1
|
Jain SS, McLaughlin EC, Perron GG, Uppuladinne M, Kim S, Gindinova K, Lundgren SH, Elmelech L, Sonavane U, Joshi R, Narasimhulu K. Inhibition of xpt Guanine Riboswitch by a synthetic nucleoside analog. PLoS One 2025; 20:e0322308. [PMID: 40323922 PMCID: PMC12052177 DOI: 10.1371/journal.pone.0322308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/18/2025] [Indexed: 05/07/2025] Open
Abstract
Riboswitches are structured elements predominantly found in the 5'-untranslated region of many bacterial mRNA. These noncoding RNA regions play a vital role in bacterial metabolism and overall function. Each riboswitch binds to a specific small molecule and causes conformational changes in the mRNA leading to regulation of transcription or translation. In this work, we have synthesized SK4, a novel nucleoside analog that binds to the guanine riboswitch mRNA of the xanthine phosphoribosyl transferase gene in Bacillus subtilis and terminates transcription of the riboswitch mRNA to a greater extent than the native ligand guanine. Molecular dynamics simulations of SK4 with riboswitch mRNA reveal an overall stable complex with additional bonding interactions in comparison to guanine. Our work with SK4 demonstrates that specific genes in bacteria can be effectively controlled by ligand analogs, providing an alternative mechanism to regulate the function of bacteria.
Collapse
Affiliation(s)
- Swapan S. Jain
- Chemistry and Biochemistry Program, Bard College, New York, United States of America
| | - Emily C. McLaughlin
- Chemistry and Biochemistry Program, Bard College, New York, United States of America
| | - Gabriel G. Perron
- Center for Genomics and Systems Biology, New York University, New York, United States of America
- Biology Program, Bard College, New York, United States of America
| | - Mallikarjunachari Uppuladinne
- High Performance Computing - Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Pune, Maharashtra, India
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, India
| | - Seoyoung Kim
- Chemistry and Biochemistry Program, Bard College, New York, United States of America
| | - Katherina Gindinova
- Chemistry and Biochemistry Program, Bard College, New York, United States of America
| | - Silvie H. Lundgren
- Chemistry and Biochemistry Program, Bard College, New York, United States of America
| | - Liad Elmelech
- Chemistry and Biochemistry Program, Bard College, New York, United States of America
| | - Uddhavesh Sonavane
- High Performance Computing - Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Pune, Maharashtra, India
| | - Rajendra Joshi
- High Performance Computing - Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Pune, Maharashtra, India
| | - Korrapati Narasimhulu
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, India
| |
Collapse
|
2
|
Stephen C, Palmer D, Mishanina TV. Opportunities for Riboswitch Inhibition by Targeting Co-Transcriptional RNA Folding Events. Int J Mol Sci 2024; 25:10495. [PMID: 39408823 PMCID: PMC11476745 DOI: 10.3390/ijms251910495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Antibiotic resistance is a critical global health concern, causing millions of prolonged bacterial infections every year and straining our healthcare systems. Novel antibiotic strategies are essential to combating this health crisis and bacterial non-coding RNAs are promising targets for new antibiotics. In particular, a class of bacterial non-coding RNAs called riboswitches has attracted significant interest as antibiotic targets. Riboswitches reside in the 5'-untranslated region of an mRNA transcript and tune gene expression levels in cis by binding to a small-molecule ligand. Riboswitches often control expression of essential genes for bacterial survival, making riboswitch inhibitors an exciting prospect for new antibacterials. Synthetic ligand mimics have predominated the search for new riboswitch inhibitors, which are designed based on static structures of a riboswitch's ligand-sensing aptamer domain or identified by screening a small-molecule library. However, many small-molecule inhibitors that bind an isolated riboswitch aptamer domain with high affinity in vitro lack potency in vivo. Importantly, riboswitches fold and respond to the ligand during active transcription in vivo. This co-transcriptional folding is often not considered during inhibitor design, and may explain the discrepancy between a low Kd in vitro and poor inhibition in vivo. In this review, we cover advances in riboswitch co-transcriptional folding and illustrate how intermediate structures can be targeted by antisense oligonucleotides-an exciting new strategy for riboswitch inhibitor design.
Collapse
Affiliation(s)
| | | | - Tatiana V. Mishanina
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA (D.P.)
