning Metal and Ligand-Centered Redox Potentials of Homoleptic Bis-Terpyridine Complexes with 4'-Aryl Substituents. Inorg Chem 2021; 60:9956-9969. [PMID: 34160216 DOI: 10.1021/acs.inorgchem.1c01233] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Homoleptic transition-metal complexes of 2,2':6',2″-terpyridine (terpy) and substituted derivatives of the form [M(R-terpy)2]2+ display a wide range of redox potentials that correlate well to the Hammett parameter of the terpy substituents. Less is known about the impact of incorporating a phenyl spacer between the functional group responsible for controlling the electron density of terpy and how that translates to metal complexes of the form [M(4'-aryl-terpy)2]2+, where M = Mn, Fe, Co, Ni, and Zn. Herein, we report our studies on these complexes revealed a good correlation of redox potentials of both metal- and ligand-centered events with the Hammett parameters of the aryl substituents, regardless of aryl-substitution pattern (i.e., the presence of multiple functional groups, combinations of withdrawing and donating functional groups). The phenyl spacer results in 60-80% attenuation of electron density as compared to the 4'-substituted terpy analogue, depending on the metal and redox couple analyzed. Density functional theory calculations performed on a simple model system revealed a strong correlation between the Hammett parameters and lowest unoccupied molecular orbital energies of the corresponding substituted pyridine models, thus serving as an inexpensive predictive tool when coupled with electrochemical data. Overall, these data suggest that such ligand modifications may be used in combination with previous approaches to further fine-tune the redox potentials of homoleptic transition-metal complexes, which may have applications in photochemical and electrochemical catalytic processes.
Collapse
Affiliation(s)
- John C Dickenson
- Virginia Military Institute, Department of Chemistry, Lexington, Virginia 24450, United States
| | - MacKenzie E Haley
- Virginia Military Institute, Department of Chemistry, Lexington, Virginia 24450, United States
| | - Jacob T Hyde
- Virginia Military Institute, Department of Chemistry, Lexington, Virginia 24450, United States
| | - Zachary M Reid
- Virginia Military Institute, Department of Chemistry, Lexington, Virginia 24450, United States
| | - Travis J Tarring
- Virginia Military Institute, Department of Chemistry, Lexington, Virginia 24450, United States
| | - Diana A Iovan
- Virginia Tech, Department of Chemistry, Blacksburg, Virginia 24060, United States
| | - Daniel P Harrison
- Virginia Military Institute, Department of Chemistry, Lexington, Virginia 24450, United States
| |
Collapse
|
13
|
Ortiz de Luzuriaga I, Lopez X, Gil A. Learning to Model G-Quadruplexes: Current Methods and Perspectives. Annu Rev Biophys 2021; 50:209-243. [PMID: 33561349 DOI: 10.1146/annurev-biophys-060320-091827] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
G-quadruplexes have raised considerable interest during the past years for the development of therapies against cancer. These noncanonical structures of DNA may be found in telomeres and/or oncogene promoters, and it has been observed that the stabilization of such G-quadruplexes may disturb tumor cell growth. Nevertheless, the mechanisms leading to folding and stabilization of these G-quadruplexes are still not well established, and they are the focus of much current work in this field. In seminal works, stabilization was observed to be produced by cations. However, subsequent studies showed that different kinds of small molecules, from planar and nonplanar organic molecules to square-planar and octahedral metal complexes, may also lead to the stabilization of G-quadruplexes. Thus, the comprehension and rationalization of the interaction of these small molecules with G-quadruplexes are also important topics of current interest in medical applications. To shed light on the questions arising from the literature on the formation of G-quadruplexes, their stabilization, and their interaction with small molecules, synergies between experimental studies and computational works are needed. In this review, we mainly focus on in silico approaches and provide a broad compilation of different leading studies carried out to date by different computational methods. We divide these methods into twomain categories: (a) classical methods, which allow for long-timescale molecular dynamics simulations and the corresponding analysis of dynamical information, and (b) quantum methods (semiempirical, quantum mechanics/molecular mechanics, and density functional theory methods), which allow for the explicit simulation of the electronic structure of the system but, in general, are not capable of being used in long-timescale molecular dynamics simulations and, therefore, give a more static picture of the relevant processes.
