1
|
Kawka A, Koenig H, Pospieszny T. Steroid and bioactive molecule conjugates: Improving therapeutic approaches in disease management. Bioorg Chem 2024; 153:107933. [PMID: 39509790 DOI: 10.1016/j.bioorg.2024.107933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/15/2024]
Abstract
Conjugates of steroids and other natural bioactive molecules (such as amino acids or carbohydrates) have proven promising compounds with diverse biological effects. This literature review summarises the importance of steroid conjugates in a broad spectrum of therapeutic applications. Steroid conjugates exhibit improved pharmacokinetic properties, improved target specificity, and reduced side effects compared to the parent compounds. This increases their clinical usefulness. Their versatility extends to drug delivery systems, enabling precise modulation of drug release kinetics and bioavailability. Moreover, steroid conjugates are vital in treating inflammatory and neurodegenerative diseases, hormonal disorders, cancer therapy, and combating microbial infections. The review presents the current state of research on steroid conjugates, highlighting the crucial role of steroid conjugates in modern medicine and their potential to revolutionise therapeutic paradigms and improve patient outcomes. Steroid compounds are excellent for developing agents with better bioavailability and are used as drug carriers or hydrogelators.
Collapse
Affiliation(s)
- Anna Kawka
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8 Street, 61-614 Poznań, Poland.
| | - Hanna Koenig
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8 Street, 61-614 Poznań, Poland
| | - Tomasz Pospieszny
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8 Street, 61-614 Poznań, Poland.
| |
Collapse
|
2
|
Chen ZQ, Yang RJ, Zhu CW, Li Y, Yan R, Wan JB. Chemical Isotope Labeling and Dual-Filtering Strategy for Comprehensive Profiling of Urinary Glucuronide Conjugates. Anal Chem 2024; 96:13576-13587. [PMID: 39102235 PMCID: PMC11339728 DOI: 10.1021/acs.analchem.4c02339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
Glucuronidation, a crucial process in phase II metabolism, plays a vital role in the detoxification and elimination of endogenous substances and xenobiotics. A comprehensive and confident profiling of glucuronate-conjugated metabolites is imperative to understanding their roles in physiological and pathological processes. In this study, a chemical isotope labeling and dual-filtering strategy was developed for global profiling of glucuronide metabolites in biological samples. N,N-Dimethyl ethylenediamine (DMED-d0) and its deuterated counterpart DMED-d6 were used to label carboxylic acids through an amidation reaction. First, carboxyl-containing compounds were extracted based on a characteristic mass difference (Δm/z, 6.037 Da) observed in MS between light- and heavy-labeled metabolites (filter I). Subsequently, within the pool of carboxyl-containing compounds, glucuronides were identified using two pairs of diagnostic ions (m/z 247.1294/253.1665 and 229.1188/235.1559 for DMED-d0/DMED-d6-labeled glucuronides) originating from the fragmentation of the derivatized glucuronic acid group in MS/MS (filter II). Compared with non-derivatization, DEMD labeling significantly enhanced the detection sensitivity of glucuronides, as evidenced by a 3- to 55-fold decrease in limits of detection for representative standards. The strategy was applied to profiling glucuronide metabolites in urine samples from colorectal cancer (CRC) patients. A total of 685 features were screened as potential glucuronides, among which 181 were annotated, mainly including glucuronides derived from lipids, organic oxygen, and phenylpropanoids. Enzymatic biosynthesis was employed to accurately identify unknown glucuronides without standards, demonstrating the reliability of the dual-filtering strategy. Our strategy exhibits great potential for profiling the glucuronide metabolome with high coverage and confidence to reveal changes in CRC and other diseases.