| |
Collapse
|
3
|
Sun S, Gao L. Contrastive pre-training and 3D convolution neural network for RNA and small molecule binding affinity prediction. Bioinformatics 2024; 40:btae155. [PMID: 38507691 PMCID: PMC11007238 DOI: 10.1093/bioinformatics/btae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/23/2024] [Accepted: 03/18/2024] [Indexed: 03/22/2024] Open
Abstract
MOTIVATION The diverse structures and functions inherent in RNAs present a wealth of potential drug targets. Some small molecules are anticipated to serve as leading compounds, providing guidance for the development of novel RNA-targeted therapeutics. Consequently, the determination of RNA-small molecule binding affinity is a critical undertaking in the landscape of RNA-targeted drug discovery and development. Nevertheless, to date, only one computational method for RNA-small molecule binding affinity prediction has been proposed. The prediction of RNA-small molecule binding affinity remains a significant challenge. The development of a computational model is deemed essential to effectively extract relevant features and predict RNA-small molecule binding affinity accurately. RESULTS In this study, we introduced RLaffinity, a novel deep learning model designed for the prediction of RNA-small molecule binding affinity based on 3D structures. RLaffinity integrated information from RNA pockets and small molecules, utilizing a 3D convolutional neural network (3D-CNN) coupled with a contrastive learning-based self-supervised pre-training model. To the best of our knowledge, RLaffinity was the first deep learning based method for the prediction of RNA-small molecule binding affinity. Our experimental results exhibited RLaffinity's superior performance compared to baseline methods, revealed by all metrics. The efficacy of RLaffinity underscores the capability of 3D-CNN to accurately extract both global pocket information and local neighbor nucleotide information within RNAs. Notably, the integration of a self-supervised pre-training model significantly enhanced predictive performance. Ultimately, RLaffinity was also proved as a potential tool for RNA-targeted drugs virtual screening. AVAILABILITY AND IMPLEMENTATION https://github.com/SaisaiSun/RLaffinity.
Collapse
Affiliation(s)
- Saisai Sun
- School of Computer Science and Technology, Xidian University, No.266 Xinglong Section of Xi Feng Road, Xi’an, Shaanxi, 710126, China
| | - Lin Gao
- School of Computer Science and Technology, Xidian University, No.266 Xinglong Section of Xi Feng Road, Xi’an, Shaanxi, 710126, China
| |
Collapse
|
4
|
Chauvier A, Walter NG. Regulation of bacterial gene expression by non-coding RNA: It is all about time! Cell Chem Biol 2024; 31:71-85. [PMID: 38211587 DOI: 10.1016/j.chembiol.2023.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024]
Abstract
Commensal and pathogenic bacteria continuously evolve to survive in diverse ecological niches by efficiently coordinating gene expression levels in their ever-changing environments. Regulation through the RNA transcript itself offers a faster and more cost-effective way to adapt than protein-based mechanisms and can be leveraged for diagnostic or antimicrobial purposes. However, RNA can fold into numerous intricate, not always functional structures that both expand and obscure the plethora of roles that regulatory RNAs serve within the cell. Here, we review the current knowledge of bacterial non-coding RNAs in relation to their folding pathways and interactions. We posit that co-transcriptional folding of these transcripts ultimately dictates their downstream functions. Elucidating the spatiotemporal folding of non-coding RNAs during transcription therefore provides invaluable insights into bacterial pathogeneses and predictive disease diagnostics. Finally, we discuss the implications of co-transcriptional folding andapplications of RNAs for therapeutics and drug targets.
Collapse
Affiliation(s)
- Adrien Chauvier
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Wu Y, Zhu L, Zhang Y, Xu W. Multidimensional Applications and Challenges of Riboswitches in Biosensing and Biotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304852. [PMID: 37658499 DOI: 10.1002/smll.202304852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/15/2023] [Indexed: 09/03/2023]
Abstract
Riboswitches have received significant attention over the last two decades for their multiple functionalities and great potential for applications in various fields. This article highlights and reviews the recent advances in biosensing and biotherapy. These fields involve a wide range of applications, such as food safety detection, environmental monitoring, metabolic engineering, live cell imaging, wearable biosensors, antibacterial drug targets, and gene therapy. The discovery, origin, and optimization of riboswitches are summarized to help readers better understand their multidimensional applications. Finally, this review discusses the multidimensional challenges and development of riboswitches in order to further expand their potential for novel applications.
Collapse
Affiliation(s)
- Yifan Wu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Yangzi Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| |
Collapse
|
6
|
Hamal Dhakal S, Kavita K, Panchapakesan SSS, Roth A, Breaker RR. 8-oxoguanine riboswitches in bacteria detect and respond to oxidative DNA damage. Proc Natl Acad Sci U S A 2023; 120:e2307854120. [PMID: 37748066 PMCID: PMC10556655 DOI: 10.1073/pnas.2307854120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/25/2023] [Indexed: 09/27/2023] Open
Abstract
Riboswitches rely on structured aptamer domains to selectively sense their target ligands and regulate gene expression. However, some riboswitch aptamers in bacteria carry mutations in their otherwise strictly conserved binding pockets that change ligand specificities. The aptamer domain of a riboswitch class originally found to selectively sense guanine forms a three-stem junction that has since been observed to exploit numerous alterations in its ligand-binding pocket. These rare variants have modified their ligand specificities to sense other purines or purine derivatives, including adenine, 2'-deoxyguanosine (three classes), and xanthine. Herein, we report the characteristics of a rare variant that is narrowly distributed in the Paenibacillaceae family of bacteria. Known representatives are always associated with genes encoding 8-oxoguanine deaminase. As predicted from this gene association, these variant riboswitches tightly bind 8-oxoguanine (8-oxoG), strongly discriminate against other purine derivatives, and function as genetic "ON" switches. Following exposure of cells to certain oxidative stresses, a representative 8-oxoG riboswitch activates gene expression, likely caused by the accumulation of 8-oxoG due to oxidative damage to G nucleobases in DNA, RNA, and the nucleotide pool. Furthermore, an engineered version of the variant aptamer was prepared that exhibits specificity for 8-oxoadenine, further demonstrating that RNA aptamers can acquire mutations that expand their ability to detect and respond to oxidative damage.
