1
|
Mao T, Gao J, Jia J, Zou F, Wang K, Wang Y, Li J, Shen T, Li H. Small-molecule inhibitors in psoriasis: medicinal chemistry insights. Expert Opin Drug Discov 2025:1-22. [PMID: 40380777 DOI: 10.1080/17460441.2025.2507767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/17/2025] [Accepted: 05/14/2025] [Indexed: 05/19/2025]
Abstract
INTRODUCTION Psoriasis is a prevalent and widespread chronic immune disease and i s impacted by several variables. Although various medicines with diverse modes of operation have been licensed for the medical management of psoriasis, the ongoing investigation into its pathophysiological mechanisms, along with challenges related to administration and cost, has led to the increasing preference for new small molecule medications, namely janus kinase (JAK) and phosphodiesterase 4 (PDE4) inhibitors, in systemic therapy research. AREAS COVERED This review takes a medicinal chemistry perspective to comprehensively explore the development as psoriasis therapy targets for small molecule inhibitors of JAK and PDE4. We describe the chemical space explored by medicinal chemists from 2010 to 2024, with particular emphasis on the importance of inhibitors with diverse scaffolds in studies of selectivity, potency and binding modes. EXPERT OPINION Advancements in psoriasis treatment have shifted focus toward small-molecule drugs, such as JAK and PDE4 inhibitors, which offer advantages over biologics, including oral administration, improved cost-effectiveness, and reduced immunogenicity. Structural optimization based on receptor proteins and combination therapies further enhance drug performance and safety. Preclinical and clinical studies indicate that these strategies hold promise for developing more targeted, safer, and more effective treatments for psoriasis.
Collapse
Affiliation(s)
- Tianqi Mao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Jingjing Gao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Jie Jia
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Fengxia Zou
- College Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Kai Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yiyun Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Jiyu Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Tao Shen
- College Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Huanqiu Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
2
|
Almatary AM, Salem MSH, Elnagar MR, Aboutaleb MH, Ibrahim TS, Hamdi A, El-Sayed MAA. Dialkyloxyphenyl hybrids as PDE4B inhibitors: Design, synthesis, in vitro/in vivo anti-inflammatory activity and in silico insights. Bioorg Chem 2025; 161:108511. [PMID: 40311245 DOI: 10.1016/j.bioorg.2025.108511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/20/2025] [Accepted: 04/22/2025] [Indexed: 05/03/2025]
Abstract
A series of novel dialkyloxyphenyl hybrids 11a-11h and 12a-12c were designed and synthesized as PDE4 inhibitors with anti-inflammatory activity. All compounds demonstrated nanomolar-range inhibitory activity against both PDE4B and PDE4D isoforms with notable selectivity for PDE4B. The 3,4-dimethoxyphenyl derivative 11e exhibited superior PDE4B inhibitory activity (IC50 = 2.82 nM), with nine-fold selectivity compared to 1.5 of Rolipram. In TNF-α inhibition assays, 11e demonstrated remarkable potency (IC50 = 7.20 nM), comparable to roflumilast, followed by 11d (IC50 = 15.54 nM) and 11b (IC50 = 28.52 nM). In vivo evaluation using LPS-induced sepsis model revealed that 11e achieved the highest inhibition of both TNF-α (52.19 %) and neutrophilia (56.47 %) compared to reference compounds. Molecular docking and dynamics studies revealed that hybrids 11b, 11d, and 11e exhibit a characteristic binding mode within the PDE4 active sites, rationalizing their activity through specific interactions, and demonstrating higher stability in the active site compared to Roflumilast.
Collapse
Affiliation(s)
- Aya M Almatary
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt.
| | - Mohamed S H Salem
- SANKEN, The University of Osaka, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan; Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, 4.5 Km the Ring Road, Ismailia 41522, Egypt
| | - Mohamed R Elnagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11823, Egypt; Department of Pharmacology, College of Pharmacy, The Islamic University, Najaf 54001, Iraq
| | - Mohamed H Aboutaleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| | - Tarek S Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Abdelrahman Hamdi
- Faculty of Pharmacy, Department of Pharmaceutical Organic Chemistry, Mansoura University, Mansoura, Egypt.
| | - Magda A-A El-Sayed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt; Faculty of Pharmacy, Department of Pharmaceutical Organic Chemistry, Mansoura University, Mansoura, Egypt
| |
Collapse
|
3
|
Jin Z, Li G, He D, Chen J, Zhang Y, Li M, Yao H. An overview of small-molecule agents for the treatment of psoriasis. Bioorg Med Chem 2025; 119:118067. [PMID: 39832444 DOI: 10.1016/j.bmc.2025.118067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/19/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Psoriasis is a prevalent, chronic inflammatory disease characterized by abnormal skin plaques. To date, physical therapy, topical therapy, systemic therapy and biologic drugs are the most commonly employed strategies for treating psoriasis. Recently, many agents have advanced to clinical trials, and some anti-psoriasis drugs have been approved, including antibody drugs and small-molecule drugs. Many antibody drugs targeting cytokines and receptors, such as interleukin (IL-17 and IL-23) and tumor necrosis factor-α (TNF-α), have been approved for the treatment of psoriasis. And numerous small-molecule agents have displayed promising activities in the treatment of psoriasis. The targets of anti-psoriasis drugs encompass phosphodiesterase IV (PDE4), Janus kinase (JAK), tyrosine kinase (TYK), retinoic acid-related orphan receptors (ROR), vitamin D receptor (VDR), Interleukin (IL), Aryl hydrocarbon receptor (AhR), Interleukin-1 receptor-associated kinase 4 (IRAK), chemoattractant-like receptor 1 (ChemR23), Sphingosine-1-phosphate receptor (S1P), A3 adenosine receptor (A3AR), Heat shock protein 90 (HSP90), The Rho-associated protein kinases (ROCK), The bromodomain and extra-terminal domain (BET), FMS-like tyrosine kinase 3 (FLT3), Tumor Necrosis Factor α Converting Enzyme (TACE), Toll-like receptors (TLR), NF-κB inducing kinase (NIK), DNA topoisomerase I (Topo I), among others. Herein, this review mainly recapitulates the advancements in the structure and enzyme activity of small-molecule anti-psoriasis agents over the last ten years, and their binding modes were also explored. Hopefully, this review will facilitate the development of novel small-molecule agents as potential anti-psoriasis drugs.
