1
|
Alqhtani HA, Othman SI, Aba Alkhayl FF, Altoom NG, Lamsabhi AM, Kamel EM. Unraveling the mechanism of carbonic anhydrase IX inhibition by alkaloids from Ruta chalepensis: A synergistic analysis of in vitro and in silico data. Biochem Biophys Res Commun 2024; 733:150685. [PMID: 39270414 DOI: 10.1016/j.bbrc.2024.150685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/22/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Due to the pivotal role of carbonic anhydrase IX (CA IX) in pathological conditions, there's a pressing need for novel inhibitors to improve patient outcomes and clinical management. Herein, we investigated the inhibitory efficacy of six alkaloids from Ruta chalepensis against CA IX through in vitro inhibition assay and computational modeling. Skimmianine and maculosidine displayed significant inhibitory activity in vitro, with low IC50 values of 105.2 ± 3.2 and 295.7 ± 14.1 nM, respectively. Enzyme kinetics analyses revealed that skimmianine exhibited a mixed inhibition mode, contrasting with the noncompetitive inhibition mechanism observed for the reference drug (acetazolamide), as indicated by intersecting lines in the Lineweaver-Burk plots. The findings of docking calculations revealed that skimmianine and maculosidine exhibited extensive polar interactions with the enzyme. These alkaloids demonstrate substantial binding interactions and occupy identical binding site as acetazolamide, thereby enhancing their efficacy as inhibitors of CA IX. Utilizing a 100 ns molecular dynamics (MD) simulation, the dynamic interactions between isolated alkaloids and CA IX were intensively assessed. Analysis of diverse MD parameters revealed that skimmianine and maculosidine displayed consistent trajectories and notable energy stabilization during their interaction with CA IX. The findings of MM/PBSA analysis depicted the minimum binding free energy for skimmianine and maculosidine. In addition, the Potential Energy Landscape (PEL) analysis revealed distinct and stable conformational states for the CA IX-ligand complexes, with Skimmianine showing the most stable and lowest energy configuration. These computational findings align with experimental results, emphasizing the potential efficacy of skimmianine and maculosidine as inhibitors of CA IX.
Collapse
Affiliation(s)
- Haifa A Alqhtani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. BOX 84428, Riyadh, 11671, Saudi Arabia
| | - Sarah I Othman
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. BOX 84428, Riyadh, 11671, Saudi Arabia
| | - Faris F Aba Alkhayl
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 51452 Buraydah, Saudi Arabia
| | - Naif G Altoom
- Department of Biology, King Khalid Military Academy, Riyadh 11459, Saudi Arabia
| | - Al Mokhtar Lamsabhi
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC Cantoblanco, 28049 Madrid, Spain; Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Emadeldin M Kamel
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
2
|
Bareth D, Jain S, Kumawat J, Kishore D, Dwivedi J, Hashmi SZ. Synthetic and pharmacological developments in the hybrid s-triazine moiety: A review. Bioorg Chem 2024; 143:106971. [PMID: 38016395 DOI: 10.1016/j.bioorg.2023.106971] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023]
Abstract
This article summarizes the most recent advancements in the synthetic and pharmacological approaches along with the structure activity relationship towards the s-triazine and its derivatives. Much attention has been given to s-triazine core due to its facile synthesis, interesting pharmacology, high reactivity, and binding characteristics towards various enzymes. An array of biological applications has been demonstrated by s-triazines including antimalarial, anti-HIV, anti-viral, antimicrobial, anti-tuberculosis to name a few. In the present investigation s-triazine based molecular structures have been assembled in respect to their synthesis and medicinal properties. Further, the competence of s-triazine has been correlated and compared with the other heterocyclic moieties to substantiates-triazine a privileged scaffold. From the literature it is revealed that nucleophilic substitution at 2, 4, and 6 positions is significant for various biological applications. This article would help in assisting the chemists in designing novel molecular entities with high medicinal value.
Collapse
Affiliation(s)
- Diksha Bareth
- Department of Chemistry, Banasthali Vidyapith, Rajasthan 304022, India
| | - Sonika Jain
- Department of Chemistry, Banasthali Vidyapith, Rajasthan 304022, India
| | - Jyoti Kumawat
- Department of Chemistry, Banasthali Vidyapith, Rajasthan 304022, India
| | - Dharma Kishore
- Department of Chemistry, Banasthali Vidyapith, Rajasthan 304022, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Rajasthan 304022, India
| | - Sonia Zeba Hashmi
- Department of Chemistry, Banasthali Vidyapith, Rajasthan 304022, India.