Collapse
Affiliation(s)
- Siddhartha Hamal Dhakal
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT06511-8103
| | - Kumari Kavita
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT06511-8103
| | | | - Adam Roth
- HHMI, Yale University, New Haven, CT06511-8103
| | - Ronald R. Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT06511-8103
- HHMI, Yale University, New Haven, CT06511-8103
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06511-8103
| |
Collapse
|
7
|
Ellinger E, Chauvier A, Romero RA, Liu Y, Ray S, Walter NG. Riboswitches as therapeutic targets: promise of a new era of antibiotics. Expert Opin Ther Targets 2023; 27:433-445. [PMID: 37364239 PMCID: PMC10527229 DOI: 10.1080/14728222.2023.2230363] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/13/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
INTRODUCTION The growth of antibiotic resistance among bacterial pathogens is an impending global threat that can only be averted through the development of novel antibacterial drugs. A promising answer could be the targeting of riboswitches, structured RNA elements found almost exclusively in bacteria. AREAS COVERED This review examines the potential of riboswitches as novel antibacterial drug targets. The limited mechanisms of action of currently available antibiotics are summarized, followed by a delineation of the functional mechanisms of riboswitches. We then discuss the potential for developing novel approaches that target paradigmatic riboswitches in the context of their bacterial gene expression machinery. EXPERT OPINION We highlight potential advantages of targeting riboswitches in their functional form, embedded within gene expression complexes critical for bacterial survival. We emphasize the benefits of this approach, including potentially higher species specificity and lower side effects.
Collapse
Affiliation(s)
- Emily Ellinger
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Adrien Chauvier
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Rosa A. Romero
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Yichen Liu
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Sujay Ray
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Nils G. Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Nuthanakanti A, Ariza-Mateos A, Serganov A. X-Ray Crystallography to Study Conformational Changes in a TPP Riboswitch. Methods Mol Biol 2023; 2568:213-232. [PMID: 36227571 DOI: 10.1007/978-1-0716-2687-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Conformational rearrangements are key to the function of riboswitches. These regulatory mRNA regions specifically bind to cellular metabolites using evolutionarily conserved sensing domains and modulate gene expression via adjacent downstream expression platforms, which carry gene expression signals. The regulation is achieved through the ligand-dependent formation of two alternative and mutually exclusive conformations involving the same RNA region. While X-ray crystallography cannot visualize dynamics of such dramatic conformational rearrangements, this method is pivotal to understand RNA-ligand interaction that stabilize the sensing domain and drive folding of the expression platform. X-ray crystallography can reveal local changes in RNA necessary for discriminating cognate and noncognate ligands. This chapter describes preparation of thiamine pyrophosphate riboswitch RNAs and its crystallization with different ligands, resulting in structures with local conformational changes in RNA. These structures can help to derive information on the dynamics of the RNA essential for specific binding to small molecules, with potential for using this information for developing designer riboswitch-ligand systems.
Collapse
Affiliation(s)
- Ashok Nuthanakanti
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ascensión Ariza-Mateos
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Alexander Serganov
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
9
|
Giarimoglou N, Kouvela A, Maniatis A, Papakyriakou A, Zhang J, Stamatopoulou V, Stathopoulos C. A Riboswitch-Driven Era of New Antibacterials. Antibiotics (Basel) 2022; 11:antibiotics11091243. [PMID: 36140022 PMCID: PMC9495366 DOI: 10.3390/antibiotics11091243] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 11/26/2022] Open
Abstract
Riboswitches are structured non-coding RNAs found in the 5′ UTR of important genes for bacterial metabolism, virulence and survival. Upon the binding of specific ligands that can vary from simple ions to complex molecules such as nucleotides and tRNAs, riboswitches change their local and global mRNA conformations to affect downstream transcription or translation. Due to their dynamic nature and central regulatory role in bacterial metabolism, riboswitches have been exploited as novel RNA-based targets for the development of new generation antibacterials that can overcome drug-resistance problems. During recent years, several important riboswitch structures from many bacterial representatives, including several prominent human pathogens, have shown that riboswitches are ideal RNA targets for new compounds that can interfere with their structure and function, exhibiting much reduced resistance over time. Most interestingly, mainstream antibiotics that target the ribosome have been shown to effectively modulate the regulatory behavior and capacity of several riboswitches, both in vivo and in vitro, emphasizing the need for more in-depth studies and biological evaluation of new antibiotics. Herein, we summarize the currently known compounds that target several main riboswitches and discuss the role of mainstream antibiotics as modulators of T-box riboswitches, in the dawn of an era of novel inhibitors that target important bacterial regulatory RNAs.