Collapse
Affiliation(s)
- Zhiheng Jin
- Department of Stomatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan 528308 China
| | - Gang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Dengqin He
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Jiaxin Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Yali Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Mengjie Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Hongliang Yao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China.
| |
Collapse
|
4
|
Bhuktar H, Thirupataiah B, Mounika G, Samarpita S, Rithvik A, Sasi Priya SVS, Naskar R, Medishetti R, Jagadish PC, Parsa KVL, Rasool M, Chakraborty S, Pal M. Targeting next-generation PDE4 inhibitors in search of potential management of rheumatoid arthritis and psoriasis. Bioorg Chem 2024; 151:107689. [PMID: 39111119 DOI: 10.1016/j.bioorg.2024.107689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/30/2024]
Abstract
Immune-mediated inflammatory diseases (IMIDs) comprise a broad spectrum of conditions characterized by systemic inflammation affecting various organs and tissues, for which there is no known cure. The isoform-specific inhibition of phosphodiesterase-4B (PDE4B) over PDE4D constitutes an effective therapeutic strategy for the treatment of IMIDs that minimizes the adverse effects associated with non-selective PDE4 inhibitors. Thus, we report a new class of isoquinolone derivatives as next-generation PDE4 inhibitors for effective management of rheumatoid arthritis (RA) and psoriasis. Among the series, 8 compounds i.e. 1e, 1l, 1m, 1n, 1o, 2m, 2o and 3o showed promising PDE4B inhibition (>80 %) in vitro with IC50 ∼ 1.4-6.2 µM. The compound 1l was identified as an initial hit and was pursued for further studies. According to structure-activity relationship (SAR), an allyl group at C-4 position improved PDE4B inhibition. The correlation between in vitro activity data and binding affinities obtained via molecular docking suggested that the high-affinity binding to PDE4B is a prerequisite for the effective inhibition of PDE4B. Notably, the hit 1l showed selectivity towards PDE4B over PDE4D in vitro. Furthermore, 1l treatment (30 mg/kg) in the adjuvant-induced arthritis (AIA) rat model induced by complete Freund's adjuvant (CFA) demonstrated anti-arthritic potential via ameliorating paw swelling and body weight, narrowing joint space, reducing excessive immune cells infiltration and pannus formation in addition to reducing mRNA expression of pro-inflammatory cytokines such as TNF-α and IL-6 in synovial tissues of experimental rats. Additionally, 1l reduced the hyper-proliferative state and colony forming potential of IMQ-induced psoriatic keratinocytes. The treatment of these cells with 1l markedly reduced the protein levels of Ki67 and mRNA levels of pro-inflammatory cytokines e.g. IL-17A and TNF-α suggesting its potent anti-psoriatic potential. Furthermore, 1l did not show any significant adverse effects when evaluated in a systematic toxicity (e.g. teratogenicity, hepatotoxicity and cardiotoxicity) studies in zebrafish at the tested concentrations (1-100 µM) and the NOAEL (no-observed-adverse-effect level) was found to be 100 µM. Thus, with promising anti-inflammatory effects both in vitro and in vivo along with PDE4B selectivity with an acceptable safety margin, 1l emerged as a new and promising inhibitor for further studies.
Collapse
Affiliation(s)
- Harshavardhan Bhuktar
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, Telangana, India; Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - B Thirupataiah
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, Telangana, India
| | - Guntipally Mounika
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, Telangana, India
| | - Snigdha Samarpita
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nadu, India
| | - Arulkumaran Rithvik
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nadu, India
| | - S V S Sasi Priya
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, Telangana, India
| | - Roumi Naskar
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, Telangana, India
| | - Raghavender Medishetti
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, Telangana, India
| | - P C Jagadish
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Kishore V L Parsa
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, Telangana, India
| | - Mahaboobkhan Rasool
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nadu, India
| | - Sandipan Chakraborty
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, Telangana, India
| | - Manojit Pal
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, Telangana, India; Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India.
| |
Collapse
|
5
|
Lusardi M, Rapetti F, Spallarossa A, Brullo C. PDE4D: A Multipurpose Pharmacological Target. Int J Mol Sci 2024; 25:8052. [PMID: 39125619 PMCID: PMC11311937 DOI: 10.3390/ijms25158052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Phosphodiesterase 4 (PDE4) enzymes catalyze cyclic adenosine monophosphate (cAMP) hydrolysis and are involved in a variety of physiological processes, including brain function, monocyte and macrophage activation, and neutrophil infiltration. Among different PDE4 isoforms, Phosphodiesterases 4D (PDE4Ds) play a fundamental role in cognitive, learning and memory consolidation processes and cancer development. Selective PDE4D inhibitors (PDE4Dis) could represent an innovative and valid therapeutic strategy for the treatment of various neurodegenerative diseases, such as Alzheimer's, Parkinson's, Huntington's, and Lou Gehrig's diseases, but also for stroke, traumatic brain and spinal cord injury, mild cognitive impairment, and all demyelinating diseases such as multiple sclerosis. In addition, small molecules able to block PDE4D isoforms have been recently studied for the treatment of specific cancer types, particularly hepatocellular carcinoma and breast cancer. This review overviews the PDE4DIsso far identified and provides useful information, from a medicinal chemistry point of view, for the development of a novel series of compounds with improved pharmacological properties.