Collapse
Affiliation(s)
- Zhi-Qiang Chen
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University
of Macau, Taipa Macao SAR, China
| | - Ru-Jie Yang
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University
of Macau, Taipa Macao SAR, China
| | - Chao-Wei Zhu
- Shenzhen
People’s Hospital, Shenzhen, Guangdong 518000, China
| | - Yang Li
- Shenzhen
People’s Hospital, Shenzhen, Guangdong 518000, China
| | - Ru Yan
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University
of Macau, Taipa Macao SAR, China
| | - Jian-Bo Wan
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University
of Macau, Taipa Macao SAR, China
| |
Collapse
|
3
|
He S, Li L, Lei S, Su J, Zhang Y, Zeng H. Effect of lotus seed resistant starch on the bioconversion pathway of taurocholic acid by regulating the intestinal microbiota. Int J Biol Macromol 2024; 266:131174. [PMID: 38552699 DOI: 10.1016/j.ijbiomac.2024.131174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/19/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Taurocholic acid (TCA) is abundant in the rat intestine and has multiple health benefits. In the gut, intestinal microbiota can transform TCA into different bile acid (BA) derivatives, with the composition of microbiota playing a crucial role in the transformation process. This study aims to investigate how lotus seed resistant starch (LRS) can regulate microbiota to influence BA transformation. A fecal fermentation study was conducted in vitro, using either LRS, high-amylose maize starch (HAMS), or glucose (GLU) to analyze microbiota composition, BA content, and metabolic enzyme activities over different fermentation times. Bioinformatics analysis found that LRS increased the relative abundance of Enterococcus, Bacillus, and Lactobacillus, and decreased Escherichia-Shigella, compared with HAMS and GLU. LRS also reduced total BA content and accelerated the conversion of TCA to cholic acid, deoxycholic acid, and other derivatives. These results reveal that LRS and GLU tend to mediate the dehydroxy pathway, whereas HAMS tends to secrete metabolic enzymes in the epimerization pathway. Therefore, the evidence that LRS may regulate TCA bioconversion may benefit human colon health research and provide an important theoretical basis, as well as offer new concepts for the development of functional foods.
Collapse
Affiliation(s)
- Shuqi He
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lanxin Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Suzhen Lei
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinhan Su
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Hongliang Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
4
|
Fang Y, Hegazy L, Finck BN, Elgendy B. Recent Advances in the Medicinal Chemistry of Farnesoid X Receptor. J Med Chem 2021; 64:17545-17571. [PMID: 34889100 DOI: 10.1021/acs.jmedchem.1c01017] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Farnesoid X receptor (FXR) is an important regulator of bile acid, lipid, amino acid, and glucose homeostasis, hepatic inflammation, regeneration, and fibrosis. FXR has been recognized as a promising drug target for various metabolic diseases such as lipid disorders, nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH), and chronic kidney disease. A large number of FXR ligands have been developed by pharmaceutical companies and academic institutions, and several candidates have progressed into clinical trials in the past decade. However, it is continually a challenge to discover drugs targeting FXR due to side effects associated with long-term administration. In this perspective, we summarize the research progress on medicinal chemistry of FXR modulators from 2018 to the present by discussing the diverse structures of synthetic FXR modulators including steroidal and non-steroidal ligands, their structure-activity relationships (SARs), and their therapeutic applications.
Collapse
Affiliation(s)
- Yuanying Fang
- Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy, St. Louis, Missouri 63110, United States.,Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, Missouri 63110, United States
| | - Lamees Hegazy
- Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy, St. Louis, Missouri 63110, United States.,Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, Missouri 63110, United States
| | - Brian N Finck
- Department of Medicine, Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Bahaa Elgendy
- Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy, St. Louis, Missouri 63110, United States.,Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, Missouri 63110, United States.,Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
| |
Collapse
|
5
|
Gallucci GM, Trottier J, Hemme C, Assis DN, Boyer JL, Barbier O, Ghonem NS. Adjunct Fenofibrate Up-regulates Bile Acid Glucuronidation and Improves Treatment Response For Patients With Cholestasis. Hepatol Commun 2021; 5:2035-2051. [PMID: 34558841 PMCID: PMC8631103 DOI: 10.1002/hep4.1787] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/10/2021] [Accepted: 06/25/2021] [Indexed: 12/26/2022] Open