Collapse
Affiliation(s)
- Iker Ortiz de Luzuriaga
- CIC nanoGUNE BRTA, 20018 Donostia, Euskadi, Spain; .,Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Uniberstitatea, UPV/EHU, 20080 Donostia, Euskadi, Spain
| | - Xabier Lopez
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Uniberstitatea, UPV/EHU, 20080 Donostia, Euskadi, Spain.,Donostia International Physics Center, 20018 Donostia, Spain
| | - Adrià Gil
- CIC nanoGUNE BRTA, 20018 Donostia, Euskadi, Spain; .,BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal;
| |
Collapse
|
14
|
Maekawa M, Terada K, Oda S, Sugimoto K, Okubo T, Kuroda-Sowa T. Syntheses and structural characterizations of mononuclear Ir(III) hydride complexes with 2,2′:6′,2″-terpyridine in the κ2N,N' and κ3N,N',N″ coordination modes. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.119962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
15
|
Yang Y, Bin YD, Qin QP, Luo XJ, Zou BQ, Zhang HX. Novel Quinoline-based Ir(III) Complexes Exhibit High Antitumor Activity in Vitro and in Vivo. ACS Med Chem Lett 2019; 10:1614-1619. [PMID: 31857836 DOI: 10.1021/acsmedchemlett.9b00337] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/06/2019] [Indexed: 12/18/2022] Open
Abstract
Eight novel Ir(III) complexes listed as [Ir(H-P)2(P)]PF6 (PyP-Ir), [Ir(H-P)2(dMP)]PF6 (PydMP-Ir), [Ir(H-P)2(MP)]PF6 (PyMP-Ir), [Ir(H-P)2(tMP)]PF6 (PytMP-Ir), [Ir(MPy)2(P)]PF6 (MPyP-Ir), [Ir(MPy)2(dMP)]PF6 (MPydMP-Ir), [Ir(MPy)2(MP)]PF6 (MPyMP-Ir), [Ir(MPy)2((tMP)]PF6 (MPytMP-Ir) with 2-phenylpyri-dine (H-P) and 3-methyl-2-phenylpyridine (MPy) as ancillary ligands and pyrido-[3,2-a]-pyrido[1',2':1,2]imidazo[4,5-c]phenazine (P), 12,13-dimethyl pyrido-[3,2-a]-pyrido[1',2':1,2]-imidazo-[4,5-c]-phenazine (dMP), 2-methylpyrido [3,2-a]-pyrido-[1',2':1,2]-imidazo-[4,5-c]-phenazine (MP), and 2,12,13-trimethylpyrido-[3,2-a]-pyrido-[1',2':1,2]-imidazo-[4,5-c]-phenazine (tMP) as main ligands, respectively, were designed and synthesized to fully characterize and explore the effect of their toxicity on cancer cells. Cytotoxic mechanism studies demonstrated that the eight Ir(III) complexes exhibited highly potent antitumor activity selectively against cancer cell lines NCI-H460, T-24, and HeLa, and no activity against HL-7702, a noncancerous cell line. Among the eight Ir(III) complexes, MPytMP-Ir exhibited the highest cytotoxicity with an IC50 = 5.05 ± 0.22 nM against NCI-H460 cells. The antitumor activity of MPytMP-Ir in vitro could be contributed to the steric or electronic effect of the methyl groups, which induced telomerase inhibition and damaged mitochondria in NCI-H460 cells. More importantly, MPytMP-Ir displayed a superior inhibitory effect on NCI-H460 xenograft in vivo than cisplatin. Our work demonstrates that MPytMP-Ir could potentially be developed as a novel potent Ir-based antitumor drug.
