1
|
Li HY, Chen WA, Lin HY, Tsai CW, Chiu YT, Yun WY, Lee NC, Chien YH, Hwu WL, Cheng WC. A practical synthesis of nitrone-derived C5a-functionalized isofagomines as protein stabilizers to treat Gaucher disease. Commun Chem 2024; 7:91. [PMID: 38643239 PMCID: PMC11032326 DOI: 10.1038/s42004-024-01164-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 03/28/2024] [Indexed: 04/22/2024] Open
Abstract
Isofagomine (IFG) and its analogues possess promising glycosidase inhibitory activities. However, a flexible synthetic strategy toward both C5a-functionalized IFGs remains to be explored. Here we show a practical synthesis of C5a-S and R aminomethyl IFG-based derivatives via the diastereoselective addition of cyanide to cyclic nitrone 1. Nitrone 1 was conveniently prepared on a gram scale and in high yield from inexpensive (-)-diethyl D-tartrate via a straightforward method, with a stereoselective Michael addition of a nitroolefin and a Nef reaction as key steps. A 268-membered library (134 × 2) of the C5a-functionalized derivatives was submitted to enzyme- or cell-based bio-evaluations, which resulted in the identification of a promising β-glucocerebrosidase (GCase) stabilizer demonstrating a 2.7-fold enhancement at 25 nM in p.Asn370Ser GCase activity and a 13-fold increase at 1 μM in recombinant human GCase activity in Gaucher cell lines.
Collapse
Affiliation(s)
- Huang-Yi Li
- Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei, 11529, Taiwan
| | - Wei-An Chen
- Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei, 11529, Taiwan
| | - Hung-Yi Lin
- Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei, 11529, Taiwan
| | - Chi-Wei Tsai
- Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei, 11529, Taiwan
| | - Yu-Ting Chiu
- Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei, 11529, Taiwan
| | - Wen-Yi Yun
- Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei, 11529, Taiwan
| | - Ni-Chung Lee
- Department of Pediatrics and Medical Genetics, National Taiwan University Hospital, 8 Chung-Shan South Road, Taipei, 10041, Taiwan
| | - Yin-Hsiu Chien
- Department of Pediatrics and Medical Genetics, National Taiwan University Hospital, 8 Chung-Shan South Road, Taipei, 10041, Taiwan
| | - Wuh-Liang Hwu
- Department of Pediatrics and Medical Genetics, National Taiwan University Hospital, 8 Chung-Shan South Road, Taipei, 10041, Taiwan
- Center for Precision Medicine, China Medical University Hospital, 2, Yude Road, Taichung, 404327, Taiwan
| | - Wei-Chieh Cheng
- Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei, 11529, Taiwan.
- Department of Chemistry, National Cheng-Kung University, 1, University Road, Tainan, 701, Taiwan.
- Department of Applied Chemistry, National Chiayi University, 300, Xuefu Road, Chiayi, 600, Taiwan.
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung, 807, Taiwan.
| |
Collapse
|
2
|
Li HY, Lin HY, Chang SK, Chiu YT, Hou CC, Ko TP, Huang KF, Niu DM, Cheng WC. Mechanistic Insights into Dibasic Iminosugars as pH-Selective Pharmacological Chaperones to Stabilize Human α-Galactosidase. JACS AU 2024; 4:908-918. [PMID: 38559739 PMCID: PMC10976572 DOI: 10.1021/jacsau.3c00684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 04/04/2024]
Abstract
The use of pharmacological chaperones (PCs) to stabilize specific enzymes and impart a therapeutic benefit is an emerging strategy in drug discovery. However, designing molecules that can bind optimally to their targets at physiological pH remains a major challenge. Our previous study found that dibasic polyhydroxylated pyrrolidine 5 exhibited superior pH-selective inhibitory activity and chaperoning activity for human α-galactosidase A (α-Gal A) compared with its monobasic parent molecule, 4. To further investigate the role of different C-2 moieties on the pH-selectivity and protecting effects of these compounds, we designed and synthesized a library of monobasic and dibasic iminosugars, screened them for α-Gal A-stabilizing activity using thermal shift and heat-induced denaturation assays, and characterized the mechanistic basis for this stabilization using X-ray crystallography and binding assays. We noted that the dibasic iminosugars 5 and 20 protect α-Gal A from denaturation and inactivation at lower concentrations than monobasic or other N-substituted derivatives; a finding attributed to the nitrogen on the C-2 methylene of 5 and 20, which forms the bifurcated salt bridges (BSBs) with two carboxyl residues, E203 and D231. Additionally, the formation of BSBs at pH 7.0 and the electrostatic repulsion between the vicinal ammonium cations of dibasic iminosugars at pH 4.5 are responsible for their pH-selective binding to α-Gal A. Moreover, compounds 5 and 20 demonstrated promising results in improving enzyme replacement therapy and exhibited significant chaperoning effects in Fabry cells. These findings suggest amino-iminosugars 5 and 20 as useful models to demonstrate how an additional exocyclic amino group can improve their pH-selectivity and protecting effects, providing new insights for the design of pH-selective PCs.