Abstract
Accumulation of cytotoxic bile acids (BAs) during cholestasis can result in liver failure. Glucuronidation, a phase II metabolism pathway responsible for BA detoxification, is regulated by peroxisome proliferator-activated receptor alpha (PPARα). This study investigates the efficacy of adjunct fenofibrate therapy to up-regulate BA-glucuronidation and reduce serum BA toxicity during cholestasis. Adult patients with primary biliary cholangitis (PBC, n = 32) and primary sclerosing cholangitis (PSC, n = 23), who experienced an incomplete response while receiving ursodiol monotherapy (13-15 mg/kg/day), defined as serum alkaline phosphatase (ALP) ≥ 1.5 times the upper limit of normal, received additional fenofibrate (145-160 mg/day) as standard of care. Serum BA and BA-glucuronide concentrations were measured by liquid chromatography-mass spectrometry. Combination therapy with fenofibrate significantly decreased elevated serum ALP (-76%, P < 0.001), aspartate transaminase, alanine aminotransferase, bilirubin, total serum BAs (-54%), and increased serum BA-glucuronides (+2.1-fold, P < 0.01) versus ursodiol monotherapy. The major serum BA-glucuronides that were favorably altered following adjunct fenofibrate include hyodeoxycholic acid-6G (+3.7-fold, P < 0.01), hyocholic acid-6G (+2.6-fold, P < 0.05), chenodeoxycholic acid (CDCA)-3G (-36%), and lithocholic acid (LCA)-3G (-42%) versus ursodiol monotherapy. Fenofibrate also up-regulated the expression of uridine 5'-diphospho-glucuronosyltransferases and multidrug resistance-associated protein 3 messenger RNA in primary human hepatocytes. Pearson's correlation coefficients identified strong associations between serum ALP and metabolic ratios of CDCA-3G (r2 = 0.62, P < 0.0001), deoxycholic acid (DCA)-3G (r2 = 0.48, P < 0.0001), and LCA-3G (r2 = 0.40, P < 0.001), in ursodiol monotherapy versus control. Receiver operating characteristic analysis identified serum BA-glucuronides as measures of response to therapy. Conclusion: Fenofibrate favorably alters major serum BA-glucuronides, which correlate with reduced serum ALP levels and improved outcomes. A PPARα-mediated anti-cholestatic mechanism is involved in detoxifying serum BAs in patients with PBC and PSC who have an incomplete response on ursodiol monotherapy and receive adjunct fenofibrate. Serum BA-glucuronides may serve as a noninvasive measure of treatment response in PBC and PSC.
Collapse
Affiliation(s)
- Gina M. Gallucci
- College of Pharmacy, Biomedical and Pharmaceutical SciencesUniversity of Rhode IslandKingstonRIUSA
| | - Jocelyn Trottier
- Laboratory of Molecular PharmacologyEndocrinology and Nephrology AxisCHU de Québec Research CenterLavalQuébecCanada
| | - Christopher Hemme
- College of Pharmacy, Biomedical and Pharmaceutical SciencesUniversity of Rhode IslandKingstonRIUSA
- RI‐INBRE Bioinformatics CoreKingstonRIUSA
| | | | | | - Olivier Barbier
- Laboratory of Molecular PharmacologyEndocrinology and Nephrology AxisCHU de Québec Research CenterLavalQuébecCanada
- Faculty of PharmacyLaval UniversityLavalQuébecCanada
| | - Nisanne S. Ghonem
- College of Pharmacy, Biomedical and Pharmaceutical SciencesUniversity of Rhode IslandKingstonRIUSA
| |
Collapse
|
6
|
Kimura A, Kagawa T, Takei H, Maruo Y, Sakugawa H, Sasaki T, Murai T, Naritaka N, Takikawa H, Nittono H. Rotor Syndrome: Glucuronidated Bile Acidemia From Defective Reuptake by Hepatocytes. Hepatol Commun 2021; 5:629-633. [PMID: 33860121 PMCID: PMC8034574 DOI: 10.1002/hep4.1660] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/30/2020] [Accepted: 11/22/2020] [Indexed: 11/09/2022] Open
Abstract
Organic anion transporting polypeptide (OATP) 1B1 (gene, solute carrier organic anion transporter family member 1B1 [SLCO1B1]) and OATP1B3 (SLCO1B3) serve as transporters for hepatic uptake of important endogenous substances and several commonly prescribed drugs. Inactivation of both proteins together causes Rotor syndrome. How this OATP1B1/1B3 defect disturbs bile acid (BA) metabolism is largely unknown. In this study, we performed detailed BA analysis in 3 patients with genetically diagnosed Rotor syndrome. We found that BAs glucuronidated at the C-3 position (BA-3G) accounted for 50% or more of total BAs in these patients. In contrast but similarly to healthy controls, only trace amounts of BA-3G were detected in patients with constitutional indocyanine green excretory defect (OATP1B3 deficiency) or sodium-taurocholate cotransporting polypeptide (NTCP; gene, solute carrier family 10 member 1 [SLC10A1]) deficiency. Therefore, substantial amounts of BA-3G are synthesized in hepatocytes. The cycling pathway of BA-3G, consisting of excretion from upstream hepatocytes and uptake by downstream hepatocytes by OATP1B1/1B3 may exist to reduce the burden on upstream hepatocytes. Conclusion: Detailed BA analysis revealed glucuronidated bile acidemia in patients with Rotor syndrome. Further exploration of the physiologic role of glucuronidated BAs is necessary.
