1
|
Luzet V, Allemand F, Richet C, Dehecq B, Bonet A, Harakat D, Refouvelet B, Martin H, Cardey B, Pudlo M. Synthesis and evaluation of lipoic acid - donepezil hybrids for Alzheimer's disease using a straightforward strategy. Bioorg Med Chem Lett 2024; 112:129938. [PMID: 39222891 DOI: 10.1016/j.bmcl.2024.129938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Alzheimer's disease is associated with a progressive loss of neurons and synaptic connections in the cholinergic system. Oxidative stress contributes to neuronal damages and to the development of amyloid plaques and neurofibrillary tangles. Therefore, antioxidants have been widely studied to mitigate the progression of Alzheimer's disease, and among these, lipoic acid has demonstrated a neuroprotective effect. Here, we present the synthesis, the molecular modelling, and the evaluation of lipoic acid-donepezil hybrids based on O-desmethyldonepezil. As compounds 5 and 6 display a high inhibition of acetylcholinesterase (IC50 = 7.6 nM and 9.1 nM, respectively), selective against butyrylcholinesterase, and a notable neuroprotective effect, slightly better than that of lipoic acid, the present study suggests that O-desmethyldonepezil could serve as a platform for the straightforward design of donepezil hybrids.
Collapse
Affiliation(s)
- Vincent Luzet
- Université de Franche-Comté, FEMTO-ST, F-25000 Besançon, France.
| | - Florentin Allemand
- Université de Franche-Comté, Chrono-environnement UMR6249, CNRS, F-25000 Besançon, France.
| | - Chloé Richet
- Université de Franche-Comté, Chrono-environnement UMR6249, CNRS, F-25000 Besançon, France.
| | - Barbara Dehecq
- Université de Franche-Comté, UMR RIGHT, EFS, INSERM, F-25000 Besançon, France.
| | - Alexandre Bonet
- Université de Franche-Comté, UMR RIGHT, EFS, INSERM, F-25000 Besançon, France.
| | - Dominique Harakat
- URCATech, ICMR, CNRS UMR 7312, URCA Bât 18, BP 1039, 51687 Reims Cedex 2, France.
| | - Bernard Refouvelet
- Université de Franche-Comté, UMR INSERM 1322 LINC, F-25030 Besançon Cedex, France.
| | - Hélène Martin
- Université de Franche-Comté, UMR RIGHT, EFS, INSERM, F-25000 Besançon, France.
| | - Bruno Cardey
- Université de Franche-Comté, Chrono-environnement UMR6249, CNRS, F-25000 Besançon, France.
| | - Marc Pudlo
- Université de Franche-Comté, UMR RIGHT, EFS, INSERM, F-25000 Besançon, France.
| |
Collapse
|
2
|
Sun Y, Liu Z, Liu D, Zhang M, Chen L, Chai Z, Chen XB, Yu F. Synthesis of 4-Alkylated 1,4-Dihydropyridines: Fe(II)-Mediated Oxidative Cascade Cyclization Reaction of Cyclic Ethers with Enaminones. J Org Chem 2023; 88:11627-11636. [PMID: 37556793 DOI: 10.1021/acs.joc.3c00925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Syntheses of highly functionalized 4-alkylated 1,4-dihydropyridines (1,4-DHPs) from cyclic ethers and enaminones via iron(II)-mediated oxidative free radical cascade C(sp3)-H bond functionalization/C(sp3)-O bond cleavage/cyclization reaction have been first developed. This novel synthetic strategy offers an alternative method for the construction of 1,4-DHPs by using esters as the C4 sources, as well as expands the application of ethers in heterocycle synthesis.