| |
Collapse
|
3
|
Bułakowska A, Sławiński J, Hałasa R, Hering A, Gucwa M, Ochocka JR, Stefanowicz-Hajduk J. An In Vitro Antimicrobial, Anticancer and Antioxidant Activity of N–[(2–Arylmethylthio)phenylsulfonyl]cinnamamide Derivatives. Molecules 2023; 28:molecules28073087. [PMID: 37049849 PMCID: PMC10096175 DOI: 10.3390/molecules28073087] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Cinnamic acid is a plant metabolite with antimicrobial, anticancer, and antioxidant properties. Its synthetic derivatives are often more effective in vitro than parent compounds due to stronger biological activities. In our study, we synthesized ten new N–(4–chloro–2–mercapto–5–methylphenylsulfonyl)cinnamamide derivatives, containing two pharmacophore groups: cinnamic acid moiety and benzenesulfonamide. The antimicrobial activity of the obtained compounds was estimated using different types of Gram-positive and Gram-negative bacteria, fungus species of Candida albicans, as well as clinical strains. The compounds were evaluated on biofilm formation and biofilm formed by Staphylococcus clinical strains (methicillin–resistance S. aureus MRSA and methicillin–resistance coagulase–negative Staphylococcus MRCNS). Furthermore, blood bacteriostatic activity test was performed using S. aureus and S. epidermidis. In cytotoxic study, we performed in vitro hemolysis assay on domestic sheep peripheral blood and MTT [3–(4,5–dimethylthiazol–2–yl)–2,5–diphenyltetrazolium bromide] assay on human cervical HeLa, ovarian SKOV-3, and breast MCF-7 cancer cell lines. We also estimated antioxidant activity of ten compounds with 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′–azino–bis(3–ethylbenzthiazoline–6–sulfonic acid) (ABTS) assays. Our results showed a significant antimicrobial activity of the compounds. All of them were active on Staphylococcus and Enterococcus species (MIC was 1–4 µg/mL). The compounds 16d and 16e were the most active on staphylococci clinical strains and efficiently inhibited the biofilm formation and biofilm already formed by the clinical staphylococci. Moreover, the hemolytic properties of the tested compounds occurred in higher quantities (>32.5 µg/mL) than the concentrations that inhibited both the growth of bacteria in the blood and the formation and growth of biofilm. The results of MTT assay showed that compounds 16c, 16d, 17a, and 17d demonstrated the best activity on the cancer cells (the IC50 values were below 10 µg/mL). Compound 16f was the least active on the cancer cells (IC50 was > 60 µg/mL). Antiradical tests revealed that compounds 16f and 17d had the strongest antioxidant properties within the tested group (IC50 was 310.50 ± 0.73 and 574.41 ± 1.34 µg/mL in DPPH, respectively, and 597.53 ± 1.3 and 419.18 ± 2.72 µg/mL in ABTS assay, respectively). Our study showed that the obtained cinnamamide derivatives can be used as potential antimicrobial therapeutic agents.
Collapse
Affiliation(s)
- Anita Bułakowska
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland;
- Correspondence: (A.B.); (J.S.-H.)
| | - Jarosław Sławiński
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland;
| | - Rafał Hałasa
- Department of Pharmaceutical Microbiology, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland;
| | - Anna Hering
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland; (A.H.); (M.G.); (J.R.O.)
| | - Magdalena Gucwa
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland; (A.H.); (M.G.); (J.R.O.)
| | - J. Renata Ochocka
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland; (A.H.); (M.G.); (J.R.O.)
| | - Justyna Stefanowicz-Hajduk
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland; (A.H.); (M.G.); (J.R.O.)
- Correspondence: (A.B.); (J.S.-H.)
| |
Collapse
|
4
|
Dong G, Jiang Y, Zhang F, Zhu F, Liu J, Xu Z. Recent updates on 1,2,3-, 1,2,4-, and 1,3,5-triazine hybrids (2017-present): The anticancer activity, structure-activity relationships, and mechanisms of action. Arch Pharm (Weinheim) 2023; 356:e2200479. [PMID: 36372519 DOI: 10.1002/ardp.202200479] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/15/2022]
Abstract
Cancer is one of the leading causes of death across the world, and the prevalence and mortality rates of cancer will continue to grow. Chemotherapeutics play a critical role in cancer therapy, but drug resistance and side effects are major hurdles to effective treatment, evoking an immediate need for the discovery of new anticancer agents. Triazines including 1,2,3-, 1,2,4-, and 1,3,5-triazine have occupied a propitious place in drug design and development due to their excellent pharmacological profiles. Mechanistically, triazine derivatives could interfere with various signaling pathways to induce cancer cell death. Hence, triazine derivatives possess potential in vitro and in vivo efficacy against diverse cancers. In particular, triazine hybrids are able to overcome drug resistance and reduce side effects. Moreover, several triazine hybrids such as brivanib (indole-containing pyrrolo[2,1-f][1,2,4]triazine), gedatolisib (1,3,5-triazine-urea hybrid), and enasidenib (1,3,5-triazine-pyridine hybrid) have already been available in the market. Accordingly, triazine hybrids are useful scaffolds for the discovery of novel anticancer chemotherapeutics. This review focuses on the anticancer activity of 1,2,3-, 1,2,4-, and 1,3,5-triazine hybrids, together with the structure-activity relationships and mechanisms of action developed from 2017 to the present. The enriched structure-activity relationships may be useful for further rational drug development of triazine hybrids as potential clinical candidates.
Collapse
Affiliation(s)
- Gaoli Dong
- School of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian, China
| | - Yingchun Jiang
- College of Medicine, Huanghuai University, Zhumadian, China
| | - Feng Zhang
- School of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian, China
| | - Fengyun Zhu
- College of Biology and Food Engineering, Huanghuai University, Zhumadian, China
| | - Junna Liu
- Industry Innovation & Research and Development Institute of Zhumadian, Huanghuai University, Zhumadian, China
| | - Zhi Xu
- Industry Innovation & Research and Development Institute of Zhumadian, Huanghuai University, Zhumadian, China
| |
Collapse
|
5
|
Synthesis of 3-(2-Alkylthio-4-chloro-5-methylbenzenesulfonyl)-2-(1-phenyl-3-arylprop-2-enylideneamino)guanidine Derivatives with Pro-Apoptotic Activity against Cancer Cells. Int J Mol Sci 2023; 24:ijms24054436. [PMID: 36901869 PMCID: PMC10002375 DOI: 10.3390/ijms24054436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 03/12/2023] Open
Abstract
The untypical course of reaction between chalcones and benzenesulfonylaminoguanidines led to the new 3-(2-alkylthio-4-chloro-5-methylbenzenesulfonyl)-2-(1-phenyl-3-arylprop-2-enylideneamino)guanidine derivatives 8-33. The new compounds were tested in vitro for their impact on the growth of breast cancer cells MCF-7, cervical cancer cells HeLa and colon cancer cells HCT-116 by MTT assay. The results revealed that the activity of derivatives is strongly related to the presence of hydroxy group in the benzene ring at the 3-arylpropylidene fragment. The most cytotoxic compounds 20 and 24 displayed mean IC50 values of 12.8 and 12.7 μM, respectively, against three tested cell lines and were almost 3- and 4-fold more active toward MCF-7 and HCT-116 when compared with non-malignant HaCaT cells. Furthermore, compound 24 induced apoptosis in cancer cells and caused a decrease of mitochondrial membrane potential as well as an increase of cells in sub-G1 phase in contrast to its inactive analog 31. The strongest activity against the most sensitive HCT-116 cell line was found for compound 30 (IC50 = 8 μM), which was 11-fold more effective in the growth inhibition of HCT-116 cells than those of HaCaT cells. Based on this fact, the new derivatives may be promising leading structures for the search for agents for the treatment of colon cancer.