Collapse
Affiliation(s)
- Yan Yang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, P. R. China
- School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxuedong Road, Nanning 530004, P. R. China
| | - Yi-Dong Bin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, P. R. China
- School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxuedong Road, Nanning 530004, P. R. China
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, P. R. China
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, P. R. China
| | - Xu-Jian Luo
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, P. R. China
| | - Bi-Qun Zou
- Department of Chemistry, Guilin Normal College, 9 Feihu Road, Gulin 541001, China
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, P. R. China
| | - Hua-Xin Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxuedong Road, Nanning 530004, P. R. China
| |
Collapse
|
16
|
Zhang YL, Deng CX, Zhou WF, Zhou LY, Cao QQ, Shen WY, Liang H, Chen ZF. Synthesis and in vitro antitumor activity evaluation of copper(II) complexes with 5-pyridin-2-yl-[1,3]dioxolo[4,5-g]isoquinoline derivatives. J Inorg Biochem 2019; 201:110820. [DOI: 10.1016/j.jinorgbio.2019.110820] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/16/2019] [Accepted: 09/01/2019] [Indexed: 02/07/2023]
|
17
|
Qin QP, Wang ZF, Huang XL, Tan MX, Zou BQ, Liang H. Strong in vitro and vivo cytotoxicity of novel organoplatinum(II) complexes with quinoline-coumarin derivatives. Eur J Med Chem 2019; 184:111751. [DOI: 10.1016/j.ejmech.2019.111751] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/29/2019] [Accepted: 09/30/2019] [Indexed: 12/22/2022]
|
18
|
Peng W, Hegazy AM, Jiang N, Chen X, Qi HX, Zhao XD, Pu J, Ye RR, Li RT. Identification of two mitochondrial-targeting cyclometalated iridium(III) complexes as potent anti-glioma stem cells agents. J Inorg Biochem 2019; 203:110909. [PMID: 31689591 DOI: 10.1016/j.jinorgbio.2019.110909] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/24/2019] [Accepted: 10/27/2019] [Indexed: 02/05/2023]
Abstract
Glioma stem cells (GSCs) are thought to be responsible for the recurrence and invasion of glioblastoma multiform (GBM), which have been evaluated and exploited as the therapeutic target for GBM. Cyclometalated iridium(III) complexes have been demonstrated as the potential anticancer agents, however, their antitumor efficacies against GSCs are still unknown. Herein, we investigated the antitumor activity of two cyclometalated iridium(III) complexes [Ir(ppy)2L](PF6) (Ir1) and [Ir(thpy)2L](PF6) (Ir2) (ppy = 2-phenylpyridine, thpy = 2-(2-thienyl)pyridine and L = 4,4'-Bis(hydroxymethyl)-2,2'-bipyridine) against GSCs. The results clearly indicate that Ir1 and Ir2 kill GSCs selectively with IC50 values ranging from 5.26-9.05 μM. Further mechanism research display that Ir1 and Ir2 can suppress the proliferation of GSCs, penetrate into GSCs efficiently, localize to mitochondria, and induce mitochondria-mediated apoptosis, including the loss of mitochondrial membrane (MMP), elevation of intracellular reactive oxygen species (ROS) and caspases activation. Moreover, Ir1 and Ir2 can destroy the GSCs self-renewal and unlimited proliferation capacity by affecting the GSCs colony formation. According our knowledge, this is the first study to investigate the anti-GSCs properties of cyclometalated iridium(III) complexes.
Collapse
Affiliation(s)
- Wan Peng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Ahmed M Hegazy
- The First Department of Neurosurgery, The Second Affiliated Hospital, Kunming Medical University, Kunming 650101, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China; Zoology Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Ning Jiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xi Chen
- The First Department of Neurosurgery, The Second Affiliated Hospital, Kunming Medical University, Kunming 650101, China; Kunming Medical University, Kunming 650101, China
| | - Hua-Xin Qi
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China
| | - Xu-Dong Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China; Laboratory of Animal Tumor Models, Department of Thoracic Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jun Pu
- The First Department of Neurosurgery, The Second Affiliated Hospital, Kunming Medical University, Kunming 650101, China; Kunming Medical University, Kunming 650101, China.