Collapse
Affiliation(s)
- Nikoleta Giarimoglou
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Adamantia Kouvela
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Alexandros Maniatis
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Athanasios Papakyriakou
- Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Ag. Paraskevi, 15341 Athens, Greece
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | | | - Constantinos Stathopoulos
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
- Correspondence: ; Tel.: +30-2610-997932
| |
Collapse
|
10
|
Bhat MA, Tüzün B, Alsaif NA, Ali Khan A, Naglah AM. Synthesis, characterization, molecular modeling against EGFR target and ADME/T analysis of novel purine derivatives of sulfonamides. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Antunes D, Santos LHS, Caffarena ER, Guimarães ACR. Bacterial 2'-Deoxyguanosine Riboswitch Classes as Potential Targets for Antibiotics: A Structure and Dynamics Study. Int J Mol Sci 2022; 23:ijms23041925. [PMID: 35216040 PMCID: PMC8872408 DOI: 10.3390/ijms23041925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 01/18/2023] Open
Abstract
The spread of antibiotic-resistant bacteria represents a substantial health threat. Current antibiotics act on a few metabolic pathways, facilitating resistance. Consequently, novel regulatory inhibition mechanisms are necessary. Riboswitches represent promising targets for antibacterial drugs. Purine riboswitches are interesting, since they play essential roles in the genetic regulation of bacterial metabolism. Among these, class I (2′-dG-I) and class II (2′-dG-II) are two different 2′-deoxyguanosine (2′-dG) riboswitches involved in the control of deoxyguanosine metabolism. However, high affinity for nucleosides involves local or distal modifications around the ligand-binding pocket, depending on the class. Therefore, it is crucial to understand these riboswitches’ recognition mechanisms as antibiotic targets. In this work, we used a combination of computational biophysics approaches to investigate the structure, dynamics, and energy landscape of both 2′-dG classes bound to the nucleoside ligands, 2′-deoxyguanosine, and riboguanosine. Our results suggest that the stability and increased interactions in the three-way junction of 2′-dG riboswitches were associated with a higher nucleoside ligand affinity. Also, structural changes in the 2′-dG-II aptamers enable enhanced intramolecular communication. Overall, the 2′-dG-II riboswitch might be a promising drug design target due to its ability to recognize both cognate and noncognate ligands.
Collapse
Affiliation(s)
- Deborah Antunes
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil;
- Correspondence:
| | - Lucianna H. S. Santos
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Ernesto Raul Caffarena
- Grupo de Biofísica Computacional e Modelagem Molecular, Programa de Computação Científica, Fiocruz, Rio de Janeiro 21040-360, Brazil;
| | - Ana Carolina Ramos Guimarães
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil;
| |
Collapse
|
12
|
Fusi GM, Lim Z, Lindell SD, Gomez‐Bengoa E, Gordon MR, Gazzola S. 2‐ and 6‐Purinylmagnesium Halides in Dichloromethane: Scope and New Insights into the Solvent Influence on the C−Mg Bond. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Giovanni M. Fusi
- Dipartimento di Scienza e Alta Tecnologia Università degli Studi dell'Insubria Via Valleggio 11 22100 Como Italy
| | - Zelong Lim
- Bayer AG Crop Science Division Industriepark Höchst 65926 Frankfurt am Main Germany
| | - Stephen D. Lindell
- Bayer AG Crop Science Division Industriepark Höchst 65926 Frankfurt am Main Germany
| | - Enrique Gomez‐Bengoa
- Department of Organic Chemistry I Faculty of Chemistry University of the Basque Country, UPV-EHU 20012 Donostia-San Sebastián Spain
| | - Malcolm R. Gordon
- Bayer AG Crop Science Division Industriepark Höchst 65926 Frankfurt am Main Germany
| | - Silvia Gazzola
- Dipartimento di Scienza e Alta Tecnologia Università degli Studi dell'Insubria Via Valleggio 11 22100 Como Italy
| |
Collapse
|
13
|
Hu Y, Hu S, Pan G, Wu D, Wang T, Yu C, Fawad Ansari M, Yadav Bheemanaboina RR, Cheng Y, Bai L, Zhou C, Zhang J. Potential antibacterial ethanol-bridged purine azole hybrids as dual-targeting inhibitors of MRSA. Bioorg Chem 2021; 114:105096. [PMID: 34147878 DOI: 10.1016/j.bioorg.2021.105096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 11/30/2022]
Abstract
A new class of antibacterial ethanol-bridged purine azole hybrids as potential dual-targeting inhibitors was developed. Bioactivity evaluation showed that some of the target compounds had prominent antibacterial activity against the tested bacteria, notably, metronidazole hybrid 3a displayed significant inhibitory activity against MRSA (MIC = 6 μM), and had no obvious toxicity on normal mammalian cells (RAW 264.7). In addition, compound 3a also did not induce drug resistance of MRSA obviously, even after fifteen passages. Molecular modeling studies showed that the highly active molecule 3a could insert into the base pairs of topoisomerase IA-DNA as well as topoisomerase IV-DNA through hydrogen bonding. Furthermore, a preliminary study on the antibacterial mechanism revealed that the active molecule 3a could rupture the bacterial membrane of MRSA and insert into MRSA DNA to block its replication, thus possibly exhibiting strong antibacterial activity. These results strongly indicated that the highly active hybrid 3a could be used as a potential dual-targeting inhibitor of MRSA for further development of valuable antimicrobials.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055 China
| | - Shunyou Hu
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055 China
| | - Guangxing Pan
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055 China
| | - Dong Wu
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055 China
| | - Tiansheng Wang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055 China
| | - Congwei Yu
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055 China
| | - Mohammad Fawad Ansari
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Rammohan R Yadav Bheemanaboina
- Sokol Institute for Pharmaceutical Life Sciences, Department of Chemistry and Biochemistry, Montclair State University, New Jersey 07043, USA
| | - Yu Cheng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Ligang Bai
- School of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Chenghe Zhou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Jiaheng Zhang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055 China.