Collapse
|
6
|
Abdoli M, Giovannuzzi S, Supuran CT, Žalubovskis R. 4-(3-Alkyl/benzyl-guanidino)benzenesulfonamides as selective carbonic anhydrase VII inhibitors. J Enzyme Inhib Med Chem 2022; 37:1568-1576. [PMID: 35635139 PMCID: PMC9154774 DOI: 10.1080/14756366.2022.2080816] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Affiliation(s)
- Morteza Abdoli
- Faculty of Materials Science and Applied Chemistry, Institute of Technology of Organic Chemistry, Riga Technical University, Riga, Latvia
| | - Simone Giovannuzzi
- Neurofarba Department, Universita Degli Studi di Firenze, Florence, Italy
| | - Claudiu T. Supuran
- Neurofarba Department, Universita Degli Studi di Firenze, Florence, Italy
| | - Raivis Žalubovskis
- Faculty of Materials Science and Applied Chemistry, Institute of Technology of Organic Chemistry, Riga Technical University, Riga, Latvia
- Latvian Institute of Organic Synthesis, Riga, Latvia
| |
Collapse
|
7
|
Hashem HE, Amr AEGE, Nossier ES, Anwar MM, Azmy EM. New Benzimidazole-, 1,2,4-Triazole-, and 1,3,5-Triazine-Based Derivatives as Potential EGFR WT and EGFR T790M Inhibitors: Microwave-Assisted Synthesis, Anticancer Evaluation, and Molecular Docking Study. ACS OMEGA 2022; 7:7155-7171. [PMID: 35252706 PMCID: PMC8892849 DOI: 10.1021/acsomega.1c06836] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/24/2022] [Indexed: 06/12/2023]
Abstract
A new series of benzimidazole, 1,2,4-triazole, and 1,3,5-triazine derivatives were designed and synthesized using a microwave irradiation synthetic approach utilizing 2-phenylacetyl isothiocyanate (1) as a key starting material. All the new analogues were evaluated as anticancer agents against a panel of cancer cell lines utilizing doxorubicin as a standard drug. Most of the tested derivatives exhibited selective cytotoxic activity against MCF-7 and A-549 cancer cell lines. Furthermore, the new target compounds 5, 6, and 7 as the most potent antiproliferative agents have been assessed as in vitro EGFRWT and EGFRT790M inhibitors compared to the reference drugs erlotinib and AZD9291. They represented more potent suppression activity against the mutated EGFRT790M than the wild-type EGFRWT. Moreover, the compounds 5, 6, and 7 down-regulated the oncogenic parameter p53 ubiquitination. A docking simulation of compound 6b was carried out to correlate its molecular structure with its significant EGFR inhibition potency and its possible binding interactions within the active site of EGFRWT and the mutant EGFRT790M.
Collapse
Affiliation(s)
- Heba E. Hashem
- Department
of Chemistry, Faculty of Women, Ain Shams
University, Heliopolis, Cairo 11757, Egypt
| | - Abd El-Galil E. Amr
- Pharmaceutical
Chemistry Department, Drug Exploration & Development Chair (DEDC),
College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Applied
Organic Chemistry Department, National Research
Center, Dokki, Cairo 12622, Egypt
| | - Eman S. Nossier
- Pharmaceutical
Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy
(Girls), Al-Azhar University, Cairo 11754, Egypt
| | - Manal M. Anwar
- Department
of Therapeutic Chemistry, National Research
Centre, Dokki, Cairo 12622, Egypt
| | - Eman M. Azmy
- Department
of Chemistry, Faculty of Women, Ain Shams
University, Heliopolis, Cairo 11757, Egypt
| |
Collapse
|
8
|
Maliszewski D, Drozdowska D. Recent Advances in the Biological Activity of s-Triazine Core Compounds. Pharmaceuticals (Basel) 2022; 15:221. [PMID: 35215333 PMCID: PMC8875733 DOI: 10.3390/ph15020221] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 12/18/2022] Open
Abstract
An effective strategy for successful chemotherapy relies on creating compounds with high selectivity against cancer cells compared to normal cells and relatively low cytotoxicity. One such approach is the discovery of critical points in cancer cells, i.e., where specific enzymes that are potential therapeutic targets are generated. Triazine is a six-membered heterocyclic ring compound with three nitrogen replacing carbon-hydrogen units in the benzene ring structure. The subject of this review is the symmetrical 1,3,5-triazine, known as s-triazine. 1,3,5-triazine is one of the oldest heterocyclic compounds available. Because of its low cost and high availability, it has attracted researcher attention for novel synthesis. s-Triazine has a weak base, it has much weaker resonance energy than benzene, therefore, nucleophilic substitution is preferred to electrophilic substitution. Heterocyclic bearing a symmetrical s-triazine core represents an interesting class of compounds possessing a wide spectrum of biological properties such as anti-cancer, antiviral, fungicidal, insecticidal, bactericidal, herbicidal and antimicrobial, antimalarial agents. They also have applications as dyes, lubricants, and analytical reagents. Hence, the group of 1,3,5-triazine derivatives has developed over the years. Triazine is not only the core amongst them, but is also a factor increasing the kinetic potential of the entire derivatives. Modifying the structure and introducing new substituents makes it possible to obtain compounds with broad inhibitory activity on processes such as proliferation. In some cases, s-triazine derivatives induce cell apoptosis. In this review we will present currently investigated 1,3,5-triazine derivatives with anti-cancer activities, with particular emphasis on their inhibition of enzymes involved in the process of tumorigenesis.