| | - Rui-Rong Ye
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Rong-Tao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
19
|
Tan MX, Wang ZF, Qin QP, Huang XL, Zou BQ, Liang H. Complexes of platinum(II/IV) with 2-phenylpyridine derivatives as a new class of promising anti-cancer agents. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.107510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
20
|
Synthesis, crystal structure, photophysical property and bioimaging application of a series of Zn(II) terpyridine complexes. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.05.090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Chen X, Tang WJ, Shi JB, Liu MM, Liu XH. Therapeutic strategies for targeting telomerase in cancer. Med Res Rev 2019; 40:532-585. [PMID: 31361345 DOI: 10.1002/med.21626] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 12/13/2022]
Abstract
Telomere and telomerase play important roles in abnormal cell proliferation, metastasis, stem cell maintenance, and immortalization in various cancers. Therefore, designing of drugs targeting telomerase and telomere is of great significance. Over the past two decades, considerable knowledge regarding telomere and telomerase has been accumulated, which provides theoretical support for the design of therapeutic strategies such as telomere elongation. Therefore, the development of telomere-based therapies such as nucleoside analogs, non-nucleoside small molecules, antisense technology, ribozymes, and dominant negative human telomerase reverse transcriptase are being prioritized for eradicating a majority of tumors. While the benefits of telomere-based therapies are obvious, there is a need to address the limitations of various therapeutic strategies to improve the possibility of clinical applications. In this study, current knowledge of telomere and telomerase is discussed, and therapeutic strategies based on recent research are reviewed.
Collapse
Affiliation(s)
- Xing Chen
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Wen-Jian Tang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Jing Bo Shi
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Ming Ming Liu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Xin-Hua Liu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
22
|
Two novel platinum(II) complexes with sorafenib and regorafenib: Synthesis, structural characterization, and evaluation of in vitro antitumor activity. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.03.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
23
|
Raising the bar in anticancer therapy: recent advances in, and perspectives on, telomerase inhibitors. Drug Discov Today 2019; 24:1370-1388. [PMID: 31136800 DOI: 10.1016/j.drudis.2019.05.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/02/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023]
Abstract
Telomerase is a ribonucleic reverse transcriptase enzyme that uses an integral RNA component as a template to add tandem telomeric DNA repeats, TTAGGG, at the 3' end of the chromosomes. 85-90% of human tumors and their derived cell lines predominantly express high levels of telomerase, therefore contributing to cancer cell development. However, in normal cells, telomerase activity is almost always absent except in germ cells and stem cells. This differential expression has been exploited to develop highly specific and potent cancer therapeutics. In this review, we outline recent advances in the development of telomerase inhibitors as anticancer agents.
Collapse
|
24
|
Zhang Y, Zhou D, Liu W, Li C, Hao L, Zhang G, Deng S, Yang R, Qin J, Li J, Deng W. Cytotoxic Activity and Related Mechanisms of Prenylflavonoids Isolated from Mallotus conspurcatus Croizat. Chem Biodivers 2019; 16:e1800465. [PMID: 30779297 DOI: 10.1002/cbdv.201800465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/18/2019] [Indexed: 12/23/2022]
Abstract
Five prenylflavonoids, 6-prenylnaringenin (1), 8-prenylnaringenin (2), 7-O-methyl-8-prenylnaringenin (3), 7-O-methyl-6-prenylnaringenin (4), and 4'-O-methyl-6-prenylnaringenin (5), were isolated from the traditional herb Mallotus conspurcatus Croizat (Euphorbiaceae). Compounds 1-5 revealed cytotoxic activity against cervical cancer (HeLa) cells with IC50 values ranging from 10.08 to 60.16 μm by MTT method, and interestingly, these prenylflavonoids were less toxic to normal HL-7702 cells. Furthermore, compounds 1 and 5 could inhibit the c-myc expression and telomerase activity and cause mitochondrial dysfunction. These findings might contribute to a better understanding of the biological activities of prenylflavonoids and lay the foundation for further studies on the cytotoxic activity of natural products isolated from M. conspurcatus.