| |
Collapse
|
14
|
Sui YF, Ansari MF, Fang B, Zhang SL, Zhou CH. Discovery of novel purinylthiazolylethanone derivatives as anti-Candida albicans agents through possible multifaceted mechanisms. Eur J Med Chem 2021; 221:113557. [PMID: 34087496 DOI: 10.1016/j.ejmech.2021.113557] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022]
Abstract
An unprecedented amount of fungal and fungal-like infections has recently brought about some of the most severe die-offs and extinctions due to fungal drug resistance. Aimed to alleviate the situation, new effort was made to develop novel purinylthiazolylethanone derivatives, which were expected to combat the fungal drug resistance. Some prepared purinylthiazolylethanone derivatives possessed satisfactory inhibitory action towards the tested fungi, among which compound 8c gave a MIC value of 1 μg/mL against C. albicans. The active molecule 8c was able to kill C. albicans with undetectable resistance as well as low hematotoxicity and cytotoxicity. Furthermore, it could hinder the growth of C. albicans biofilm, thus avoiding the occurrence of drug resistance. Mechanism research manifested that purinylthiazolylethanone derivative 8c led to damage of cell wall and membrane disruption, so protein leakage and the cytoplasmic membrane depolarization were observed. On this account, the activity of fungal lactate dehydrogenase was reduced and metabolism was impeded. Meanwhile, the increased levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) disordered redox equilibrium, giving rise to oxidative damage to fungal cells and fungicidal effect.
Collapse
Affiliation(s)
- Yan-Fei Sui
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Bo Fang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators As Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing, 401331, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
15
|
Liang J, Fu Y, Bao X, Ou L, Sang T, Yuan Y, Huo C. Cyanation of glycine derivatives. Chem Commun (Camb) 2021; 57:3014-3017. [PMID: 33623936 DOI: 10.1039/d0cc08126d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report a catalytic oxidative C-H cyanation of glycine derivatives using a simple copper(i) catalyst with NFSI as an oxidant via a radical process to furnish α-cyano glycine derivatives, which are useful intermediates for organic synthesis. CuCl acted as both a one-electron reductant and a transition-metal catalyst in this transformation. NFSI served as a one-electron oxidant and generated a N-centered radical as a H-abstractor. The reaction displayed broad substrate scope and mild reaction conditions.
Collapse
Affiliation(s)
- Jia Liang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China.
| | | | | | | | | | | | | |
Collapse
|
16
|
Panchal V, Brenk R. Riboswitches as Drug Targets for Antibiotics. Antibiotics (Basel) 2021; 10:45. [PMID: 33466288 PMCID: PMC7824784 DOI: 10.3390/antibiotics10010045] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022] Open
Abstract
Riboswitches reside in the untranslated region of RNA and regulate genes involved in the biosynthesis of essential metabolites through binding of small molecules. Since their discovery at the beginning of this century, riboswitches have been regarded as potential antibacterial targets. Using fragment screening, high-throughput screening and rational ligand design guided by X-ray crystallography, lead compounds against various riboswitches have been identified. Here, we review the current status and suitability of the thiamine pyrophosphate (TPP), flavin mononucleotide (FMN), glmS, guanine, and other riboswitches as antibacterial targets and discuss them in a biological context. Further, we highlight challenges in riboswitch drug discovery and emphasis the need to develop riboswitch specific high-throughput screening methods.
Collapse
Affiliation(s)
- Vipul Panchal
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5020 Bergen, Norway
| | - Ruth Brenk
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5020 Bergen, Norway
| |
Collapse
|
17
|
Piattelli E, Peltier J, Soutourina O. Interplay between Regulatory RNAs and Signal Transduction Systems during Bacterial Infection. Genes (Basel) 2020; 11:E1209. [PMID: 33081172 PMCID: PMC7602753 DOI: 10.3390/genes11101209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
The ability of pathogenic bacteria to stably infect the host depends on their capacity to respond and adapt to the host environment and on the efficiency of their defensive mechanisms. Bacterial envelope provides a physical barrier protecting against environmental threats. It also constitutes an important sensory interface where numerous sensing systems are located. Signal transduction systems include Two-Component Systems (TCSs) and alternative sigma factors. These systems are able to sense and respond to the ever-changing environment inside the host, altering the bacterial transcriptome to mitigate the impact of the stress. The regulatory networks associated with signal transduction systems comprise small regulatory RNAs (sRNAs) that can be directly involved in the expression of virulence factors. The aim of this review is to describe the importance of TCS- and alternative sigma factor-associated sRNAs in human pathogens during infection. The currently available genome-wide approaches for studies of TCS-regulated sRNAs will be discussed. The differences in the signal transduction mediated by TCSs between bacteria and higher eukaryotes and the specificity of regulatory RNAs for their targets make them appealing targets for discovery of new strategies to fight against multi-resistant bacteria.
Collapse
Affiliation(s)
- Emma Piattelli
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (E.P.); (J.P.)
| | - Johann Peltier
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (E.P.); (J.P.)