Collapse
Affiliation(s)
- Dawid Maliszewski
- Department of Organic Chemistry, Medical University of Bialystok, 15-222 Białystok, Poland
| | - Danuta Drozdowska
- Department of Organic Chemistry, Medical University of Bialystok, 15-222 Białystok, Poland
| |
Collapse
|
9
|
Abas M, Nazir Y, Ashraf Z, Iqbal Z, Raza H, Hassan M, Jabeen E, Bais A. A Practical Method of
N
‐Methylpyrrole Disulfonamides Synthesis: Computational Studies, Carbonic Anhydrase Inhibition and Electrochemical DNA Binding Investigations. ChemistrySelect 2021. [DOI: 10.1002/slct.202101854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mujahid Abas
- Department of Chemistry Allama Iqbal Open University Islamabad 44000 Pakistan
| | - Yasir Nazir
- Department of Chemistry Allama Iqbal Open University Islamabad 44000 Pakistan
- Faculty of Sciences Department of Chemistry University of Sialkot 51300 Pakistan
| | - Zaman Ashraf
- Department of Chemistry Allama Iqbal Open University Islamabad 44000 Pakistan
| | - Zafar Iqbal
- Department of Chemistry Allama Iqbal Open University Islamabad 44000 Pakistan
| | - Hussain Raza
- Department of Biological Sciences College of Natural Sciences Kongju National University Gongju 314-701 Korea
| | - Mubashir Hassan
- Institute of Molecular Biology and Biotechnology The University of Lahore Lahore Pakistan
| | - Erum Jabeen
- Department of Chemistry Allama Iqbal Open University Islamabad 44000 Pakistan
| | - Abdul Bais
- Department of Chemistry Allama Iqbal Open University Islamabad 44000 Pakistan
| |
Collapse
|
10
|
Majeed Ganai A, Khan Pathan T, Hampannavar GA, Pawar C, Obakachi VA, Kushwaha B, Deshwar Kushwaha N, Karpoormath R. Recent Advances on the s‐Triazine Scaffold with Emphasis on Synthesis, Structure‐Activity and Pharmacological Aspects: A Concise Review. ChemistrySelect 2021. [DOI: 10.1002/slct.202004591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Ab Majeed Ganai
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Tabasum Khan Pathan
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Girish A. Hampannavar
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
- Department of Pharmaceutical Chemistry K.L.E.U's College of Pharmacy Vidyanagar, Hubli 580031, Karnataka India
| | - Chandrakant Pawar
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Vincent A. Obakachi
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Babita Kushwaha
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Narva Deshwar Kushwaha
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| |
Collapse
|
11
|
Moreno LM, Quiroga J, Abonia R, Lauria A, Martorana A, Insuasty H, Insuasty B. Synthesis, biological evaluation, and in silico studies of novel chalcone- and pyrazoline-based 1,3,5-triazines as potential anticancer agents. RSC Adv 2020; 10:34114-34129. [PMID: 35519030 PMCID: PMC9056798 DOI: 10.1039/d0ra06799g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/09/2020] [Indexed: 12/17/2022] Open
Abstract
A novel series of triazin-chalcones (7,8)a-g and triazin-N-(3,5-dichlorophenyl)pyrazolines (9,10)a-g were synthesized and evaluated for their anticancer activity against nine different cancer strains. Triazine ketones 5 and 6 were synthesized from the cyanuric chloride 1 by using stepwise nucleophilic substitution of the chlorine atom. These ketones were subsequently subjected to a Claisen-Schmidt condensation reaction with aromatic aldehydes affording chalcones (7,8)a-g. Then, N-(3,5-dichlorophenyl)pyrazolines (9,10)a-g were obtained by cyclocondensation reactions of the respective chalcones (7,8)a-g with 3,5-dichlorophenylhydrazine. Among all the evaluated compounds, chalcones 7d,g and 8g exhibited more potent in vitro anticancer activity, with outstanding GI50 values ranging from 0.422 to 14.9 μM and LC50 values ranging from 5.08 μM to >100 μM. In silico studies, for both ligand- and structure-based, were executed to explore the inhibitory nature of chalcones and triazine derivatives. The results suggested that the evaluated compounds could act as modulators of the human thymidylate synthase enzyme.