Collapse
Affiliation(s)
- Yulin Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Zhuoyuan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Donghan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Mingshuai Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Longkun Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Zhangmengjie Chai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Xue-Bing Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
- College of Science, Honghe University, Mengzi 661199 Yunnan, P. R. China
| | - Fuchao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| |
Collapse
|
3
|
Roles of hybrid donepezil scaffolds as potent human acetylcholinesterase inhibitors using in silico interaction analysis, drug-likeness, and pharmacokinetics prediction. Chem Biol Interact 2022; 368:110227. [DOI: 10.1016/j.cbi.2022.110227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/29/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022]
|
4
|
Liu W, Tian L, Wu L, Chen H, Wang N, Liu X, Zhao C, Wu Z, Jiang X, Wu Q, Xu Z, Liu W, Zhao Q. Discovery of novel β-carboline-1,2,3-triazole hybrids as AChE/GSK-3β dual inhibitors for Alzheimer's disease treatment. Bioorg Chem 2022; 129:106168. [DOI: 10.1016/j.bioorg.2022.106168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/02/2022]
|
5
|
Zhang H, Wang Y, Wang Y, Li X, Wang S, Wang Z. Recent advance on carbamate-based cholinesterase inhibitors as potential multifunctional agents against Alzheimer's disease. Eur J Med Chem 2022; 240:114606. [PMID: 35858523 DOI: 10.1016/j.ejmech.2022.114606] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD), as the fourth leading cause of death among the elderly worldwide, has brought enormous challenge to the society. Due to its extremely complex pathogeneses, the development of multi-target directed ligands (MTDLs) becomes the major strategy for combating AD. Carbamate moiety, as an essential building block in the development of MTDLs, exhibits structural similarity to neurotransmitter acetylcholine (ACh) and has piqued extensive attention in discovering multifunctional cholinesterase inhibitors. To date, numerous preclinical studies demonstrate that carbamate-based cholinesterase inhibitors can prominently increase the level of ACh and improve cognition impairments and behavioral deficits, providing a privileged strategy for the treatment of AD. Based on the recent research focus on the novel cholinesterase inhibitors with multiple biofunctions, this review aims at summarizing and discussing the most recent studies excavating the potential carbamate-based MTDLs with cholinesterase inhibition efficacy, to accelerate the pace of pleiotropic cholinesterase inhibitors for coping AD.
Collapse
Affiliation(s)
- Honghua Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yuying Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yuqing Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Xuelin Li
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Shuzhi Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Zhen Wang
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
6
|
Travers-Lesage V, Mignani SM, Dallemagne P, Rochais C. Advances in prodrug design for Alzheimer's Disease: the state of the art. Expert Opin Drug Discov 2022; 17:325-341. [PMID: 35089846 DOI: 10.1080/17460441.2022.2031972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION : Alzheimer's disease (AD) is the most common cause of dementia with a memory loss and other cognitive abilities and is a complex and multifactorial neurodegenerative disease that remains today a challenge for drug discovery. Like many pathologies of the central nervous system, one of the first hurdles is the development of a compound with a sufficient brain exposure to ensure a potential therapeutic benefit. In this direction, the development of prodrugs has been an intense field of research in the last years. AREAS COVERED : Two main strategies of prodrugs development are analysed in this review. First, the application of the classical modulation of an active compound to incorporate a drug carrier or to prepare bioprecursor has been exemplified in the field of AD. This approach has led to several examples engaged in the clinical trials. In a second chapter, a series of innovative prodrugs based on a polypharmacological approach is described to take into account the complexity of AD. EXPERT OPINION : In the past 10 years, at least 6 prodrugs have been approved by the FDA for the treatment of central nervous system pathologies. Most of them have been developed in order to improve membrane permeability of the parent drugs. Facing the limitation of Alzheimer's disease drug discovery, the development of prodrugs will likely play a central role in the next years. Indeed, beside addressing the challenge of distribution, prodrug could also tackle the complex multifactorial origin of the disease with the rise of innovative pleiotropic prodrugs.
Collapse
Affiliation(s)
- Valentin Travers-Lesage
- Normandie Univ, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Caen, France
| | - Serge M Mignani
- UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS, 45 rue des Saints Pères, 75006 Paris, France.,CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Patrick Dallemagne
- Normandie Univ, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Caen, France
| | - Christophe Rochais
- Normandie Univ, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Caen, France
| |
Collapse
|
7
|
Makarian M, Gonzalez M, Salvador SM, Lorzadeh S, Hudson PK, Pecic S. Synthesis, kinetic evaluation and molecular docking studies of donepezil-based acetylcholinesterase inhibitors. J Mol Struct 2022; 1247. [PMID: 35221376 DOI: 10.1016/j.molstruc.2021.131425] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In an effort to develop new therapeutic agents to treat Alzheimer's disease, a series of donepezil-based analogs were designed, synthesized using an environmentally friendly route, and biologically evaluated for their inhibitory activity against electric eel acetylcholinesterase (AChE) enzyme. In vitro studies revealed that the phenyl moiety of donepezil can be successfully replaced with a pyridine ring leading to equally potent inhibitors of electric eel AChE. Further kinetic evaluations of the most potent inhibitor showed a dual-binding (mixed inhibition) mode, similar to donepezil. Molecular modeling studies suggest that several additional residues could be involved in the binding of this inhibitor in the human AChE enzyme active site compared to donepezil.