- Laboratoire Pathogenèses des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, 75015 Paris, France
| | - Olga Soutourina
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (E.P.); (J.P.)
- Institut Universitaire de France, CEDEX 05, 75231 Paris, France
| |
Collapse
|
18
|
Iwasaki RS, Batey RT. SPRINT: a Cas13a-based platform for detection of small molecules. Nucleic Acids Res 2020; 48:e101. [PMID: 32797156 PMCID: PMC7515716 DOI: 10.1093/nar/gkaa673] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/15/2020] [Accepted: 07/31/2020] [Indexed: 12/19/2022] Open
Abstract
Recent efforts in biological engineering have made detection of nucleic acids in samples more rapid, inexpensive and sensitive using CRISPR-based approaches. We expand one of these Cas13a-based methods to detect small molecules in a one-batch assay. Using SHERLOCK-based profiling of in vitrotranscription (SPRINT), in vitro transcribed RNA sequence-specifically triggers the RNase activity of Cas13a. This event activates its non-specific RNase activity, which enables cleavage of an RNA oligonucleotide labeled with a quencher/fluorophore pair and thereby de-quenches the fluorophore. This fluorogenic output can be measured to assess transcriptional output. The use of riboswitches or proteins to regulate transcription via specific effector molecules is leveraged as a coupled assay that transforms effector concentration into fluorescence intensity. In this way, we quantified eight different compounds, including cofactors, nucleotides, metabolites of amino acids, tetracycline and monatomic ions in samples. In this manner, hundreds of reactions can be easily quantified in a few hours. This increased throughput also enables detailed characterization of transcriptional regulators, synthetic compounds that inhibit transcription, or other coupled enzymatic reactions. These SPRINT reactions are easily adaptable to portable formats and could therefore be used for the detection of analytes in the field or at point-of-care situations.
Collapse
Affiliation(s)
- Roman S Iwasaki
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
| | - Robert T Batey
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
| |
Collapse
|
19
|
Parallel Discovery Strategies Provide a Basis for Riboswitch Ligand Design. Cell Chem Biol 2020; 27:1241-1249.e4. [PMID: 32795418 DOI: 10.1016/j.chembiol.2020.07.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/06/2020] [Accepted: 07/23/2020] [Indexed: 01/06/2023]
Abstract
Riboswitches are mRNA domains that make gene-regulatory decisions upon binding their cognate ligands. Bacterial riboswitches that specifically recognize 5-aminoimidazole-4-carboxamide riboside 5'-monophosphate (ZMP) and 5'-triphosphate (ZTP) regulate genes involved in folate and purine metabolism. Now, we have developed synthetic ligands targeting ZTP riboswitches by replacing the sugar-phosphate moiety of ZMP with various functional groups, including simple heterocycles. Despite losing hydrogen bonds from ZMP, these analogs bind ZTP riboswitches with similar affinities as the natural ligand, and activate transcription more strongly than ZMP in vitro. The most active ligand stimulates gene expression ∼3 times more than ZMP in a live Escherichia coli reporter. Co-crystal structures of the Fusobacterium ulcerans ZTP riboswitch bound to synthetic ligands suggest stacking of their pyridine moieties on a conserved RNA nucleobase primarily determines their higher activity. Altogether, these findings guide future design of improved riboswitch activators and yield insights into how RNA-targeted ligand discovery may proceed.
Collapse
|
20
|
Yan F, Gao F. A systematic strategy for the investigation of vaccines and drugs targeting bacteria. Comput Struct Biotechnol J 2020; 18:1525-1538. [PMID: 32637049 PMCID: PMC7327267 DOI: 10.1016/j.csbj.2020.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023] Open
Abstract
Infectious and epidemic diseases induced by bacteria have historically caused great distress to people, and have even resulted in a large number of deaths worldwide. At present, many researchers are working on the discovery of viable drug and vaccine targets for bacteria through multiple methods, including the analyses of comparative subtractive genome, core genome, replication-related proteins, transcriptomics and riboswitches, which plays a significant part in the treatment of infectious and pandemic diseases. The 3D structures of the desired target proteins, drugs and epitopes can be predicted and modeled through target analysis. Meanwhile, molecular dynamics (MD) analysis of the constructed drug/epitope-protein complexes is an important standard for testing the suitability of these screened drugs and vaccines. Currently, target discovery, target analysis and MD analysis are integrated into a systematic set of drug and vaccine analysis strategy for bacteria. We hope that this comprehensive strategy will help in the design of high-performance vaccines and drugs.