Collapse
Affiliation(s)
- Matteo Lusardi
- Department of Pharmacy (DIFAR), University of Genoa, Viale Benedetto XV 3, 16132 Genova, Italy; (F.R.); (A.S.)
| | | | | | - Chiara Brullo
- Department of Pharmacy (DIFAR), University of Genoa, Viale Benedetto XV 3, 16132 Genova, Italy; (F.R.); (A.S.)
| |
Collapse
|
6
|
Babu SA, A A, Mohan M, Paul N, Mathew J, John J. Tandem Reactions of Electrophilic Indoles toward Indolizines and Their Subsequent Transformations through Pd(II)-Mediated C-H Functionalization to Access Polyring-Fused N-Heterocycles. ACS OMEGA 2024; 9:16196-16206. [PMID: 38617644 PMCID: PMC11007710 DOI: 10.1021/acsomega.3c10194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 04/16/2024]
Abstract
A simple and efficient synthetic approach for generating a library of structurally novel indolizines has been developed via sequential 1,3-dipolar cycloaddition-ring opening processes. Using this methodology, a series of indolizines bearing different substituents were made in moderate to good yields. The presence of two functionalizable C-H bonds in these indolizine motifs makes them attractive for accessing fused indolizine scaffolds. In this line, we have introduced palladium-mediated site-selective C-H functionalizations, where the N-center and the two C-H centers of the indolizine moiety can be readily functionalized to generate fused N-heterocycles. Utilizing a Pd-mediated dual C-H activation of 5-benzoyl-substituted indolizine afforded 6H-indeno-indolizine, and a tetracene, viz., indolizino[2,1-b]indoles, was produced in the same substrate by the Pd-catalyzed selective C-H amination in the presence of oxygen.
Collapse
Affiliation(s)
- Sheba Ann Babu
- Chemical
Sciences and Technology Division, CSIR-National
Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aparna A
- Chemical
Sciences and Technology Division, CSIR-National
Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
| | - Malavika Mohan
- Chemical
Sciences and Technology Division, CSIR-National
Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
| | - Namitha Paul
- Chemical
Sciences and Technology Division, CSIR-National
Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
| | - Jomon Mathew
- Research
and Post-Graduate Department of Chemistry, St. Joseph’s College, Devagiri, Calicut 673008, India
| | - Jubi John
- Chemical
Sciences and Technology Division, CSIR-National
Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
7
|
Riedl R, Kühn A, Hupfer Y, Hebecker B, Peltner LK, Jordan PM, Werz O, Lorkowski S, Wiegand C, Wallert M. Characterization of Different Inflammatory Skin Conditions in a Mouse Model of DNCB-Induced Atopic Dermatitis. Inflammation 2024; 47:771-788. [PMID: 38150167 DOI: 10.1007/s10753-023-01943-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/10/2023] [Accepted: 12/04/2023] [Indexed: 12/28/2023]
Abstract
The mouse model of 2,4-dinitrochlorbenzene (DNCB)-induced human-like atopic dermatitis (hlAD) has been widely used to test novel treatment strategies and compounds. However, the study designs and methods are highly diverse, presenting different hlAD disease patterns that occur after sensitization and repeated challenge with DNCB on dorsal skin. In addition, there is a lack of information about the progression of the disease during the experiment and the achieved pheno- and endotypes, especially at the timepoint when therapeutic treatment is initiated. We here examine hlAD in a DNCB-induced BALB/cJRj model at different timepoints: (i) before starting treatment with dexamethasone, representing a standard drug control (day 12) and (ii) at the end of the experiment (day 22). Both timepoints display typical AD-associated characteristics: skin thickening, spongiosis, hyper- and parakeratosis, altered cytokine and gene expression, increased lipid mediator formation, barrier protein and antimicrobial peptide abnormalities, as well as lymphoid organ hypertrophy. Increased mast cell infiltration into the skin and elevated immunoglobulin E plasma concentrations indicate a type I allergy response. The DNCB-treated skin showed an extrinsic moderate sub-acute hlAD lesion at day 12 and an extrinsic mild sub-acute to chronic pheno- and endotype at day 22 with a dominating Th2 response. A dependency of the filaggrin formation and expression in correlation to the disease severity in the DNCB-treated skin was found. In conclusion, our study reveals a detailed classification of a hlAD at two timepoints with different inflammatory skin conditions and pheno- and endotypes, thereby providing a better understanding of the DNCB-induced hlAD model in BALB/cJRj mice.
Collapse
Affiliation(s)
- Rebecca Riedl
- Department of Dermatology, Dermatological Research Laboratory, Jena University Hospital, 07747, Jena, Germany
- Department of Biochemistry and Physiology of Nutrition, Institute of Nutritional Science, Friedrich Schiller University, 07743, Jena, Germany
| | - Annika Kühn
- Department of Biochemistry and Physiology of Nutrition, Institute of Nutritional Science, Friedrich Schiller University, 07743, Jena, Germany
| | - Yvonne Hupfer
- Department of Biochemistry and Physiology of Nutrition, Institute of Nutritional Science, Friedrich Schiller University, 07743, Jena, Germany
| | - Betty Hebecker
- Department of Biochemistry and Physiology of Nutrition, Institute of Nutritional Science, Friedrich Schiller University, 07743, Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743, Jena, Germany
| | - Lukas K Peltner
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, 07743, Jena, Germany
| | - Paul M Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University, 07743, Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University, 07743, Jena, Germany
| | - Stefan Lorkowski
- Department of Biochemistry and Physiology of Nutrition, Institute of Nutritional Science, Friedrich Schiller University, 07743, Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743, Jena, Germany
| | - Cornelia Wiegand
- Department of Dermatology, Dermatological Research Laboratory, Jena University Hospital, 07747, Jena, Germany
| | - Maria Wallert
- Department of Biochemistry and Physiology of Nutrition, Institute of Nutritional Science, Friedrich Schiller University, 07743, Jena, Germany.