Collapse
Affiliation(s)
- Makar Makarian
- Department of Chemistry & Biochemistry, California State University, Fullerton, USA
| | - Michael Gonzalez
- Department of Chemistry & Biochemistry, California State University, Fullerton, USA
| | - Stephanie M Salvador
- Department of Chemistry & Biochemistry, California State University, Fullerton, USA
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Paula K Hudson
- Department of Chemistry & Biochemistry, California State University, Fullerton, USA
| | - Stevan Pecic
- Department of Chemistry & Biochemistry, California State University, Fullerton, USA
| |
Collapse
|
8
|
Pashaei H, Rouhani A, Nejabat M, Hadizadeh F, Mirzaei S, Nadri H, Maleki MF, Ghodsi R. Synthesis and molecular dynamic simulation studies of novel N-(1-benzylpiperidin-4-yl) quinoline-4-carboxamides as potential acetylcholinesterase inhibitors. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Baussanne I, Firstova O, Dediu AB, Larosa C, Furdui B, Ghinea IO, Thomas A, Chierici S, Dinica R, Demeunynck M. Interest of novel N-alkylpyridinium-indolizine hybrids in the field of Alzheimer's disease: Synthesis, characterization and evaluation of antioxidant activity, cholinesterase inhibition, and amyloid fibrillation interference. Bioorg Chem 2021; 116:105390. [PMID: 34670332 DOI: 10.1016/j.bioorg.2021.105390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/17/2021] [Accepted: 09/26/2021] [Indexed: 12/17/2022]
Abstract
A small library of molecules combining indolizine and N-alkyl pyridinium was synthesized and evaluated in a multi-target-directed-ligand strategy for Alzheimer's disease (AD) treatment. The new compounds were classified in three series depending on the number of methylene residues linking the two heterocycles (Ind-PyCx with x = 0, 2 or 3). The molecules were synthesized from the corresponding bis-pyridines by two-step formation of the indolizine core including mono-alkylation of pyridine and 1,3-dipolar cycloaddition with an alkylpropiolate. Their activities against AD's key-targets were evaluated in vitro: acetyl- and butyrylcholinesterase (AChE and BChE) inhibition, antioxidant properties and inhibition of amyloid fibril formation. None of the three series showed significant activities against all the targets. The Ind-PyC2 and Ind-PyC3 series are active on eeAChE and hAChE (µM IC50 values). Most of the positively charged molecules from these two series also appeared active against eqBChE, however they lost their activity on hBChE. Comparative molecular modeling of 13 and 15 docked in hAChE and hBChE highlighted the importance of the substituent (p-methoxybenzoyl or methyloxycarbonyl, respectively) located on the indolizine C-3 for the binding. The larger molecule 13 fits more tightly at the active site of the two enzymes than 15 that shows a larger degree of freedom. The Ind-PyC2 and Ind-PyC3 hybrids displayed some antioxidant activity when tested at 750 µg/mL (up to 95% inhibition of DPPH radical scavenging for 10). In both series, most hybrids were also able to interact with amyloid fibers, even if the inhibitory effect was observed at a high 100 µM concentration. The Ind-PyC0 molecules stand out completely due to their spectroscopic properties which prevent their evaluation by Ellman's and ThT assays. However, these molecules showed interesting features in the presence of preformed fibers. In particular, the strong increase in fluorescence of 3 in the presence of amyloid fibers is very promising for its use as a fibrillation fluorescent reporter dye.
Collapse
Affiliation(s)
| | - Olga Firstova
- Univ. Grenoble Alpes, CNRS, DPM, Grenoble, France; Univ. Grenoble Alpes, CNRS, DCM, Grenoble, France
| | - Andreea Botezatu Dediu
- Dunarea de Jos University of Galaţi, Faculty of Science and Environment, 111 Domneasca Street, 800201 Galaţi, Romania
| | | | - Bianca Furdui
- Dunarea de Jos University of Galaţi, Faculty of Science and Environment, 111 Domneasca Street, 800201 Galaţi, Romania
| | - Ioana Ottilia Ghinea
- Dunarea de Jos University of Galaţi, Faculty of Science and Environment, 111 Domneasca Street, 800201 Galaţi, Romania
| | - Aline Thomas
- Univ. Grenoble Alpes, CNRS, DPM, Grenoble, France
| | | | - Rodica Dinica
- Dunarea de Jos University of Galaţi, Faculty of Science and Environment, 111 Domneasca Street, 800201 Galaţi, Romania.