Collapse
Affiliation(s)
- Fangfang Yan
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Feng Gao
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
21
|
High Affinity Binding of N2-Modified Guanine Derivatives Significantly Disrupts the Ligand Binding Pocket of the Guanine Riboswitch. Molecules 2020; 25:molecules25102295. [PMID: 32414072 PMCID: PMC7287874 DOI: 10.3390/molecules25102295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 11/17/2022] Open
Abstract
Riboswitches are important model systems for the development of approaches to search for RNA-targeting therapeutics. A principal challenge in finding compounds that target riboswitches is that the effector ligand is typically almost completely encapsulated by the RNA, which severely limits the chemical space that can be explored. Efforts to find compounds that bind the guanine/adenine class of riboswitches with a high affinity have in part focused on purines modified at the C6 and C2 positions. These studies have revealed compounds that have low to sub-micromolar affinity and, in a few cases, have antimicrobial activity. To further understand how these compounds interact with the guanine riboswitch, we have performed an integrated structural and functional analysis of representative guanine derivatives with modifications at the C8, C6 and C2 positions. Our data indicate that while modifications of guanine at the C6 position are generally unfavorable, modifications at the C8 and C2 positions yield compounds that rival guanine with respect to binding affinity. Surprisingly, C2-modified guanines such as N2-acetylguanine completely disrupt a key Watson–Crick pairing interaction between the ligand and RNA. These compounds, which also modulate transcriptional termination as efficiently as guanine, open up a significant new chemical space of guanine modifications in the search for antimicrobial agents that target purine riboswitches.
Collapse
|
22
|
Perkins KR, Atilho RM, Moon MH, Breaker RR. Employing a ZTP Riboswitch to Detect Bacterial Folate Biosynthesis Inhibitors in a Small Molecule High-Throughput Screen. ACS Chem Biol 2019; 14:2841-2850. [PMID: 31609568 DOI: 10.1021/acschembio.9b00713] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Various riboswitch classes are being discovered that precisely monitor the status of important biological processes, including metabolic pathway function, signaling for physiological adaptations, and responses to toxic agents. Biochemical components for some of these processes might make excellent targets for the development of novel antibacterial molecules, which can be broadly sought by using phenotypic drug discovery (PDD) methods. However, PDD data do not normally provide clues regarding the target for each hit compound. We have developed and validated a robust fluorescent reporter system based on a ZTP riboswitch that identifies numerous folate biosynthesis inhibitors with high sensitivity and precision. The utility of the riboswitch-based PDD strategy was evaluated using Escherichia coli bacteria by conducting a 128 310-compound high-throughput screen, which identified 78 sulfanilamide derivatives among the many initial hits. Similarly, representatives of other riboswitch classes could be employed to rapidly match antibacterial hits with the biological processes they target.
Collapse
Affiliation(s)
- Kevin R. Perkins
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, United States
| | - Ruben M. Atilho
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8103, United States
| | - Michelle H. Moon
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8103, United States
| | - Ronald R. Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, United States
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8103, United States
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520-8103, United States
| |
Collapse
|
23
|
Morgan BS, Sanaba BG, Donlic A, Karloff DB, Forte JE, Zhang Y, Hargrove AE. R-BIND: An Interactive Database for Exploring and Developing RNA-Targeted Chemical Probes. ACS Chem Biol 2019; 14:2691-2700. [PMID: 31589399 DOI: 10.1021/acschembio.9b00631] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
While the opportunities available for targeting RNA with small molecules have been widely appreciated, the challenges associated with achieving specific RNA recognition in biological systems have hindered progress and prevented many researchers from entering the field. To facilitate the discovery of RNA-targeted chemical probes and their subsequent applications, we curated the RNA-targeted BIoactive ligaNd Database (R-BIND). This collection contains an array of information on reported chemical probes that target non-rRNA and have biological activity, and analysis has led to the discovery of RNA-privileged properties. Herein, we developed an online platform to make this information freely available to the community, offering search options, a suite of tools for probe development, and an updated R-BIND data set with detailed experimental information for each probe. We repeated the previous cheminformatics analysis on the updated R-BIND list and found that the distinguishing physicochemical, structural, and spatial properties remained unchanged, despite an almost 50% increase in the database size. Further, we developed several user-friendly tools, including queries based on cheminformatic parameters, experimental details, functional groups, and substructures. In addition, a nearest neighbor algorithm can assess the similarity of user-uploaded molecules to R-BIND ligands. These tools and resources can be used to design small molecule libraries, optimize lead ligands, or select targets, probes, assays, and control experiments. Chemical probes are critical to the study and discovery of novel functions for RNA, and we expect this resource to greatly assist researchers in exploring and developing successful RNA-targeted probes.
Collapse
Affiliation(s)
- Brittany S. Morgan
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, Michigan 48109, United States
| | - Bilva G. Sanaba
- Department of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27705, United States
| | - Anita Donlic
- Department of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27705, United States
| | - Diane B. Karloff
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jordan E. Forte
- Wake Forest School of Medicine, 475 Vine Street, Winston Salem, North Carolina 27101, United States
| | - Yuqi Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Amanda E. Hargrove
- Department of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27705, United States
| |
Collapse
|
24
|
Parmeciano Di Noto G, Molina MC, Quiroga C. Insights Into Non-coding RNAs as Novel Antimicrobial Drugs. Front Genet 2019; 10:57. [PMID: 30853970 PMCID: PMC6395445 DOI: 10.3389/fgene.2019.00057] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 01/24/2019] [Indexed: 12/21/2022] Open
Abstract
Multidrug resistant bacteria are a serious worldwide problem, especially carbapenem-resistant Enterobacteriaceae (such as Klebsiella pneumoniae and Escherichia coli), Acinetobacter baumannii and Pseudomonas aeruginosa. Since the emergence of extensive and pan-drug resistant bacteria there are few antibiotics left to treat patients, thus novel RNA-based strategies are being considered. Here, we examine the current situation of different non-coding RNAs found in bacteria as well as their function and potential application as antimicrobial agents. Furthermore, we discuss the factors that may contribute in the efficient development of RNA-based drugs, the limitations for their implementation and the use of nanocarriers for delivery.