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743, Jena, Germany.
| |
Collapse
|
8
|
Riedl R, Kühn A, Rietz D, Hebecker B, Glowalla KG, Peltner LK, Jordan PM, Werz O, Lorkowski S, Wiegand C, Wallert M. Establishment and Characterization of Mild Atopic Dermatitis in the DNCB-Induced Mouse Model. Int J Mol Sci 2023; 24:12325. [PMID: 37569701 PMCID: PMC10418750 DOI: 10.3390/ijms241512325] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
In dermatological research, 2,4-dinitrochlorbenzene (DNCB)-induced atopic dermatitis (AD) is a standard model as it displays many disease-associated characteristics of human AD. However, the reproducibility of the model is challenging due to the lack of information regarding the methodology and the description of the phenotype and endotype of the mimicked disease. In this study, a DNCB-induced mouse model was established with a detailed procedure description and classification of the AD human-like skin type. The disease was induced with 1% DNCB in the sensitization phase and repeated applications of 0.3% and 0.5% DNCB in the challenging phase which led to a mild phenotype of AD eczema. Pathophysiological changes of the dorsal skin were measured: thickening of the epidermis and dermis, altered skin barrier proteins, increased TH1 and TH2 cytokine expression, a shift in polyunsaturated fatty acids, increased pro-resolving and inflammatory mediator formation, and dysregulated inflammation-associated gene expression. A link to type I allergy reactions was evaluated by increased mast cell infiltration into the skin accompanied by elevated IgE and histamine levels in plasma. As expected for mild AD, no systemic inflammation was observed. In conclusion, this experimental setup demonstrates many features of a mild human-like extrinsic AD in murine skin.
Collapse
Affiliation(s)
- Rebecca Riedl
- Department of Dermatology, University Hospital Jena, Dermatological Research Laboratory, 07747 Jena, Germany; (R.R.); (D.R.); (C.W.)
- Department of Nutritional Biochemistry and Physiology, Institute of Nutritional Science, Friedrich Schiller University, 07743 Jena, Germany; (A.K.); (B.H.); (S.L.)
| | - Annika Kühn
- Department of Nutritional Biochemistry and Physiology, Institute of Nutritional Science, Friedrich Schiller University, 07743 Jena, Germany; (A.K.); (B.H.); (S.L.)
| | - Denise Rietz
- Department of Dermatology, University Hospital Jena, Dermatological Research Laboratory, 07747 Jena, Germany; (R.R.); (D.R.); (C.W.)
| | - Betty Hebecker
- Department of Nutritional Biochemistry and Physiology, Institute of Nutritional Science, Friedrich Schiller University, 07743 Jena, Germany; (A.K.); (B.H.); (S.L.)
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743 Jena, Germany
| | - Karl-Gunther Glowalla
- Service Unit Experimental Biomedicine, Friedrich Schiller University, 07745 Jena, Germany;
| | - Lukas K. Peltner
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, 07743 Jena, Germany; (L.K.P.); (P.M.J.); (O.W.)
| | - Paul M. Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, 07743 Jena, Germany; (L.K.P.); (P.M.J.); (O.W.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University, 07743 Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, 07743 Jena, Germany; (L.K.P.); (P.M.J.); (O.W.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University, 07743 Jena, Germany
| | - Stefan Lorkowski
- Department of Nutritional Biochemistry and Physiology, Institute of Nutritional Science, Friedrich Schiller University, 07743 Jena, Germany; (A.K.); (B.H.); (S.L.)
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743 Jena, Germany
| | - Cornelia Wiegand
- Department of Dermatology, University Hospital Jena, Dermatological Research Laboratory, 07747 Jena, Germany; (R.R.); (D.R.); (C.W.)
| | - Maria Wallert
- Department of Nutritional Biochemistry and Physiology, Institute of Nutritional Science, Friedrich Schiller University, 07743 Jena, Germany; (A.K.); (B.H.); (S.L.)
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743 Jena, Germany
| |
Collapse
|
9
|
Du B, Luo M, Ren C, Zhang J. PDE4 inhibitors for disease therapy: advances and future perspective. Future Med Chem 2023; 15:1185-1207. [PMID: 37470147 DOI: 10.4155/fmc-2023-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023] Open
Abstract
The PDE4 enzyme family is specifically responsible for hydrolyzing cAMP and plays a vital role in regulating the balance of second messengers. As a crucial regulator in signal transduction, PDE4 has displayed promising pharmacological targets in a variety of diseases, for which its inhibitors have been used as a therapeutic strategy. This review provides a comprehensive summary of the development of PDE4 inhibitors in the past few years, along with the structure, clinical and research progress of multiple inhibitors of PDE4, focusing on the research and development strategies of PDE4 inhibitors. We hope our analysis will provide a significant reference for the future development of new PDE4 inhibitors.
Collapse
Affiliation(s)
- Baochan Du
- Department of Neurology, Joint Research Institution of Altitude Health, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Min Luo
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Changyu Ren
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, Sichuan, 611130, China
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
10
|
Chi L, Wang H, Yu F, Gao C, Dai H, Si X, Dong Y, Liu H, Zhang Q. Design, synthesis and biological evaluation of nitric oxide-releasing 5-cyano-6-phenyl-2, 4-disubstituted pyrimidine derivatives. Bioorg Med Chem Lett 2023:129389. [PMID: 37379957 DOI: 10.1016/j.bmcl.2023.129389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/09/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023]
Abstract
In this study, a series of nitric oxide (NO) -releasing 5-cyano-6-phenyl-2, 4-disubstituted pyrimidine derivatives were designed and synthesized. In the in vitro biological evaluation, compound 24l exhibited optimal antiproliferative activity against MGC-803 cells with the IC50 value of 0.95 µM, significantly better than that of the positive control 5-FU. In addition, preliminary mechanistic studies indicated that 24l inhibited colony formation and blocked MGC-803 cells in the G0/G1 phase. DAPI staining, reactive oxygen species and apoptosis assays demonstrated that 24l induced apoptosis of MGC-803 cells. Particularly, the most potent compound 24l produced the highest level of NO, and the antiproliferative activity was significantly reduced after preincubation with NO scavengers. In conclusion, compound 24l may be considered as a potential candidate antitumor agent.