Collapse
Affiliation(s)
- Akihiko Kimura
- Department of Pediatrics and Child HealthKurume University School of MedicineKurumeJapan
- Junshin Clinic Bile Acid InstituteTokyoJapan
| | - Tatehiro Kagawa
- Division of Gastroenterology and HepatologyDepartment of Internal MedicineTokai University School of MedicineIseharaJapan
| | | | - Yoshihiro Maruo
- Department of PediatricsShiga University of Medical ScienceOtsuJapan
| | - Hiroshi Sakugawa
- Department of Internal MedicineHeartlife HospitalNakagusukuJapan
| | - Takahiro Sasaki
- Faculty of Pharmaceutical ScienceHealth Science University of HokkaidoIshikari‐TobetsuJapan
| | - Tsuyoshi Murai
- Faculty of Pharmaceutical ScienceHealth Science University of HokkaidoIshikari‐TobetsuJapan
| | | | - Hajime Takikawa
- Faculty of Medical TechnologyTeikyo University School of MedicineTokyoJapan
| | | |
Collapse
|
7
|
Zagoskin P, Erlykina E. Bile Acids as a New Type of Steroid Hormones Regulating Nonspecific Energy Expenditure of the Body (Review). Sovrem Tekhnologii Med 2020; 12:114-127. [PMID: 34796012 PMCID: PMC8596256 DOI: 10.17691/stm2020.12.5.13] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
The review is devoted to the systematization, classification, and generalization of the results of modern scientific research on the role of bile acids as a new class of steroid hormones. The paper presents the evidence for bile acid participation in the regulation of the body energy metabolism, body weight control, as well as the pathogenesis of obesity, diabetes mellitus, insulin resistance, and cardiovascular diseases. Particular attention is paid to the role of bile acids in the control of nonspecific energy expenditure of the body. The applied aspects of using the novel data about the membrane and intracellular receptors responsible for the development of hormonal regulatory effects of bile acids are analyzed. According to the authors, the modern data on the role of bile acids in the regulation of body functions allow a deeper understanding of the pathogenesis of body weight disorders and associated cardiovascular diseases. The review demonstrates promising directions in the search for specific methods of prevention and correction of these pathological conditions.
Collapse
Affiliation(s)
- P.P. Zagoskin
- Associate Professor, Department of Biochemistry named after G.Ya. Gorodisskaya; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - E.I. Erlykina
- Professor, Head of the Department of Biochemistry named after G.Ya. Gorodisskaya Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| |
Collapse
|
8
|
Lin M, Chen X, Wang Z, Wang D, Zhang JL. Global profiling and identification of bile acids by multi-dimensional data mining to reveal a way of eliminating abnormal bile acids. Anal Chim Acta 2020; 1132:74-82. [PMID: 32980113 DOI: 10.1016/j.aca.2020.07.067] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/16/2020] [Accepted: 07/27/2020] [Indexed: 01/06/2023]
Abstract
Bile acids (BAs), as crucial endogenous metabolites, are closely related to cholestasis, metabolic disorders, and cancer. To better understand their function and disease pathogenesis, global profiling of BAs is necessary. Here, multidimensional data mining was developed for the discovery and identification of potentially unknown BAs in cholestasis rats. Based on an in-house theoretical BA database and using a newly established liquid chromatography-tandem high-resolution mass spectrometry (LC-HRMS/MS) method, four-dimensional (4D) data including the retention times (RT), abundances, HRMS, and HRMS/MS spectra were acquired and elucidated. And 491 BAs were totally profiled. Then, the relationships between RT with different conjugation types, different positions and configurations of hydroxyl/ketone groups as well as fragmentation rules of hydroxyl, ortho-hydroxyl, ketone, and conjugated groups of BAs were summarized to assist BA identification for the first time. Finally, 292 BAs were assigned with molecular formulas, 201 of which were putatively identified by integrating the 4D data, applying structure-driven relative retention time rules, and a comparison with synthetic BAs. The estimated concentrations of 201 BAs, including 93 reported and 108 newly identified BAs, were quantified by using surrogate standards with similar structure. Among 201 BAs, 38 BAs were detected in both humans and rats for the first time. Our strategy has expanded the scope of BAs and provides a way to identify a class of metabolites. Compared to normal rats, the significantly increased sulfated and glucuronide conjugated BAs in urine and feces from experimentally cholestatic rats may reveal a way to diagnose intrahepatic cholestasis.