Collapse
Affiliation(s)
- Huang-Yi Li
- Genomics
Research Center, Academia Sinica, 128, Section 2, Academia Road, Nankang, Taipei 115201, Taiwan
- Institute
of Biochemistry and Molecular Biology, National
Yang Ming Chiao Tung University, 155, Section 2, Linong Street, Taipei 112304, Taiwan
| | - Hung-Yi Lin
- Genomics
Research Center, Academia Sinica, 128, Section 2, Academia Road, Nankang, Taipei 115201, Taiwan
| | - Sheng-Kai Chang
- Department
of Pediatrics, Taipei Veterans General Hospital, 201, Section 2, Shipai Road, Beitou, Taipei 112201, Taiwan
| | - Yu-Ting Chiu
- Genomics
Research Center, Academia Sinica, 128, Section 2, Academia Road, Nankang, Taipei 115201, Taiwan
| | - Chung-Chien Hou
- Genomics
Research Center, Academia Sinica, 128, Section 2, Academia Road, Nankang, Taipei 115201, Taiwan
| | - Tzu-Ping Ko
- Institute
of Biological Chemistry, Academia Sinica, 128, Section 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Kai-Fa Huang
- Institute
of Biological Chemistry, Academia Sinica, 128, Section 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Dau-Ming Niu
- Department
of Pediatrics, Taipei Veterans General Hospital, 201, Section 2, Shipai Road, Beitou, Taipei 112201, Taiwan
- Institute
of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, 155, Section 2, Linong Street, Taipei 112304, Taiwan
| | - Wei-Chieh Cheng
- Genomics
Research Center, Academia Sinica, 128, Section 2, Academia Road, Nankang, Taipei 115201, Taiwan
- Department
of Chemistry, National Cheng Kung University, 1, University Road, East, Tainan 701401, Taiwan
- Department
of Chemistry, National University of Kaohsiung, 700, University Road, Nanzih, Kaohsiung 811726, Taiwan
- Department
of Chemistry, National Chiayi University, 300, Syuefu Road, Chiayi 600355, Taiwan
| |
Collapse
|
3
|
Li HY, Lee NC, Chiu YT, Chang YW, Lin CC, Chou CL, Chien YH, Hwu WL, Cheng WC. Harnessing polyhydroxylated pyrrolidines as a stabilizer of acid alpha-glucosidase (GAA) to enhance the efficacy of enzyme replacement therapy in Pompe disease. Bioorg Med Chem 2023; 78:117129. [PMID: 36542959 DOI: 10.1016/j.bmc.2022.117129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
To discover small molecules as acid alpha-glucosidase (GAA) stabilizers for potential benefits of the exogenous enzyme treatment toward Pompe disease cells, we started from the initial screening of the unique chemical space, consisting of sixteen stereoisomers of 2-aminomethyl polyhydroxylated pyrrolidines (ADMDPs) to find out two primary stabilizers 17 and 18. Further external or internal structural modifications of 17 and 18 were performed to increase structural diversity, followed by the protein thermal shift study to evaluate the GAA stabilizing ability. Fortunately, pyrrolidine 21, possessing an l-arabino-typed configuration pattern, was identified as a specific potent rh-GAA stabilizer, enabling the suppression of rh-GAA protein denaturation. In a cell-based Pompe model, co-administration of 21 with rh-GAA protein significantly improved enzymatic activity (up to 5-fold) compared to administration of enzyme alone. Potentially, pyrrolidine 21 enables the direct increase of ERT (enzyme replacement therapy) efficacy in cellulo and in vivo.
Collapse
Affiliation(s)
- Huang-Yi Li
- Genomics Research Center, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei 11529, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, 1001, University Road, Hsinchu 300, Taiwan
| | - Ni-Chung Lee
- Department of Pediatrics and Medical Genetics, National Taiwan University Hospital, 8 Chung-Shan South Road, Taipei 10041, Taiwan
| | - Yu-Ting Chiu
- Genomics Research Center, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Yu-Wen Chang
- Genomics Research Center, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Chu-Chung Lin
- AnHorn Medicines Co., Ltd. National Biotechnology Research Park C522, 99, Lane 130, Academia Road, Section 1, Nankang, Taipei 11529, Taiwan
| | - Cheng-Li Chou
- AnHorn Medicines Co., Ltd. National Biotechnology Research Park C522, 99, Lane 130, Academia Road, Section 1, Nankang, Taipei 11529, Taiwan
| | - Yin-Hsiu Chien
- Department of Pediatrics and Medical Genetics, National Taiwan University Hospital, 8 Chung-Shan South Road, Taipei 10041, Taiwan
| | - Wuh-Liang Hwu
- Department of Pediatrics and Medical Genetics, National Taiwan University Hospital, 8 Chung-Shan South Road, Taipei 10041, Taiwan.