Collapse
Affiliation(s)
- Lingling Chi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Institute of Drug Discovery and Development, Zhengzhou 450001, China
| | - Hao Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Institute of Drug Discovery and Development, Zhengzhou 450001, China
| | - Fuqiang Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Institute of Drug Discovery and Development, Zhengzhou 450001, China
| | - Chao Gao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Institute of Drug Discovery and Development, Zhengzhou 450001, China
| | - Honglin Dai
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Institute of Drug Discovery and Development, Zhengzhou 450001, China
| | - Xiaojie Si
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Institute of Drug Discovery and Development, Zhengzhou 450001, China
| | - Yuze Dong
- Institute of Drug Discovery and Development, Zhengzhou 450001, China; Center for Drug Safety Evaluation and Research, Zhengzhou 450001, China
| | - Hongmin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Institute of Drug Discovery and Development, Zhengzhou 450001, China; Center for Drug Safety Evaluation and Research, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450052, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China
| | - Qiurong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Institute of Drug Discovery and Development, Zhengzhou 450001, China; Center for Drug Safety Evaluation and Research, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450052, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China
| |
Collapse
|
11
|
Li G, He D, Cai X, Guan W, Zhang Y, Wu JQ, Yao H. Advances in the development of phosphodiesterase-4 inhibitors. Eur J Med Chem 2023; 250:115195. [PMID: 36809706 DOI: 10.1016/j.ejmech.2023.115195] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
Phosphodiesterase 4 (PDE4) hydrolyzes cyclic adenosine monophosphate (cAMP) and plays a vital roles in many biological processes. PDE4 inhibitors have been widely studied as therapeutics for the treatment of various diseases, including asthma, chronic obstructive pulmonary disease (COPD) and psoriasis. Many PDE4 inhibitors have progressed to clinical trials and some have been approved as therapeutic drugs. Although many PDE4 inhibitors have been approved to enter clinical trials, however, the development of PDE4 inhibitors for the treatment of COPD or psoriasis has been hampered by their side effects of emesis. Herein, this review summarizes advances in the development of PDE4 inhibitors over the last ten years, focusing on PDE4 sub-family selectivity, dual target drugs, and therapeutic potential. Hopefully, this review will contribute to the development of novel PDE4 inhibitors as potential drugs.
Collapse
Affiliation(s)
- Gang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Dengqin He
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jianmen, 529020, China
| | - Xiaojia Cai
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jianmen, 529020, China
| | - Wen Guan
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Yali Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Jia-Qiang Wu
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jianmen, 529020, China
| | - Hongliang Yao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China.
| |
Collapse
|
12
|
Synthesis, bioactivity and preliminary mechanism of action of novel trifluoromethyl pyrimidine derivatives. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
New thieno[2,3-b]pyridine-fused [1,2,4]triazolo[4,3-a]pyrimidinone hybrids as potential MRSA and VRE inhibitors. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.04.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Sanad SM, Mekky AE, Said AY, Elneairy MA. New thieno[2,3-b]pyridine-fused [1,2,4]triazolo[4,3-a]pyrimidinone hybrids as potential MRSA and VRE inhibitors. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.05.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
15
|
Rashid HU, Martines MAU, Duarte AP, Jorge J, Rasool S, Muhammad R, Ahmad N, Umar MN. Research developments in the syntheses, anti-inflammatory activities and structure-activity relationships of pyrimidines. RSC Adv 2021; 11:6060-6098. [PMID: 35423143 PMCID: PMC8694831 DOI: 10.1039/d0ra10657g] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 01/27/2021] [Indexed: 12/22/2022] Open
Abstract
Pyrimidines are aromatic heterocyclic compounds that contain two nitrogen atoms at positions 1 and 3 of the six-membered ring. Numerous natural and synthetic pyrimidines are known to exist. They display a range of pharmacological effects including antioxidants, antibacterial, antiviral, antifungal, antituberculosis, and anti-inflammatory. This review sums up recent developments in the synthesis, anti-inflammatory effects, and structure-activity relationships (SARs) of pyrimidine derivatives. Numerous methods for the synthesis of pyrimidines are described. Anti-inflammatory effects of pyrimidines are attributed to their inhibitory response versus the expression and activities of certain vital inflammatory mediators namely prostaglandin E2, inducible nitric oxide synthase, tumor necrosis factor-α, nuclear factor κB, leukotrienes, and some interleukins. Literature studies reveal that a large number of pyrimidines exhibit potent anti-inflammatory effects. SARs of numerous pyrimidines have been discussed in detail. Several possible research guidelines and suggestions for the development of new pyrimidines as anti-inflammatory agents are also given. Detailed SAR analysis and prospects together provide clues for the synthesis of novel pyrimidine analogs possessing enhanced anti-inflammatory activities with minimum toxicity.