| | | |
Collapse
|
10
|
Mozaffarnia S, Teimuri-Mofrad R, Rashidi MR. Synthesis of 2-amino-3-cyano-4H-pyran derivatives using GO-Fc@Fe3O4 nanohybrid as a novel recyclable heterogeneous nanocatalyst and preparation of tacrine-naphthopyran hybrids as AChE inhibitors. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-020-02125-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Ghotbi G, Hamzeh-Mivehroud M, Taghvimi A, Davaran S, Dastmalchi S. Investigation of Experimental and In Silico Physicochemical Properties of Thiazole-Pyridinium Anti-Acetylcholinesterase Derivatives with Potential Anti-Alzheimer’s Activity. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.81] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background: Physicochemical properties play important role in fundamental issues like absorption and distribution of pharmaceuticals to the target tissue. This is particularly importantfor drugs acting in central nervous system (CNS). In this study, physicochemical properties of previously synthesized thiazole-pyridinium derivatives with anti-acetylcholinesterase activity and possible anti-Alzheimer effect were studied. Methods: Partition coefficient (n-octanol/water) and chromatographic Rf values for the studied compounds were determined using shake flask and high performance thin layer chromatography(HPTLC) methods, respectively. Different druglikeness properties of the compounds were also calculated using available software and web-servers. Results: The experimentally determined logarithm of partition coefficients (log P) for the studied compounds were in the range of -1.00 to -0.38. The Rf values for the studied compounds under the applied chromatographic condition ranged between 0.38 to 0.58. Moreover, calculated physicochemical properties, and druglikeness scores of the studied thiazole-pyridiniumderivatives and matching piperidine analogues were predicted. Furthermore, some ADMETfeatures of studied compounds like toxicity and metabolism by CYP450 (2C9, 2D6, 3A4, 1A2and 2C19) enzymes were predicted. Conclusion: The ranges of experimental and calculated LogP values for the studied thiazolepyridinumswere close. However, the determined Rf values showed relatively better correlation to the predicted LogP values indicating the suitability of used chromatographic method for comparing the lipophilicity of the positively charged pyridinium derivatives. The studied compounds were predicted to pass GI membrane and reach the CNS where they can exert their effects. In silico studies indicate that the piperidine counterparts of the studied thiazolepyridiniumsmay represent anti-Alzheimer agents with improved druglikeness properties.
Collapse
Affiliation(s)
- Golaleh Ghotbi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hamzeh-Mivehroud
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezou Taghvimi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee , Tabriz University of Medical Science, Tabriz, Iran
| | - Soodabeh Davaran
- Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Near East University, POBOX: 99138, Nicosia, North Cyprus, Mersin 10, Turkey
| |
Collapse
|
12
|
Ghotbi G, Mahdavi M, Najafi Z, Moghadam FH, Hamzeh-Mivehroud M, Davaran S, Dastmalchi S. Design, synthesis, biological evaluation, and docking study of novel dual-acting thiazole-pyridiniums inhibiting acetylcholinesterase and β-amyloid aggregation for Alzheimer’s disease. Bioorg Chem 2020; 103:104186. [DOI: 10.1016/j.bioorg.2020.104186] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 07/15/2020] [Accepted: 08/12/2020] [Indexed: 01/13/2023]
|
13
|
Topkaya SN, Karasakal A, Cetin AE, Parlar S, Alptüzün V. Electrochemical Characteristics of a Novel Pyridinium Salt as a Candidate Drug Molecule and Its Interaction with DNA. ELECTROANAL 2020. [DOI: 10.1002/elan.202000012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Seda Nur Topkaya
- Department of Analytical ChemistryFaculty of PharmacyIzmir Katip Celebi University Izmir Turkey
| | - Ayça Karasakal
- Department of ChemistryFaculty of Science and LettersNamık Kemal University Tekirdag Turkey
| | | | - Sülünay Parlar
- Department of Pharmaceutical ChemistryFaculty of PharmacyEge University Izmir Turkey
| | - Vildan Alptüzün
- Department of Pharmaceutical ChemistryFaculty of PharmacyEge University Izmir Turkey