| | - Wei-Chieh Cheng
- Genomics Research Center, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei 11529, Taiwan; Department of Chemistry, National Cheng Kung University, 1, University Road, Tainan 70101, Taiwan; Department of Chemistry, National University of Kaohsiung, 700, Kaohsiung University Road, Nanzih District, Kaohsiung 81148, Taiwan; Department of Chemistry, National Chiayi University, 300, Syuefu Road, Chiayi 60004, Taiwan.
| |
Collapse
|
4
|
Chen WA, Li HY, Sayyad A, Huang CY, Cheng WC. Synthesis of Nitrone-derived Pyrrolidine Scaffolds and Their Combinatorial Libraries to Develop Selective α-l-Rhamnosidase Inhibitors. Chem Asian J 2022; 17:e202200172. [PMID: 35535638 DOI: 10.1002/asia.202200172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/28/2022] [Indexed: 11/06/2022]
Abstract
A general and flexible approach toward the development of α-l-rhamnosidase (α-l-Rha-ase) inhibitors is described. Five enantiopure poly-substituted pyrrolidine-based scaffolds bearing the C1-aminomethyl moiety were designed and synthesized from five-membered cyclic nitrones. Each structurally diversified amide library of these scaffolds was rapidly generated via combinatorial parallel synthesis and applied for in-situ inhibition study against α-l-Rha-ase, allowing us to efficiently identify new inhibition hits. Surprisingly, all promising inhibitors are derived from the same scaffold 3. Among them, the most potent and selective inhibitor is pyrrolidine 19 with Ki =0.24 μM, approximately 24-fold more potent than the reference compound DAA (Ki =5.7 μM). It is the first study to comprehensively prepare pyrrolidine-based scaffolds and libraries for inhibition study against α-l-Rha-ase.
Collapse
Affiliation(s)
- Wei-An Chen
- Genomics Research Centre, Academia Sinica, 128, Section 2, Academia Road, 11529, Taipei, Taiwan
| | - Huang-Yi Li
- Genomics Research Centre, Academia Sinica, 128, Section 2, Academia Road, 11529, Taipei, Taiwan
| | - Ashik Sayyad
- Genomics Research Centre, Academia Sinica, 128, Section 2, Academia Road, 11529, Taipei, Taiwan
| | - Chun-Yen Huang
- Genomics Research Centre, Academia Sinica, 128, Section 2, Academia Road, 11529, Taipei, Taiwan
| | - Wei-Chieh Cheng
- Genomics Research Centre, Academia Sinica, 128, Section 2, Academia Road, 11529, Taipei, Taiwan
- Department of Chemistry, National Cheng-Kung University, 1, University Road, 701, Tainan, Taiwan
- Department of Applied Chemistry, National Chiayi University, 300, Xuefu Rd., East Dist., 600, Chiayi, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., 807, Kaohsiung, Taiwan
| |
Collapse
|
5
|
Akulov AA, Varaksin MV, Charushin VN, Chupakhin ON. C(sp2) – H functionalization of aldimines and related compounds: advances and prospects. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This is the first systematic review of the most relevant approaches to direct C(sp2)–H bond functionalization of azomethine derivatives. The scope of the applicability of various transformations is analyzed. The review assesses prospects of the application of this functionalization strategy in the multistep synthesis of valuable compounds for use in medicinal chemistry, materials science and related areas.
The bibliography includes 124 references.
Collapse
|
6
|
Manjula V, Venkateswaramoorthi R, Dharmaraja J, Selvanayagam S. 2,6-Diphenyl-3-(prop-2-en-1-yl)piperidin-4-one. IUCRDATA 2020; 5:x200526. [PMID: 36338304 PMCID: PMC9462206 DOI: 10.1107/s241431462000526x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/15/2020] [Indexed: 11/11/2022] Open
Abstract
In the title compound, C20H21NO, the dihedral angle between the phenyl ring is 47.5 (1)° and the piperidine ring adopts a chair conformation. In the crystal, mol-ecules are linked by C-H⋯π inter-actions into dimers with the mol-ecules related by twofold symmetry.
Collapse
Affiliation(s)
- V. Manjula
- Department of Chemistry, Periyar University, Salem 636 011, India
| | | | - J. Dharmaraja
- Department of Chemistry, Anna Government Arts College, Vadachennimalai, Attur 636 121, India
| | - S. Selvanayagam
- PG & Research Department of Physics, Government Arts College, Melur 625 106, India
| |
Collapse
|