Collapse
Affiliation(s)
- Haroon Ur Rashid
- Institute of Chemistry, Federal University of Mato Grosso do Sul Campo Grande MS Brazil
- Department of Chemistry, Sarhad University of Science and Information Technology Peshawar Khyber Pakhtunkhwa Pakistan
| | | | | | - Juliana Jorge
- Institute of Chemistry, Federal University of Mato Grosso do Sul Campo Grande MS Brazil
| | - Shagufta Rasool
- Department of Chemistry, Sarhad University of Science and Information Technology Peshawar Khyber Pakhtunkhwa Pakistan
| | - Riaz Muhammad
- Department of Chemistry, Sarhad University of Science and Information Technology Peshawar Khyber Pakhtunkhwa Pakistan
| | - Nasir Ahmad
- Department of Chemistry, Islamia College University Peshawar Khyber Pakhtunkhwa Pakistan
| | - Muhammad Naveed Umar
- Department of Chemistry, University of Malakand Chakdara, Dir (L) Khyber Pakhtunkhwa Pakistan
| |
Collapse
|
16
|
Peng T, Qi B, He J, Ke H, Shi J. Advances in the Development of Phosphodiesterase-4 Inhibitors. J Med Chem 2020; 63:10594-10617. [PMID: 32255344 DOI: 10.1021/acs.jmedchem.9b02170] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cyclic nucleotide phosphodiesterase 4 (PDE4) specifically hydrolyzes cyclic adenosine monophosphate (cAMP) and plays vital roles in biological processes such as cancer development. To date, PDE4 inhibitors have been widely studied as therapeutics for the treatment of various diseases such as chronic obstructive pulmonary disease, and many of them have progressed to clinical trials or have been approved as drugs. Herein, we review the advances in the development of PDE4 inhibitors in the past decade and will focus on their pharmacophores, PDE4 subfamily selectivity, and therapeutic potential. Hopefully, this analysis will lead to a strategy for development of novel therapeutics targeting PDE4.
Collapse
Affiliation(s)
- Ting Peng
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Baowen Qi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jun He
- Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Sichuan 610041, China
| | - Hengming Ke
- Department of Biochemistry and Biophysics, and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu 610072, China
| |
Collapse
|
17
|
Lee J, Purushothaman B, Song JM. Inkjet Bioprinting on Parchment Paper for Hit Identification from Small Molecule Libraries. ACS OMEGA 2020; 5:588-596. [PMID: 31956806 PMCID: PMC6964283 DOI: 10.1021/acsomega.9b03169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
In this study, an inkjet bioprinting-based high-throughput screening (HTS) system was designed and applied for the first time to a catecholpyrimidine-based small molecule library to find hit compounds that inhibit c-Jun NH2-terminal kinase1 (JNK1). JNK1 kinase, inactivated MAPKAPK2, and specific fluorescent peptides along with bioink were printed on parchment paper under optimized printing conditions that did not allow rapid evaporation of printed media based on Triton-X and glycerol. Subsequently, different small compounds were printed and tested against JNK1 kinase to evaluate their degree of phosphorylation inhibition. After printing and incubation, fluorescence intensities from the phosphorylated/nonphosphorylated peptide were acquired for the % phosphorylation analysis. The IM50 (inhibitory mole 50) value was determined as 1.55 × 10-15 mol for the hit compound, 22. Thus, this work demonstrated that inkjet bioprinting-based HTS can potentially be adopted for the drug discovery process using small molecule libraries, and cost-effective HTS can be expected to be established based on its low nano- to picoliter printing volume.
Collapse
|
18
|
Gao F, Xiao J, Huang G. Current scenario of tetrazole hybrids for antibacterial activity. Eur J Med Chem 2019; 184:111744. [DOI: 10.1016/j.ejmech.2019.111744] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/05/2019] [Accepted: 09/26/2019] [Indexed: 12/18/2022]
|
19
|
Liao Y, Jia X, Tang Y, Li S, Zang Y, Wang L, Cui ZN, Song G. Discovery of novel inhibitors of phosphodiesterase 4 with 1-phenyl-3,4-dihydroisoquinoline scaffold: Structure-based drug design and fragment identification. Bioorg Med Chem Lett 2019; 29:126720. [DOI: 10.1016/j.bmcl.2019.126720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/06/2019] [Accepted: 09/25/2019] [Indexed: 12/25/2022]
|
20
|
Zhang B, Dai X, Bao Z, Mao Q, Duan Y, Yang Y, Wang S. Targeting the subpocket in xanthine oxidase: Design, synthesis, and biological evaluation of 2-[4-alkoxy-3-(1H-tetrazol-1-yl) phenyl]-6-oxo-1,6-dihydropyrimidine-5-carboxylic acid derivatives. Eur J Med Chem 2019; 181:111559. [PMID: 31376568 DOI: 10.1016/j.ejmech.2019.07.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/14/2019] [Accepted: 07/21/2019] [Indexed: 12/26/2022]
Abstract
Xanthine oxidase is an important target for the treatment of hyperuricemia, gout and other related diseases. Analysis of the high-resolution structure of xanthine oxidase with febuxostat identified the existence of a subpocket formed by the residues Leu648, Asn768, Lys771, Leu1014 and Pro1076. In this study, we designed and synthesized a series of 2-[4-alkoxy-3-(1H-tetrazol-1-yl) phenyl]-6-oxo-1,6-dihydropyrimidine-5-carboxylic acid derivatives (8a-8z) with a tetrazole group targeting this subpocket of the xanthine oxidase active site, and they were further evaluated for their inhibitory potency against xanthine oxidase in vitro. The results showed that all the tested compounds (8a-8z) exhibited an apparent xanthine oxidase inhibitory potency, with IC50 values ranging from 0.0288 μM to 0.629 μM. Among them, compound 8u emerged as the most potent xanthine oxidase inhibitor, with an IC50 value of 0.0288 μM, which was comparable to febuxostat (IC50 = 0.0236 μM). The structure-activity relationship results revealed that the hydrophobic group at the 4'-position was indispensable for the inhibitory potency in vitro against xanthine oxidase. A Lineweaver-Burk plot revealed that the representative compound 8u acted as a mixed-type inhibitor for xanthine oxidase. Furthermore, molecular modeling studies were performed to gain insights into the binding mode of 8u with xanthine oxidase and suggested that the tetrazole group of the phenyl unit was accommodated in the subpocket, as expected. Moreover, a potassium oxonate-induced hyperuricemia model in rats was chosen to further confirm the hypouricemic effect of compound 8u, and the result demonstrated that compound 8u could effectively reduce serum uric acid levels at an oral dose of 5 mg/kg. In addition, acute oral toxicity study in mice indicated that compound 8u was nontoxic and tolerated at a dose up to 2000 mg/kg. Thus, compound 8u could be a potential and efficacious agent in treatment of hyperuricemia with low toxicity.