Collapse
Affiliation(s)
- Miao Lin
- Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Xiong Chen
- Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Zhe Wang
- Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Dongmei Wang
- Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China.
| | - Jin-Lan Zhang
- Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China.
| |
Collapse
|
9
|
Yang Y, Zhao Y, Li W, Wu Y, Wang X, Wang Y, Liu T, Ye T, Xie Y, Cheng Z, He J, Bai P, Zhang Y, Ouyang L. Emerging targets and potential therapeutic agents in non-alcoholic fatty liver disease treatment. Eur J Med Chem 2020; 197:112311. [PMID: 32339855 DOI: 10.1016/j.ejmech.2020.112311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 03/29/2020] [Accepted: 04/04/2020] [Indexed: 02/08/2023]
Abstract
Nonalcoholic Fatty Liver Disease (NAFLD) is the most common chronic liver disease in the world, which is characterized by liver fat accumulation unrelated to excessive drinking. Indeed, it attracts growing attention and becomes a global health problem. Due to the complexity of the NAFLD pathogenic mechanism, no related drugs were approved by Food and Drug Administration (FDA) till now. However, it is encouraging that a series of candidate drugs have entered the clinical trial stage with expectation to treat NAFLD. In this review, we summarized the main pathways and pathogenic mechanisms of NAFLD, as well as introduced the main potential therapeutic targets and the corresponding compounds involved in metabolism, inflammation and fibrosis. Furthermore, we also discuss the progress of these compounds, such as drug design and optimization, the choice of pharmacological properties and druglikeness, and the analysis of structure-activity relationship. This review offers a medium on future drug design and development, to be beneficial to relevant studies.
Collapse
Affiliation(s)
- Yu Yang
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Yu Zhao
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenzhen Li
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Yuyao Wu
- West China School of Public Health/No.4 West China Teaching Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Wang
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Yijie Wang
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Tingmei Liu
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Tinghong Ye
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Yongmei Xie
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Zhiqiang Cheng
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jun He
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| | - Peng Bai
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| | - Yiwen Zhang
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| | - Liang Ouyang
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| |
Collapse
|
10
|
Singla P, Salunke DB. Recent advances in steroid amino acid conjugates: Old scaffolds with new dimensions. Eur J Med Chem 2020; 187:111909. [PMID: 31830636 DOI: 10.1016/j.ejmech.2019.111909] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022]
|
11
|
Luan ZL, Huo XK, Dong PP, Tian XG, Sun CP, Lv X, Feng L, Ning J, Wang C, Zhang BJ, Ma XC. Highly potent non-steroidal FXR agonists protostane-type triterpenoids: Structure-activity relationship and mechanism. Eur J Med Chem 2019; 182:111652. [DOI: 10.1016/j.ejmech.2019.111652] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/08/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022]
|
12
|
Mostarda S, Gür Maz T, Piccinno A, Cerra B, Banoglu E. Optimisation by Design of Experiment of Benzimidazol-2-One Synthesis under Flow Conditions. Molecules 2019; 24:molecules24132447. [PMID: 31277341 PMCID: PMC6651037 DOI: 10.3390/molecules24132447] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 01/19/2023] Open
Abstract
A novel flow-based approach for the preparation of benzimidazol-2-one (1) scaffold by the 1,1′-carbonyldiimidazole (CDI)-promoted cyclocarbonylation of o-phenylenediamine (2) is reported. Starting from a preliminary batch screening, the model reaction was successfully translated under flow conditions and optimised by means of design of experiment (DoE). The method allowed the efficient preparation of this privileged scaffold and to set up a general protocol for the multigram-scale preparation in high yield, purity, and productivity, and was successfully applied for the multigram flow synthesis of N-(2-chlorobenzyl)-5-cyano-benzimidazol-2-one, which is a key synthon for hit-to-lead explorations in our anti-inflammatory drug discovery program.