Collapse
Affiliation(s)
- Yanjun Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, P. R. China.,Guangxi Colleges and Universities Key Laboratory of Beibu Gulf Oil and Natural Gas Resource Effective Utilization, Beibu Gulf University, Qinzhou, 535011, P. R. China
| | - Dexiong Zhou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, P. R. China
| | - Wei Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, P. R. China
| | - Chenguo Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, P. R. China
| | - Lili Hao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, P. R. China
| | - Gaorong Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, P. R. China
| | - Shengping Deng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, P. R. China
| | - Ruiyun Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, P. R. China
| | - Jiangke Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, P. R. China
| | - Jun Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, P. R. China
| | - Wei Deng
- The 2nd Peoples' Hospital of Qinzhou, 219 Wenfeng South Road, Qinzhou, 535011, P. R. China
| |
Collapse
|
25
|
Zou HH, Meng T, Chen Q, Zhang YQ, Wang HL, Li B, Wang K, Chen ZL, Liang F. Bifunctional Mononuclear Dysprosium Complexes: Single-Ion Magnet Behaviors and Antitumor Activities. Inorg Chem 2019; 58:2286-2298. [DOI: 10.1021/acs.inorgchem.8b02250] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hua-Hong Zou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy of Guangxi Normal University, Yucai Road 15, Guilin 541004, People’s Republic of China
| | - Ting Meng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy of Guangxi Normal University, Yucai Road 15, Guilin 541004, People’s Republic of China
| | - Qi Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy of Guangxi Normal University, Yucai Road 15, Guilin 541004, People’s Republic of China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, People’s Republic of China
| | - Hai-Ling Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy of Guangxi Normal University, Yucai Road 15, Guilin 541004, People’s Republic of China
| | - Bo Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Wolong Road 1638, Nanyang 473061, People’s Republic of China
| | - Kai Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Jiangan Road 12, Guilin 541004, People’s Republic of China
| | - Zi-Lu Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy of Guangxi Normal University, Yucai Road 15, Guilin 541004, People’s Republic of China
| | - Fupei Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy of Guangxi Normal University, Yucai Road 15, Guilin 541004, People’s Republic of China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Jiangan Road 12, Guilin 541004, People’s Republic of China
| |
Collapse
|
26
|
Qin QP, Wang SL, Tan MX, Liu YC, Meng T, Zou BQ, Liang H. Synthesis of two platinum(II) complexes with 2-methyl-8-quinolinol derivatives as ligands and study of their antitumor activities. Eur J Med Chem 2019; 161:334-342. [DOI: 10.1016/j.ejmech.2018.10.051] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 02/01/2018] [Accepted: 10/20/2018] [Indexed: 01/31/2023]
|
27
|
Qin QP, Zou BQ, Hu FL, Huang GB, Wang SL, Gu YQ, Tan MX. Platinum(ii) complexes with rutaecarpine and tryptanthrin derivatives induce apoptosis by inhibiting telomerase activity and disrupting mitochondrial function. MEDCHEMCOMM 2018; 9:1639-1648. [PMID: 30429969 PMCID: PMC6195000 DOI: 10.1039/c8md00247a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/07/2018] [Indexed: 12/17/2022]
Abstract
Four new platinum(ii) complexes, [Pt(Rut)(DMSO)Cl2] (Rut-Pt), [Pt(Try)(DMSO)Cl2] (Try-Pt), [Pt(ITry)(DMSO)Cl2] (ITry-Pt) and [Pt(BrTry)(DMSO)Cl2] (BrTry-Pt), with rutaecarpine (Rut), tryptanthrin (Try), 8-iodine-tryptanthrin (ITry) and 8-bromo-tryptanthrin (BrTry) as ligands were synthesized and fully characterized. In these complexes, the platinum(ii) adopts a four-coordinated square planar geometry. The inhibitory activity evaluated by the MTT assay showed that BrTry-Pt (IC50 = of 0.21 ± 0.25 μM) could inhibit the growth of T-24 tumor cells (human bladder cancer cell line) more so than the other three complexes. In addition, all of these Pt complexes exhibited low toxicity against non-cancerous HL-7702 cells. BrTry-Pt induced cell cycle arrest in the S phase, leading to the down-regulation of cyclin A and CDK2 proteins. BrTry-Pt acts as a telomerase inhibitor targeting the c-myc promoter. In addition, BrTry-Pt also caused mitochondrial dysfunction. Importantly, the in vitro anticancer activity of BrTry-Pt was higher than those of Rut-Pt, Try-Pt and ITry-Pt, and it was more selective for T-24 cells than for non-cancerous HL-7702 cells.