Collapse
Affiliation(s)
- Leydi M Moreno
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle A.A. 25360 Cali Colombia
| | - Jairo Quiroga
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle A.A. 25360 Cali Colombia
- Center for Bioinformatics and Photonics-CIBioFI A.A. 25360 Cali Colombia
| | - Rodrigo Abonia
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle A.A. 25360 Cali Colombia
- Center for Bioinformatics and Photonics-CIBioFI A.A. 25360 Cali Colombia
| | - Antonino Lauria
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche "STEBICEF", Università di Palermo Viale delle Scienze Ed. 17 I-90128 Palermo Italy
| | - Annamaria Martorana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche "STEBICEF", Università di Palermo Viale delle Scienze Ed. 17 I-90128 Palermo Italy
| | - Henry Insuasty
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad de Nariño A.A. 1175 Pasto Colombia
| | - Braulio Insuasty
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle A.A. 25360 Cali Colombia
- Center for Bioinformatics and Photonics-CIBioFI A.A. 25360 Cali Colombia
| |
Collapse
|
12
|
Mishra CB, Tiwari M, Supuran CT. Progress in the development of human carbonic anhydrase inhibitors and their pharmacological applications: Where are we today? Med Res Rev 2020; 40:2485-2565. [PMID: 32691504 DOI: 10.1002/med.21713] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/14/2020] [Accepted: 07/03/2020] [Indexed: 12/21/2022]
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) are widely distributed metalloenzymes in both prokaryotes and eukaryotes. They efficiently catalyze the reversible hydration of carbon dioxide to bicarbonate and H+ ions and play a crucial role in regulating many physiological processes. CAs are well-studied drug target for various disorders such as glaucoma, epilepsy, sleep apnea, and high altitude sickness. In the past decades, a large category of diverse families of CA inhibitors (CAIs) have been developed and many of them showed effective inhibition toward specific isoforms, and effectiveness in pathological conditions in preclinical and clinical settings. The discovery of isoform-selective CAIs in the last decade led to diminished side effects associated with off-target isoforms inhibition. The many new classes of such compounds will be discussed in the review, together with strategies for their development. Pharmacological advances of the newly emerged CAIs in diseases not usually associated with CA inhibition (neuropathic pain, arthritis, cerebral ischemia, and cancer) will also be discussed.
Collapse
Affiliation(s)
- Chandra B Mishra
- Department of Bioorganic Chemistry, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India.,Department of Pharmaceutical Chemistry, College of Pharmacy, Sookmyung Women's University, Seoul, South Korea
| | - Manisha Tiwari
- Department of Bioorganic Chemistry, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
13
|
Szafrański K, Sławiński J, Tomorowicz Ł, Kawiak A. Synthesis, Anticancer Evaluation and Structure-Activity Analysis of Novel ( E)- 5-(2-Arylvinyl)-1,3,4-oxadiazol-2-yl)benzenesulfonamides. Int J Mol Sci 2020; 21:E2235. [PMID: 32210190 PMCID: PMC7139731 DOI: 10.3390/ijms21062235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 01/22/2023] Open
Abstract
To learn more about the structure-activity relationships of (E)-3-(5-styryl-1,3,4-oxadiazol-2-yl)benzenesulfonamide derivatives, which in our previous research displayed promising in vitro anticancer activity, we have synthesized a group of novel (E)-5-[(5-(2-arylvinyl)-1,3,4-oxadiazol-2-yl)]-4-chloro-2-R1-benzenesulfonamides 7-36 as well as (E)-4-[5-styryl1,3,4-oxadiazol-2-yl]benzenesulfonamides 47-50 and (E)-2-(2,4-dichlorophenyl)-5-(2-arylvinyl)-1,3,4-oxadiazols 51-55. All target derivatives were evaluated for their anticancer activity on HeLa, HCT-116, and MCF-7 human tumor cell lines. The obtained results were analyzed in order to explain the influence of a structure of the 2-aryl-vinyl substituent and benzenesulfonamide scaffold on the anti-tumor activity. Compound 31, bearing 5-nitrothiophene moiety, exhibited the most potent anticancer activity against the HCT-116, MCF-7, and HeLa cell lines, with IC50 values of 0.5, 4, and 4.5 µM, respectively. Analysis of structure-activity relationship showed significant differences in activity depending on the substituent in position 3 of the benzenesulfonamide ring and indicated as the optimal meta position of the sulfonamide moiety relative to the oxadizole ring. In the next stage, chemometric analysis was performed basing on a set of computed molecular descriptors. Hierarchical cluster analysis was used to examine the internal structure of the obtained data and the quantitative structure-activity relationship (QSAR) analysis with multiple linear regression (MLR) method allowed for finding statistically significant models for predicting activity towards all three cancer cell lines.
Collapse
Affiliation(s)
- Krzysztof Szafrański
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland; (J.S.); (Ł.T.)
| | - Jarosław Sławiński
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland; (J.S.); (Ł.T.)
| | - Łukasz Tomorowicz
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland; (J.S.); (Ł.T.)
| | - Anna Kawiak
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, ul. Abrahama 58, 80-307 Gdańsk, Poland;
| |
Collapse
|
14
|
Jiang C, Shi J, Liao L, Zhang L, Liu J, Wang Y, Lao Y, Zhang J. 5‐[2‐(N‐(Substituted phenyl)acetamide)]amino‐1,3,4‐thiadiazole‐2‐sulfonamides as Selective Carbonic Anhydrase II Inhibitors with Neuroprotective Effects. ChemMedChem 2020; 15:705-715. [DOI: 10.1002/cmdc.201900703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/15/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Caibao Jiang
- Department of Medicinal Chemistry School of Pharmaceutical Science Sun Yat-sen University Guangzhou 510006 China
| | - Jinguo Shi
- Department of Medicinal Chemistry School of Pharmaceutical Science Sun Yat-sen University Guangzhou 510006 China
| | - Liping Liao
- Department of Medicinal Chemistry School of Pharmaceutical Science Sun Yat-sen University Guangzhou 510006 China
| | - Liantao Zhang
- Department of Medicinal Chemistry School of Pharmaceutical Science Sun Yat-sen University Guangzhou 510006 China
| | - Jiayong Liu
- Department of Medicinal Chemistry School of Pharmaceutical Science Sun Yat-sen University Guangzhou 510006 China
| | - Yang Wang
- Department of Medicinal Chemistry School of Pharmaceutical Science Sun Yat-sen University Guangzhou 510006 China
| | - Yaoqiang Lao
- Department of Medicinal Chemistry School of Pharmaceutical Science Sun Yat-sen University Guangzhou 510006 China
| | - Jingxia Zhang
- Department of Medicinal Chemistry School of Pharmaceutical Science Sun Yat-sen University Guangzhou 510006 China
| |
Collapse
|
15
|
Vats L, Kumar R, Bua S, Nocentini A, Gratteri P, Supuran CT, Sharma PK. Continued exploration and tail approach synthesis of benzenesulfonamides containing triazole and dual triazole moieties as carbonic anhydrase I, II, IV and IX inhibitors. Eur J Med Chem 2019; 183:111698. [PMID: 31539777 DOI: 10.1016/j.ejmech.2019.111698] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 12/01/2022]
Abstract
A library of twenty two novel 1,2,3-triazole benzenesulfonamides incorporating thiosemicarbazide, 5(4H)-thione-1,2,4-triazole and variously substituted phenacyl appended 1,2,4-triazole as tail were designed, synthesized and assessed for their efficacy as inhibitors against carbonic anhydrase human (h) isoforms hCA I, II, IV and IX. The physiologically important and off-target cytosolic isoform hCA I was weakly inhibited by most of the newly synthesized sulfonamides while the glaucoma associated isoform hCA II was moderately inhibited with KIs spanning in low nanomolar range (KI = 8.0 nM-0.903 μM). The membrane bound isoform hCA IV, which is known to be involved in glaucoma and retinitis pigmentosa among others, was strongly inhibited by all newly synthesized sulfonamides out of which nine compounds inhibited isoform hCA IV even more effectively as compared to standard drug acetazolamide (AAZ). The membrane bound isoform hCA IX, associated with growth of tumor cells, was moderately inhibited with KIs ranging between 51 nM-3.198 μM. The effect of appending variously substituted tails on heterocyclic moieties over inhibition potential of synthesized sulfonamides is also disclosed which can be of further interest in pharmacological studies for exploring synthesis of isoform selective inhibitors.