| |
Collapse
|
14
|
Sierov D, Nazarenko K, Shvydenko K, Shvydenko T, Kostyuk A. Synthetic approaches to tetrahydro-2,7- and -1,6-naphthyridines. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Mozaffarnia S, Teimuri-Mofrad R, Rashidi MR. Design, synthesis and biological evaluation of 2,3-dihydro-5,6-dimethoxy-1H-inden-1-one and piperazinium salt hybrid derivatives as hAChE and hBuChE enzyme inhibitors. Eur J Med Chem 2020; 191:112140. [PMID: 32088494 DOI: 10.1016/j.ejmech.2020.112140] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/09/2020] [Accepted: 02/09/2020] [Indexed: 12/15/2022]
Abstract
2,3-Dihydro-5,6-dimethoxy-2-[4-(4-alkyl-4-methylpiperazinium-1-yl)benzylidine]-1H-inden-1-one halide salt derivatives as a novel donepezil hybrid analogs with the property of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzyme inhibition were designed and synthesized via N-alkylation reaction of 2,3-dihydro-5,6-dimethoxy-2-[4-(4-methylpiperazin-1-yl)benzylidene]-1H-inden-1-one with some alkyl halides. Biological tests demonstrated that most of the synthesized compounds have moderate to good inhibitory activities effect on cholinesterase enzymes. Among them, 10e showed the best profile as a selected compound for inhibition of hAChE (IC50 = 0.32) and hBuChE (IC50 = 0.43 μM) enzymes. Kinetic analysis and molecular docking led to a better understanding of this compound. Kinetic studies disclosed that 10e inhibited acetylcholinesterase in mixed-type and butyrylcholinesterase in non-competitive type. The toxicity results showed that 10e is less toxic than donepezil and has better inhibitory activity against hBuChE when compared to donepezil or Galantamine. Other performed experiments revealed that 10e has an anti-β amyloid effect which is capable of reducing ROS, LDH and MDA also possing positive effect on TAC. On the other hand, it has shown a good anti-inflammation effect.
Collapse
Affiliation(s)
- Sakineh Mozaffarnia
- Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Teimuri-Mofrad
- Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Mohammad-Reza Rashidi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Mohsin NUA, Ahmad M. Donepezil: A review of the recent structural modifications and their impact on anti-Alzheimer activity. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-97902019000418325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
17
|
Bhaskaruni SV, Maddila S, van Zyl WE, Jonnalagadda SB. Four-Component Fusion Protocol with NiO/ZrO 2 as a Robust Recyclable Catalyst for Novel 1,4-Dihydropyridines. ACS OMEGA 2019; 4:21187-21196. [PMID: 31867512 PMCID: PMC6921676 DOI: 10.1021/acsomega.9b02608] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
Nickel oxide loaded on zirconia (NiO/ZrO2) as an expedient catalyst is reported for the synthesis of 18 unsymmetrical 1,4-dihydropyridine derivatives. The Lewis acidic nature of the catalyst proved an excellent choice for the one-pot, four-component fusion reaction with excellent yields of 89-98% and a completion time of 20-45 min. Mechanistic studies show that enamine and imine functionalities are the two possible pathways for the formation of 1,4-dihydropyridines with high selectivity. Crystal structures of two novel compounds (5a, 5c) were reported. The catalyst demonstrated reusability up to six cycles. The reaction at room temperature and ethanol as a solvent make this protocol green and economical.
Collapse
|
18
|
Hosseinnejad T, Omrani-Pachin M, Heravi MM. Joint Computational and Experimental Investigations on the Synthesis and Properties of Hantzsch-type Compounds: An Overview. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190808110837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this review, we try to highlight the significance, mechanism propositions, computational and experimental assessments of Hantzsch dihydropyridine (DHPs) which readily oxidized to the corresponding pyridines as one of the most important aromatic heterocycles. We also try to give an overview to its ability in transfer hydrogenation, acting as hydride donors from computational and experimental points of view. Our survey is also extended to computational assessments on the structural and biological properties of Hantzsch DHPs.