Collapse
Affiliation(s)
- Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology , School of Chemistry and Food Science , Yulin Normal University , 1303 Jiaoyudong Road , Yulin 537000 , PR China . ; ; Tel: +86 775 2623650
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , 15 Yucai Road , Guilin 541004 , PR China
| | - Bi-Qun Zou
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology , School of Chemistry and Food Science , Yulin Normal University , 1303 Jiaoyudong Road , Yulin 537000 , PR China . ; ; Tel: +86 775 2623650
- Department of Chemistry , Guilin Normal College , 21 Xinyi Road , Gulin 541001 , PR China
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , 15 Yucai Road , Guilin 541004 , PR China
| | - Fei-Long Hu
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products , Guangxi University for Nationalities , Nanning , 530006 , P. R. China
| | - Guo-Bao Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology , School of Chemistry and Food Science , Yulin Normal University , 1303 Jiaoyudong Road , Yulin 537000 , PR China . ; ; Tel: +86 775 2623650
| | - Shu-Long Wang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology , School of Chemistry and Food Science , Yulin Normal University , 1303 Jiaoyudong Road , Yulin 537000 , PR China . ; ; Tel: +86 775 2623650
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , 15 Yucai Road , Guilin 541004 , PR China
| | - Yun-Qiong Gu
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology , School of Chemistry and Food Science , Yulin Normal University , 1303 Jiaoyudong Road , Yulin 537000 , PR China . ; ; Tel: +86 775 2623650
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , 15 Yucai Road , Guilin 541004 , PR China
| | - Ming-Xiong Tan
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology , School of Chemistry and Food Science , Yulin Normal University , 1303 Jiaoyudong Road , Yulin 537000 , PR China . ; ; Tel: +86 775 2623650
| |
Collapse
|
28
|
Zhang WY, Yi QY, Wang YJ, Du F, He M, Tang B, Wan D, Liu YJ, Huang HL. Photoinduced anticancer activity studies of iridium(III) complexes targeting mitochondria and tubules. Eur J Med Chem 2018; 151:568-584. [PMID: 29656200 DOI: 10.1016/j.ejmech.2018.04.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/22/2018] [Accepted: 04/06/2018] [Indexed: 12/23/2022]
Abstract
Three new iridium (III) complexes [Ir (ppy)2 (ipbc)](PF6) (1), [Ir (bzq)2 (ipbc)](PF6) (2) and [Ir (piq)2 (ipbc)](PF6) (3) were designed and synthesized. All the complexes were tested for anticancer activity using 3-(4,5-dimethylthiazole)-2,5-diphenyltetraazolium bromide (MTT) method. The complexes show no cytotoxic activity toward cancer BEL-7402, SGC-7901, Eca-109, A549, HeLa and HepG2 cells. However, upon irradiation with white light, the complexes display high cytotoxicity against BEL-7402 cells with an IC50 value of 5.5 ± 0.8, 7.3 ± 1.3 and 11.5 ± 1.6 μM for 1, 2 and 3, respectively. AO/EB staining and comet assay show that the complexes can induce apoptosis in BEL-7402 cells. The complexes can increase intracellular ROS and Ca2+ levels and cause a decrease in the mitochondrial membrane potential. Autophagic assays exhibit that the complexes can induce autophagy and regulate the expression of Beclin-1 and LC3 proteins. The cell cycle distribution in BEL-7402 cells was carried out by flow cytometry. The expression of Bcl-2 family proteins was studied by western blot. Additionally, the complexes can release cytochrome c and inhibit the polymerization of α-tubulin. Our study reveals that the complexes inhibit the cell growth in BEL-7402 cells through an ROS-mediated mitochondria dysfunction and targeting tubules pathways. These complexes are a promising new entity for the development of multi-target anticancer drugs.
Collapse
Affiliation(s)
- Wen-Yao Zhang
- Guangdong Engineering & Technology Research Center of Topic Precise Drug Delivery System, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Qian-Yan Yi
- Guangdong Engineering & Technology Research Center of Topic Precise Drug Delivery System, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yang-Jie Wang
- Guangdong Engineering & Technology Research Center of Topic Precise Drug Delivery System, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Fan Du
- Guangdong Engineering & Technology Research Center of Topic Precise Drug Delivery System, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Miao He
- Guangdong Engineering & Technology Research Center of Topic Precise Drug Delivery System, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Bing Tang
- Guangdong Engineering & Technology Research Center of Topic Precise Drug Delivery System, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Dan Wan
- Guangdong Engineering & Technology Research Center of Topic Precise Drug Delivery System, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yun-Jun Liu
- Guangdong Engineering & Technology Research Center of Topic Precise Drug Delivery System, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, 510006, PR China.