Collapse
Affiliation(s)
- Serena Mostarda
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
- Current affiliation: Novartis Pharma AG, CH-4002 Basel, Switzerland
| | - Tugçe Gür Maz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Etiler, 06560 Ankara, Turkey
| | - Alessandro Piccinno
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Bruno Cerra
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy.
| | - Erden Banoglu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Etiler, 06560 Ankara, Turkey.
| |
Collapse
|
13
|
Nocentini A, Bonardi A, Gratteri P, Cerra B, Gioiello A, Supuran CT. Steroids interfere with human carbonic anhydrase activity by using alternative binding mechanisms. J Enzyme Inhib Med Chem 2018; 33:1453-1459. [PMID: 30221552 PMCID: PMC7011995 DOI: 10.1080/14756366.2018.1512597] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Bile acids have been shown to inhibit human (h) carbonic anhydrases (CA, EC 4.2.1.1) along the gastrointestinal tract, including hCA II. The elucidation of the hormonal inhibition mechanism of the bile acid cholate to hCA II was provided in 2014 by X-ray crystallography. Herein, we extend the inhibition study to a wealth of steroids against four relevant hCA isoforms. Steroids displaying pendants and functional groups of the carboxylate, phenolic or sulfonate types appended at the tetracyclic ring were shown to inhibit the cytosolic CA II and the tumor-associated, transmembrane CA IX in a medium micromolar range (38.9–89.9 µM). Docking studies displayed the different chemotypes CA inhibition mechanisms. Molecular dynamics (MD) gave insights on the stability over time of hyocholic acid binding to CA II.
Collapse
Affiliation(s)
- Alessio Nocentini
- a Department NEUROFARBA - Pharmaceutical and nutraceutical section; Laboratory of Molecular Modeling Cheminformatics & QSAR , University of Firenze , Sesto Fiorentino , Italy.,b Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section , University of Florence , Firenze , Italy
| | - Alessandro Bonardi
- a Department NEUROFARBA - Pharmaceutical and nutraceutical section; Laboratory of Molecular Modeling Cheminformatics & QSAR , University of Firenze , Sesto Fiorentino , Italy.,b Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section , University of Florence , Firenze , Italy
| | - Paola Gratteri
- a Department NEUROFARBA - Pharmaceutical and nutraceutical section; Laboratory of Molecular Modeling Cheminformatics & QSAR , University of Firenze , Sesto Fiorentino , Italy
| | - Bruno Cerra
- c Department of Pharmaceutical Sciences , University of Perugia , Perugia , Italy
| | - Antimo Gioiello
- c Department of Pharmaceutical Sciences , University of Perugia , Perugia , Italy
| | - Claudiu T Supuran
- b Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section , University of Florence , Firenze , Italy
| |
Collapse
|
14
|
Yue T, Xie KB, Tan Z, Chen RD, Chen DW, Liu JM, Dai JG. Enzymatic synthesis of glucuronidated metabolites of two neurological active agents using plant glucuronosyltransferases. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2018; 20:605-614. [PMID: 29989425 DOI: 10.1080/10286020.2018.1490276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/14/2018] [Indexed: 06/08/2023]
Abstract
Glucuronidation is an important and popular metabolic reaction in vivo of drugs. The further evaluation of biological activity and toxicity of glucuronides is necessary in the course of the drug research and development. However, the synthesis of glucuronides is limited by the lack of efficient approach. Herein, we have developed a new glucuronide synthesis method using plant uridine diphosphate-dependent glucuronosyltransferases (UGTs), UGT88D4, UGT88D7, and EpGT8, enabling the convenient preparation for corresponding O-glucuronide metabolites (1a, 2a, 3a, and 3b) in milligram scale of two neurological active agents, IMM-H004 (1) and FLZ (2). Their structures were characterized by spectroscopic data analyses.
Collapse
Affiliation(s)
- Tian Yue
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Beijing 100050 , China
| | - Ke-Bo Xie
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Beijing 100050 , China
- b Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study , Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Zhen Tan
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Beijing 100050 , China
| | - Ri-Dao Chen
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Beijing 100050 , China
- b Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study , Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Da-Wei Chen
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Beijing 100050 , China
- b Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study , Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Ji-Mei Liu
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Beijing 100050 , China
- b Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study , Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Jun-Gui Dai
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Beijing 100050 , China
- b Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study , Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| |
Collapse
|
15
|
Mancino V, Cerra B, Piccinno A, Gioiello A. Continuous Flow Synthesis of 16-Dehydropregnenolone Acetate, a Key Synthon for Natural Steroids and Drugs. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.8b00038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Valentina Mancino
- Laboratory of Medicinal and Advanced Synthetic Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06122 Perugia, Italy
| | - Bruno Cerra
- Laboratory of Medicinal and Advanced Synthetic Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06122 Perugia, Italy
| | - Alessandro Piccinno
- Laboratory of Medicinal and Advanced Synthetic Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06122 Perugia, Italy
| | - Antimo Gioiello
- Laboratory of Medicinal and Advanced Synthetic Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06122 Perugia, Italy
| |
Collapse
|