Collapse
Affiliation(s)
- Lalit Vats
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India; Government College Bherian, Pehowa, Kurukshetra, Haryana, 136128, India
| | - Rajiv Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India; Ch. Mani Ram Godara Government College for Women, Bhodia Khera, Fatehabad, Haryana, 125050, India
| | - Silvia Bua
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Firenze, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Alessio Nocentini
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Paola Gratteri
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Firenze, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| | - Pawan K Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
| |
Collapse
|
16
|
Mermer A, Demirbas N, Cakmak U, Colak A, Demirbas A, Alagumuthu M, Arumugam S. Discovery of Novel Sulfonamide‐Based 5‐Arylidenerhodanines as Effective Carbonic Anhydrase (II) Inhibitors: Microwave‐Assisted and Ultrasound‐Assisted One‐Pot Four‐Component Synthesis, Molecular Docking, and Anti‐CA II Screening Studies. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3635] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Arif Mermer
- Department of ChemistryKaradeniz Technical University Trabzon Turkey
| | - Neslihan Demirbas
- Department of ChemistryKaradeniz Technical University Trabzon Turkey
| | - Ummuhan Cakmak
- Department of ChemistryKaradeniz Technical University Trabzon Turkey
| | - Ahmet Colak
- Department of ChemistryKaradeniz Technical University Trabzon Turkey
| | - Ahmet Demirbas
- Department of ChemistryKaradeniz Technical University Trabzon Turkey
| | | | - Sivakumar Arumugam
- Department of Biotechnology, School of Bio‐Science and TechnologyVIT Vellore India
| |
Collapse
|
17
|
Fang WY, Ravindar L, Rakesh KP, Manukumar HM, Shantharam CS, Alharbi NS, Qin HL. Synthetic approaches and pharmaceutical applications of chloro-containing molecules for drug discovery: A critical review. Eur J Med Chem 2019; 173:117-153. [PMID: 30995567 PMCID: PMC7111421 DOI: 10.1016/j.ejmech.2019.03.063] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/30/2019] [Accepted: 03/31/2019] [Indexed: 02/08/2023]
Abstract
At present more than 250 FDA approved chlorine containing drugs were available in the market and many pharmaceutically important drug candidates in pre-clinical trials. Thus, it is quite obvious to expect that in coming decades there will be an even greater number of new chlorine-containing pharmaceuticals in market. Chlorinated compounds represent the family of compounds promising for use in medicinal chemistry. This review describes the recent advances in the synthesis of chlorine containing heterocyclic compounds as diverse biological agents and drugs in the pharmaceutical industries for the inspiration of the discovery and development of more potent and effective chlorinated drugs against numerous death-causing diseases.
Collapse
Affiliation(s)
- Wan-Yin Fang
- School of Chemistry, Chemical Engineering and Life Science, School of Materials Science and Engineering, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, PR China
| | - L Ravindar
- School of Chemistry, Chemical Engineering and Life Science, School of Materials Science and Engineering, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, PR China
| | - K P Rakesh
- School of Chemistry, Chemical Engineering and Life Science, School of Materials Science and Engineering, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, PR China.
| | - H M Manukumar
- Department of Chemistry, Sri Jayachamarajendra College of Engineering, Mysuru, 570006, Karnataka, India
| | - C S Shantharam
- Department of Chemistry, Pooja Bhagavath Memorial Mahajana Education Centre, Mysuru, 570016, Karnataka, India
| | - Njud S Alharbi
- Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Science, School of Materials Science and Engineering, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, PR China.