Collapse
Affiliation(s)
- Bing Zhang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Xiwen Dai
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Ziyang Bao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Qing Mao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Yulin Duan
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Yuwei Yang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Shaojie Wang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China.
| |
Collapse
|
21
|
InCl3 mediated heteroarylation of indoles and their derivatization via C H activation strategy: Discovery of 2-(1H-indol-3-yl)-quinoxaline derivatives as a new class of PDE4B selective inhibitors for arthritis and/or multiple sclerosis. Eur J Med Chem 2019; 174:198-215. [DOI: 10.1016/j.ejmech.2019.04.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 12/22/2022]
|
22
|
Metal-free synthesis of novel indolizines from chromones and pyridinium salts via 1,3-dipolar cycloaddition, ring-opening and aromatization. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.04.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Zhang J, Wang S, Ba Y, Xu Z. Tetrazole hybrids with potential anticancer activity. Eur J Med Chem 2019; 178:341-351. [PMID: 31200236 DOI: 10.1016/j.ejmech.2019.05.071] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/25/2019] [Accepted: 05/25/2019] [Indexed: 12/15/2022]
Abstract
Cancer is one of the main causes of death throughout the world. The anticancer agents are indispensable for the treatment of various cancers, but most of them currently on the market are not specific, resulting in series of side effects of chemotherapy. Moreover, the emergency of drug-resistance towards cancers has already increased up to alarming level in the recent decades. Therefore, it's imperative to develop novel anticancer candidates with excellent activity against both drug-susceptible and drug-resistant cancers, and low toxicity as well. Tetrazole is the bioisoster of carboxylic acid, and its derivatives demonstrated promising anticancer activity. Hybridization of tetrazole with other anticancer pharmacophores may provide novel candidates with anticancer potency. The present review described the anticancer activity of tetrazole hybrids, and the structure-activity relationship (SAR) is also discussed to provide an insight for rational designs of tetrazole anticancer candidates with higher efficiency.
Collapse
Affiliation(s)
- Jingyu Zhang
- Pharmacy College, Henan University of Chinese Medicine, 450046, Zhengzhou, PR China.
| | - Su Wang
- Pharmacy College, Henan University of Chinese Medicine, 450046, Zhengzhou, PR China
| | - Yanyan Ba
- Pharmacy College, Henan University of Chinese Medicine, 450046, Zhengzhou, PR China
| | - Zhi Xu
- Huanghuai University, College of Chemistry and Pharmaceutical Engineering, Zhumadian, PR China.
| |
Collapse
|
24
|
Wang SQ, Wang YF, Xu Z. Tetrazole hybrids and their antifungal activities. Eur J Med Chem 2019; 170:225-234. [DOI: 10.1016/j.ejmech.2019.03.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 02/06/2023]
|
25
|
Gao F, Wang T, Xiao J, Huang G. Antibacterial activity study of 1,2,4-triazole derivatives. Eur J Med Chem 2019; 173:274-281. [PMID: 31009913 DOI: 10.1016/j.ejmech.2019.04.043] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 12/12/2022]
Abstract
Antibiotics are commonly used to fight against bacterial infections, but bacteria have already been resistant to almost all antibiotics due to abuse of antibiotics. 1,2,4-Triazole derived compounds possess chemotherapeutic effects including potential antibacterial activities against drug-sensitive as well as drug-resistant pathogens. Hybridization displays a high potential to develop novel drugs with the capacity to overcome drug resistance, reduce toxicity and improve pharmacokinetic profiles. More effective antibacterial candidates might be obtained by the hybridization of 1,2,4-triazole with other antibacterial pharmacophores. This review summarizes the recent advances of 1,2,4-triazole derivatives as potential antibacterial compounds, and the structure-activity relationship is also discussed.
Collapse
Affiliation(s)
- Feng Gao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China; Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China; Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, PR China.
| | - Tengfei Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Jiaqi Xiao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China; Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, PR China.
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, PR China.
| |
Collapse
|
26
|
Gunasekaran P, Rajasekaran G, Han EH, Chung YH, Choi YJ, Yang YJ, Lee JE, Kim HN, Lee K, Kim JS, Lee HJ, Choi EJ, Kim EK, Shin SY, Bang JK. Cationic Amphipathic Triazines with Potent Anti-bacterial, Anti-inflammatory and Anti-atopic Dermatitis Properties. Sci Rep 2019; 9:1292. [PMID: 30718691 PMCID: PMC6361992 DOI: 10.1038/s41598-018-37785-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/12/2018] [Indexed: 12/26/2022] Open
Abstract
The emergence of multi-drug resistant bacteria forces the therapeutic world into a position, where the development of new and alternative kind of antibiotics is highly important. Herein, we report the development of triazine-based amphiphilic small molecular antibacterial agents as mimics of lysine- and arginine-based cationic peptide antibiotics (CPAs). These compounds were screened against a panel of both Gram-positive and Gram-negative bacterial strains. Further, anti-inflammatory evaluation of these compounds led to the identification of four efficient compounds, DG-5, DG-6, DL-5, and DL-6. These compounds displayed significant potency against drug-resistant bacteria, including methicillin-resistant S. aureus (MRSA), multidrug-resistant P. aeruginosa (MDRPA), and vancomycin-resistant E. faecium (VREF). Mechanistic studies, including cytoplasmic membrane depolarization, confocal imaging and flow cytometry suggest that DG-5, DG-6, and DL-5 kill bacteria by targeting bacterial membrane, while DL-6 follows intracellular targeting mechanism. We also demonstrate that these molecules have therapeutic potential by showing the efficiency of DG-5 in preventing the lung inflammation of lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. More interestingly, DL-6 exhibited impressive potency on atopic dermatitis (AD)-like skin lesions in BALB/c mice model by suppressing pro-inflammatory cytokines. Collectively, these results suggest that they can serve a new class of antimicrobial, anti-inflammatory and anti-atopic agents with promising therapeutic potential.