| | - Hong-Liang Huang
- School of Life Science and Biopharmaceutical, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| |
Collapse
|
29
|
Qin QP, Meng T, Tan MX, Liu YC, Wang SL, Zou BQ, Liang H. Synthesis, characterization and biological evaluation of six highly cytotoxic ruthenium(ii) complexes with 4'-substituted-2,2':6',2''-terpyridine. MEDCHEMCOMM 2018; 9:525-533. [PMID: 30108943 PMCID: PMC6072480 DOI: 10.1039/c7md00532f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/31/2018] [Indexed: 12/23/2022]
Abstract
Herein, six ruthenium(ii) terpyridine complexes, i.e. [RuCl2(4-EtN-Phtpy)(DMSO)] (Ru1), [RuCl2(4-MeO-Phtpy)(DMSO)] (Ru2), [RuCl2(2-MeO-Phtpy)(DMSO)] (Ru3), [RuCl2(3-MeO-Phtpy)(DMSO)] (Ru4), [RuCl2(1-Bip-Phtpy)(DMSO)] (Ru5), and [RuCl2(1-Pyr-Phtpy)(DMSO)] (Ru6) with 4'-(4-diethylaminophenyl)-2,2':6',2''-terpyridine (4-EtN-Phtpy), 4'-(4-methoxyphenyl)-2,2':6',2''-terpyridine (4-MeO-Phtpy), 4'-(2-methoxyphenyl)-2,2':6',2''-terpyridine (2-MeO-Phtpy), 4'-(3-methoxyphenyl)-2,2':6',2''-terpyridine (3-MeO-Phtpy), 4'-(1-biphenylene)-2,2':6',2''-terpyridine (1-Bip-Phtpy), and 4'-(1-pyrene)-2,2':6',2''-terpyridine (1-Pyr-Phtpy), respectively, were synthesized and fully characterized. The MTT assay demonstrates that the in vitro anticancer activity of Ru1 is higher than that of Ru2-Ru6 and more selective for Hep-G2 cells than for normal HL-7702 cells. In addition, various biological assays show that Ru1 and Ru6, especially the Ru1 complex, are telomerase inhibitors targeting c-myc G4 DNA and also cause apoptosis of Hep-G2 cells. With the same Ru center, the in vitro antitumor activity and cellular uptake ability of the 4-EtN-Phtpy and 1-Bip-Phtpy ligands follow the order 4-EtN-Phtpy > 1-Bip-Phtpy.
Collapse
Affiliation(s)
- Qi-Pin Qin
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology , College of Chemistry and Food Science , Yulin Normal University , 1303 Jiaoyudong Road , Yulin 537000 , PR China . ; ; ; Tel: +86 775 2623650
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , 15 Yucai Road , Guilin 541004 , PR China
| | - Ting Meng
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology , College of Chemistry and Food Science , Yulin Normal University , 1303 Jiaoyudong Road , Yulin 537000 , PR China . ; ; ; Tel: +86 775 2623650
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , 15 Yucai Road , Guilin 541004 , PR China
| | - Ming-Xiong Tan
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology , College of Chemistry and Food Science , Yulin Normal University , 1303 Jiaoyudong Road , Yulin 537000 , PR China . ; ; ; Tel: +86 775 2623650
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , 15 Yucai Road , Guilin 541004 , PR China
| | - Yan-Cheng Liu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , 15 Yucai Road , Guilin 541004 , PR China
| | - Shu-Long Wang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology , College of Chemistry and Food Science , Yulin Normal University , 1303 Jiaoyudong Road , Yulin 537000 , PR China . ; ; ; Tel: +86 775 2623650
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , 15 Yucai Road , Guilin 541004 , PR China
| | - Bi-Qun Zou
- Department of Chemistry , Guilin Normal College , 21 Xinyi Road , Gulin 541001 , PR China .
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , 15 Yucai Road , Guilin 541004 , PR China
| |
Collapse
|