| |
Collapse
|
18
|
Design, synthesis, and biological evaluation of polyphenols with 4,6-diphenylpyrimidin-2-amine derivatives for inhibition of Aurora kinase A. ACTA ACUST UNITED AC 2019; 27:265-281. [PMID: 31154600 DOI: 10.1007/s40199-019-00272-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/08/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND Several 4,6-diarylpyrimidin-2-amine derivatives show anticancer properties. However, their mode of action is not fully characterized. To develop potent anticancer chemotherapeutic agents, we designed and synthesized 25 4,6-diphenylpyrimidin-2-amine derivatives containing a guanidine moiety. METHODS Clonogenic long-term survival assays were performed to screen anticancer compounds. To derive the structural conditions showing good cytotoxicities against cancer cells, quantitative structure-activity relationships (QSAR) were calculated. Biological activities were determined by flow cytometry for cell cycle analysis and by immunoblot analysis for the detection of Aurora kinase A (AURKA) activity. Because 2-(2-Amino-6-(2,4-dimethoxyphenyl)pyrimidin-4-yl) phenol (derivative 12) selectively inhibited AURKA activity from the kinome assay, in silico docking experiments were performed to elucidate the molecular binding mode between derivative 12 and AURKA. RESULTS The pharmacophores were derived based on the QSAR calculations. Derivative 12 inhibited AURKA activity and reduced phosphorylation of AURKA at Thr283 in HCT116 human colon cancer cells. Derivative 12 caused the accumulation of the G2/M phase of the cell cycle and triggered the cleavages of caspase-3, caspase -7, and poly(ADP-ribose) polymerase. The binding energies of 30 apo-AURKA - derivative 12 complexes obtained from in silico docking ranged from -16.72 to -11.63 kcal/mol. CONCLUSIONS Derivative 12 is an AURKA inhibitor, which reduces clonogenicity, arrests the cell cycle at the G2/M phase, and induces caspase-mediated apoptotic cell death in HCT116 human colon cancer cells. In silico docking demonstrated that derivative 12 binds to AURKA well. The structure-activity relationship calculations showed hydrophobic substituents and 1-naphthalenyl group at the R2 position increased the activity. The existence of an H-bond acceptor at C-2 of the R1 position increased the activity, too. Graphical abstract Derivative 12 inhibits Aurora kinase A activity and causes the G2/M phase arrest of the cell cycle.
Collapse
|
19
|
Synthesis, X-Ray Crystal Structures, and Preliminary Antiproliferative Activities of New s-Triazine-hydroxybenzylidene Hydrazone Derivatives. J CHEM-NY 2019. [DOI: 10.1155/2019/9403908] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We herein report a new small library of Schiff-base compounds that encompasses s-triazine and (2 or 4)-hydroxylbenzylidene derivatives. These compounds were synthesized through a hydrazone linkage connecting both the s-triazine and hydroxybenzylidene derivatives. The synthetic strategy adopted allowed the synthesis of the target compounds with excellent yields and purities as observed from their NMR (1H and 13C) and elemental analysis. Furthermore, 4f, 5b, and 5f were further confirmed by X-ray single crystal diffraction technique. The preliminary antiproliferative activities for the synthesized compounds were tested against two different cancer cell lines including breast cancer (MCF-7) and colon cancer (HCT-116). From the eighteen compounds, which have been examined, only two derivatives having piperidine moiety showed more selectivity against the two cell lines MCF-7 and HCT-116, while the others showed very weak activity. The position of the hydroxyl group in the benzylidine ring and the substituent on the s-triazine moiety has great effect on the activity of the prepared compounds. The IC50 values for the two derivatives 4a and 5a evaluated against breast cancer cells, very close to those for the chemotherapeutic drug cisplatin, are 27 µM (13.3 µg/mL), 17 µM (8.4 µg/mL), and 20 µM (6 µg/mL) for 4a, 5a, and cisplatin, respectively. These results propose the preliminary antiproliferative activity of these two derivatives may deserve further consideration for development of new derivatives as potent anticancer agents.
Collapse
|
20
|
Sharma V, Kumar R, Bua S, Supuran CT, Sharma PK. Synthesis of novel benzenesulfonamide bearing 1,2,3-triazole linked hydroxy-trifluoromethylpyrazolines and hydrazones as selective carbonic anhydrase isoforms IX and XII inhibitors. Bioorg Chem 2019; 85:198-208. [DOI: 10.1016/j.bioorg.2019.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/30/2018] [Accepted: 01/01/2019] [Indexed: 12/28/2022]
|
21
|
Mermer A, Demirbas N, Colak A, Demir EA, Kulabas N, Demirbas A. One‐pot, Four‐Component Green Synthesis, Carbonic Anhydrase II Inhibition and Docking Studies of 5‐Arylidenerhodanines. ChemistrySelect 2018. [DOI: 10.1002/slct.201802677] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Arif Mermer
- Karadeniz Technical UniversityDepartment of Chemistry 61080 Trabzon TURKEY
| | - Neslihan Demirbas
- Karadeniz Technical UniversityDepartment of Chemistry 61080 Trabzon TURKEY
| | - Ahmet Colak
- Karadeniz Technical UniversityDepartment of Chemistry 61080 Trabzon TURKEY
| | | | - Necla Kulabas
- Department of Pharmaceutical ChemistryFaculty of PharmacyMarmara University Haydarpaşa 34668 İstanbul TURKEY
| | - Ahmet Demirbas
- Karadeniz Technical UniversityDepartment of Chemistry 61080 Trabzon TURKEY
| |
Collapse
|
22
|
Awasthi S, Nair NN. Exploring high‐dimensional free energy landscapes of chemical reactions. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1398] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Shalini Awasthi
- Department of Chemistry Indian Institute of Technology Kanpur Uttar Pradesh India
| | - Nisanth N. Nair
- Department of Chemistry Indian Institute of Technology Kanpur Uttar Pradesh India
| |
Collapse
|
23
|
Poli G, Jha V, Martinelli A, Supuran CT, Tuccinardi T. Development of a Fingerprint-Based Scoring Function for the Prediction of the Binding Mode of Carbonic Anhydrase II Inhibitors. Int J Mol Sci 2018; 19:ijms19071851. [PMID: 29937490 PMCID: PMC6073570 DOI: 10.3390/ijms19071851] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 06/16/2018] [Accepted: 06/20/2018] [Indexed: 11/16/2022] Open
Abstract
Carbonic anhydrase II (CAII) is a zinc-containing metalloenzyme whose aberrant activity is associated with various diseases such as glaucoma, osteoporosis, and different types of tumors; therefore, the development of CAII inhibitors, which can represent promising therapeutic agents for the treatment of these pathologies, is a current topic in medicinal chemistry. Molecular docking is a commonly used tool in structure-based drug design of enzyme inhibitors. However, there is still a need for improving docking reliability, especially in terms of scoring functions, since the complex pattern of energetic contributions driving ligand–protein binding cannot be properly described by mathematical functions only including approximated energetic terms. Here we report a novel CAII-specific fingerprint-based (IFP) scoring function developed according to the ligand–protein interactions detected in the CAII-inhibitor co-crystal structures of the most potent CAII ligands. Our IFP scoring function outperformed the ability of Autodock4 scoring function to identify native-like docking poses of CAII inhibitors and thus allowed a considerable improvement of docking reliability. Moreover, the ligand–protein interaction fingerprints showed a useful application in the binding mode analysis of structurally diverse CAII ligands.