Collapse
Affiliation(s)
- Pethaiah Gunasekaran
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk, 28119, Republic of Korea
| | - Ganesan Rajasekaran
- Department of Cellular and Molecular Medicine, Chosun University, Gwangju, 501-759, Republic of Korea
| | - Eun Hee Han
- Drug & Disease Target Research Team, Korea Basic Science Institute (KBSI), Cheongju, 28119, Republic of Korea
| | - Young-Ho Chung
- Drug & Disease Target Research Team, Korea Basic Science Institute (KBSI), Cheongju, 28119, Republic of Korea
| | - Young-Jin Choi
- Division of Food Bioscience, Konkuk University, Chungju, 27478, Republic of Korea
| | - Yu Jin Yang
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk, 28119, Republic of Korea
| | - Ji Eun Lee
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk, 28119, Republic of Korea
- Department of Bio-analytical Science, University of Science & Technology, Daejeon, 34113, Republic of Korea
| | - Hak Nam Kim
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk, 28119, Republic of Korea
| | - Kiram Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang-eup, Chungcheongbuk-do, 28116, Republic of Korea
| | - Jin-Seok Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang-eup, Chungcheongbuk-do, 28116, Republic of Korea
| | - Hyun-Jun Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang-eup, Chungcheongbuk-do, 28116, Republic of Korea
| | - Eun-Ju Choi
- Department of Physical Education, Daegu Catholic University, Gyeongsan, 38430, Republic of Korea
| | - Eun-Kyung Kim
- Division of Food Bioscience, Konkuk University, Chungju, 27478, Republic of Korea.
| | - Song Yub Shin
- Department of Cellular and Molecular Medicine, Chosun University, Gwangju, 501-759, Republic of Korea.
| | - Jeong Kyu Bang
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk, 28119, Republic of Korea.
- Department of Bio-analytical Science, University of Science & Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
27
|
Triazole derivatives and their antiplasmodial and antimalarial activities. Eur J Med Chem 2019; 166:206-223. [PMID: 30711831 DOI: 10.1016/j.ejmech.2019.01.047] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/19/2019] [Accepted: 01/19/2019] [Indexed: 01/23/2023]
Abstract
Malaria, caused by protozoan parasites of the genus Plasmodium especially by the most prevalent parasite Plasmodium falciparum, represents one of the most devastating and common infectious disease globally. Nearly half of the world population is under the risk of being infected, and more than 200 million new clinical cases with around half a million deaths occur annually. Drug therapy is the mainstay of antimalarial therapy, yet current drugs are threatened by the development of resistance, so it's imperative to develop new antimalarials with great potency against both drug-susceptible and drug-resistant malaria. Triazoles, bearing a five-membered heterocyclic ring with three nitrogen atoms, exhibit promising in vitro antiplasmodial and in vivo antimalarial activities. Moreover, several triazole-based drugs have already used in clinics for the treatment of various diseases, demonstrating the excellent pharmaceutical profiles. Therefore, triazole derivatives have the potential for clinical deployment in the control and eradication of malaria. This review covers the recent advances of triazole derivatives especially triazole hybrids as potential antimalarials. The structure-activity relationship is also discussed to provide an insight for rational designs of more efficient antimalarial candidates.
Collapse
|
28
|
Purushothaman B, Arumugam P, Song JM. A Novel Catecholopyrimidine Based Small Molecule PDE4B Inhibitor Suppresses Inflammatory Cytokines in Atopic Mice. Front Pharmacol 2018; 9:485. [PMID: 29867490 PMCID: PMC5958743 DOI: 10.3389/fphar.2018.00485] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/24/2018] [Indexed: 01/23/2023] Open
Abstract
Degradation of cyclic adenosine mono phosphate (cAMP) by phosphodiesterase-4B (PDE-4B) in the inflammatory cells leads to elevated expression of inflammatory cytokines in inflammatory cells. Suppression of cytokines has proved to be beneficial in the treatment of atopic dermatitis (AD). Henceforth, application of PDE4B specific inhibitor to minimize the degradation of cAMP can yield better results in the treatment of AD. PDE4B specific inhibitor with a limited side effect is highly warranted. Herein, we synthesized a novel PDE4 inhibitor, compound 2 comprising catecholopyrimidine core functionalized with trifluoromethyl (-CF3) group. PDE4B inhibitory potential and specificity of novel compounds were evaluated by PDE inhibitor assay. In vivo efficacy of the compounds was analyzed using DNCB-induced NC/Nga mice. IgE, CD4+ T-helper cell infiltration, and cytokine profiles were analyzed by ELISA and immunohistochemistry techniques. Toluidine blue staining was performed for mast cell count. PDE4 inhibitor assay confirmed that compound 2 specifically inhibits PDE4B. In vivo analysis with DNCB-induced NC/Nga mice confirmed that compound 2 suppressed the levels of pro-inflammatory cytokines such as TNF-α, IL-4, IL-5, and IL-17. Furthermore, compound 2 significantly reduced the infiltrative CD4+ T-helper cells, mast cells and IgE levels in atopic tissue. The in vitro and in vivo data suggested that compound 2 specifically inhibit the PDE4B and the symptoms of the AD in atopic mice. Compound 2 might constitute a good candidate molecule for the treatment of AD.
Collapse
Affiliation(s)
| | | | - Joon Myong Song
- College of Pharmacy, Seoul National University, Seoul, South Korea
| |
Collapse
|