Collapse
Affiliation(s)
- Gisela Parmeciano Di Noto
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPAM), Facultad de Medicina, Buenos Aires, Argentina
| | - María Carolina Molina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPAM), Facultad de Medicina, Buenos Aires, Argentina
| | - Cecilia Quiroga
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPAM), Facultad de Medicina, Buenos Aires, Argentina
| |
Collapse
|
25
|
Neuner E, Frener M, Lusser A, Micura R. Superior cellular activities of azido- over amino-functionalized ligands for engineered preQ 1 riboswitches in E.coli. RNA Biol 2018; 15:1376-1383. [PMID: 30332908 PMCID: PMC6284575 DOI: 10.1080/15476286.2018.1534526] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 10/05/2018] [Indexed: 01/29/2023] Open
Abstract
For this study, we utilized class-I and class-II preQ1-sensing riboswitches as model systems to decipher the structure-activity relationship of rationally designed ligand derivatives in vitro and in vivo. We found that synthetic preQ1 ligands with amino-modified side chains that protrude from the ligand-encapsulating binding pocket, and thereby potentially interact with the phosphate backbone in their protonated form, retain or even increase binding affinity for the riboswitches in vitro. They, however, led to significantly lower riboswitch activities in a reporter system in vivo in E. coli. Importantly, when we substituted the amino- by azido-modified side chains, the cellular activities of the ligands were restored for the class-I conditional gene expression system and even improved for the class-II counterpart. Kinetic analysis of ligand binding in vitro revealed enhanced on-rates for amino-modified derivatives while they were attenuated for azido-modified variants. This shows that neither high affinities nor fast on-rates are necessarily translated into efficient cellular activities. Taken together, our comprehensive study interconnects in vitro kinetics and in vitro thermodynamics of RNA-ligand binding with the ligands' in vivo performance and thereby encourages azido- rather than amino-functionalized design for enhanced cellular activity.
Collapse
Affiliation(s)
- Eva Neuner
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck CMBI, Leopold-Franzens University, Innsbruck, Austria
| | - Marina Frener
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck CMBI, Leopold-Franzens University, Innsbruck, Austria
| | - Alexandra Lusser
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck CMBI, Leopold-Franzens University, Innsbruck, Austria
| |
Collapse
|
26
|
Liu K, Ren X, Sun J, Zou Q, Yan X. Primitive Photosynthetic Architectures Based on Self-Organization and Chemical Evolution of Amino Acids and Metal Ions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1701001. [PMID: 29938179 PMCID: PMC6010005 DOI: 10.1002/advs.201701001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/15/2018] [Indexed: 05/23/2023]
Abstract
The emergence of light-energy-utilizing metabolism is likely to be a critical milestone in prebiotic chemistry and the origin of life. However, how the primitive pigment is spontaneously generated still remains unknown. Herein, a primitive pigment model based on adaptive self-organization of amino acids (Cystine, Cys) and metal ions (zinc ion, Zn2+) followed by chemical evolution under hydrothermal conditions is developed. The resulting hybrid microspheres are composed of radially aligned cystine/zinc (Cys/Zn) assembly decorated with carbonate-doped zinc sulfide (C-ZnS) nanocrystals. The part of C-ZnS can work as a light-harvesting antenna to capture ultraviolet and visible light, and use it in various photochemical reactions, including hydrogen (H2) evolution, carbon dioxide (CO2) photoreduction, and reduction of nicotinamide adenine dinucleotide (NAD+) to nicotinamide adenine dinucleotide hydride (NADH). Additionally, guest molecules (e.g., glutamate dehydrogenase, GDH) can be encapsulated within the hierarchical Cys/Zn framework, which facilitates sustainable photoenzymatic synthesis of glutamate. This study helps deepen insight into the emergent functionality (conversion of light energy) and complexity (hierarchical architecture) from interaction and reaction of prebiotic molecules. The primitive pigment model is also promising to work as an artificial photosynthetic microreactor.
Collapse
Affiliation(s)
- Kai Liu
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences100190BeijingChina
- University of Chinese Academy of Sciences100049BeijingChina
| | - Xiaokang Ren
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences100190BeijingChina
- University of Chinese Academy of Sciences100049BeijingChina
| | - Jianxuan Sun
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences100190BeijingChina
| | - Qianli Zou
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences100190BeijingChina
| | - Xuehai Yan
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences100190BeijingChina
- University of Chinese Academy of Sciences100049BeijingChina
- Center for MesoscienceInstitute of Process EngineeringChinese Academy of Sciences100190BeijingChina
| |
Collapse
|
27
|
Wang YN, Bheemanaboina RRY, Cai GX, Zhou CH. Novel purine benzimidazoles as antimicrobial agents by regulating ROS generation and targeting clinically resistant Staphylococcus aureus DNA groove. Bioorg Med Chem Lett 2018; 28:1621-1628. [DOI: 10.1016/j.bmcl.2018.03.046] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/28/2018] [Accepted: 03/17/2018] [Indexed: 01/19/2023]
|