Collapse
Affiliation(s)
- Giulio Poli
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| | - Vibhu Jha
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| | | | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Sesto Fiorentino, 50019 Florence, Italy.
| | | |
Collapse
|
24
|
Pogorzelska A, Sławiński J, Kawiak A, Żołnowska B, Chojnacki J, Stasiłojć G, Ulenberg S, Szafrański K, Bączek T. Synthesis, molecular structure, and metabolic stability of new series of N'-(2-alkylthio-4-chloro-5-methylbenzenesulfonyl)-1-(5-phenyl-1H-pyrazol-1-yl)amidine as potential anti-cancer agents. Eur J Med Chem 2018; 155:670-680. [PMID: 29936354 DOI: 10.1016/j.ejmech.2018.06.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/28/2018] [Accepted: 06/12/2018] [Indexed: 11/26/2022]
Abstract
A series of new N'-(2-alkylthio-4-chloro-5-methylbenzenesulfonyl)-1-(5-phenyl-1H-pyrazol-1-yl)amidine derivatives have been synthesized and evaluated in vitro by MTT assays for their antiproliferative activity against cell lines of colon cancer HCT-116, cervical cancer HeLa and breast cancer MCF-7. The studied compounds display selective activity mainly against HCT-116 and HeLa cells. Thus, five compounds show selective cytotoxic effect against HCT-116 (IC50 = 3-10 μM) and HeLa (IC50 = 7 μM). Importantly, the noticed values of IC50 for four compounds are almost 4-fold lower for HeLa than non-malignant HaCaT cells. More-in-depth biological research revealed that the treatment of HCT-116 and HeLa with active compound resulted in increased numbers of cells in sub-G1 phase in a time dependent manner, while non-active derivative does not influence cell cycle. Metabolic stability assays using liver microsomes and NADPH provide important information on compounds susceptibility to phase 1 biotransformation reactions.
Collapse
Affiliation(s)
- Aneta Pogorzelska
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland.
| | - Jarosław Sławiński
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland.
| | - Anna Kawiak
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Ul. Abrahama 58, 80-307, Gdańsk, Poland; Laboratory of Human Physiology, Medical University of Gdańsk, Ul. Tuwima 15, 80-210, Gdańsk, Poland
| | - Beata Żołnowska
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - Jarosław Chojnacki
- Department of Inorganic Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Grzegorz Stasiłojć
- Laboratory of Cell Biology, Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdańsk, Ul. Dębinki 1, Gdańsk, 80-211, Poland
| | - Szymon Ulenberg
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - Krzysztof Szafrański
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| |
Collapse
|
25
|
Vats L, Sharma V, Angeli A, Kumar R, Supuran CT, Sharma PK. Synthesis of novel 4-functionalized 1,5-diaryl-1,2,3-triazoles containing benzenesulfonamide moiety as carbonic anhydrase I, II, IV and IX inhibitors. Eur J Med Chem 2018; 150:678-686. [PMID: 29571155 DOI: 10.1016/j.ejmech.2018.03.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 01/06/2023]
Abstract
The design, synthesis and biological evaluation of a library of 1,2,3-triazole carboxylates incorporating carboxylic acid, hydroxymethyl, carboxylic acid hydrazide, carboxamide and benzenesulfonamide moieties is disclosed. All the novel compounds were investigated for their inhibition potential against carbonic anhydrase (CA, EC 4.2.1.1) human (h) isoforms hCA I, II, IV and IX, well established drug targets. The cytosolic isoform hCA I was inhibited with Ki's ranging between 53.2 nM and 7.616 μM whereas the glaucoma associated cytosolic isoform hCA II was inhibited with Ki's in the range 21.8 nM-0.807 μM. The membrane bound isoform hCA IV, involved in glaucoma and retinitis pigmentosa among others, was effectively inhibited by some of these compounds with Ki < 60 nM, better than the reference drug acetazolamide (AAZ). The tumor associated isoform hCA IX, a recently validated antitumor/antimetastatic drug target, was also effectively inhibited by some of the new sulfonamides, which possess thus the potential to be used as tools for exploring in more details the selective inhibition of hCAs involved in various pathologies.
Collapse
Affiliation(s)
- Lalit Vats
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Vikas Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Andrea Angeli
- Università degli Studi di Firenze, Laboratorio di Chimica Bioinorganica, Rm 188, and Neurofarba Department, Sezione di Scienze Farmaceutiche, Via U. Schiff 6, I-50019, Sesto Fiorentino (Firenze), Italy
| | - Rajiv Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Laboratorio di Chimica Bioinorganica, Rm 188, and Neurofarba Department, Sezione di Scienze Farmaceutiche, Via U. Schiff 6, I-50019, Sesto Fiorentino (Firenze), Italy.
| | - Pawan K Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
| |
Collapse
|