Collapse
Affiliation(s)
- Tayebeh Hosseinnejad
- Department of Chemistry, Faculty of Physics & Chemistry, Alzahra University, Tehran, Iran
| | - Marzieh Omrani-Pachin
- Department of Chemistry, Faculty of Physics & Chemistry, Alzahra University, Tehran, Iran
| | - Majid M. Heravi
- Department of Chemistry, Faculty of Physics & Chemistry, Alzahra University, Tehran, Iran
| |
Collapse
|
19
|
Wu G, Zhao T, Kang D, Zhang J, Song Y, Namasivayam V, Kongsted J, Pannecouque C, De Clercq E, Poongavanam V, Liu X, Zhan P. Overview of Recent Strategic Advances in Medicinal Chemistry. J Med Chem 2019; 62:9375-9414. [PMID: 31050421 DOI: 10.1021/acs.jmedchem.9b00359] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introducing novel strategies, concepts, and technologies that speed up drug discovery and the drug development cycle is of great importance both in the highly competitive pharmaceutical industry as well as in academia. This Perspective aims to present a "big-picture" overview of recent strategic innovations in medicinal chemistry and drug discovery.
Collapse
Affiliation(s)
- Gaochan Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Tong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Jian Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Yuning Song
- Department of Clinical Pharmacy , Qilu Hospital of Shandong University , 250012 Ji'nan , China
| | - Vigneshwaran Namasivayam
- Pharmaceutical Institute, Pharmaceutical Chemistry II , University of Bonn , 53121 Bonn , Germany
| | - Jacob Kongsted
- Department of Physics, Chemistry, and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , K.U. Leuven , Herestraat 49 Postbus 1043 (09.A097) , B-3000 Leuven , Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , K.U. Leuven , Herestraat 49 Postbus 1043 (09.A097) , B-3000 Leuven , Belgium
| | - Vasanthanathan Poongavanam
- Department of Physics, Chemistry, and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| |
Collapse
|
20
|
Boudriga S, Elmhawech B, Moheddine A. Straightforward and Highly Diastereoselective Synthesis of a New Set of Functionalized Dispiropyrrolidines Involving Multicomponent 1,3‐Dipolar Cycloaddition with Azomethine Ylides. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Sarra Boudriga
- Department of Chemistry, Faculty of Science of MonastirLaboratory of Heterocyclic Chemistry Natural Products and Reactivity/LCHPNR 5000 Monastir Tunisia
| | - Besma Elmhawech
- Department of Chemistry, Faculty of Science of MonastirLaboratory of Heterocyclic Chemistry Natural Products and Reactivity/LCHPNR 5000 Monastir Tunisia
| | - Askri Moheddine
- Department of Chemistry, Faculty of Science of MonastirLaboratory of Heterocyclic Chemistry Natural Products and Reactivity/LCHPNR 5000 Monastir Tunisia
| |
Collapse
|
21
|
Barré A, Azzouz R, Gembus V, Papamicaël C, Levacher V. Design, Synthesis, and In Vitro Biological Activities of a Bio-Oxidizable Prodrug to Deliver Both ChEs and DYRK1A Inhibitors for AD Therapy. Molecules 2019; 24:E1264. [PMID: 30939771 PMCID: PMC6479981 DOI: 10.3390/molecules24071264] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 01/28/2023] Open
Abstract
Despite their side effects, cholinesterase (ChE) inhibitors remain the only approved drugs to treat Alzheimer's disease patients, along with the N-methyl-d-aspartate (NMDA) receptor antagonist memantine. In the last few years, the dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) has also been studied as a promising target for the development of new drugs for this pathology. In this context, and based on our previous characterization of bio-oxidizable prodrugs of potent acetylcholinesterase (AChE) inhibitors, we envisioned a strategy involving the synthesis of a bio-oxidizable prodrug of both ChE and DYRK1A inhibitors. To this end, we fixed our interest on a known potent inhibitor of DYRK1A, namely INDY. The designed prodrug of both ChE and DYRK1A inhibitors was successfully synthesized, connecting both inhibitors by a carbonate link. This prodrug and its corresponding drug were then evaluated as ChEs and DYRK1A inhibitors. Remarkably, in vitro results were in accordance with the starting hypothesis, showing a relative inactivity of the prodrug against DYRK1A and ChEs and a potent inhibition of ChEs by the oxidized form. Molecular docking and kinetic studies of ChE inhibition by the active compound are also discussed in this report.
Collapse
Affiliation(s)
- Anaïs Barré
- VFP Therapies R&D; 1 rue Tesnière, 76130 Mont Saint-Aignan, France.
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France.
| | - Rabah Azzouz
- VFP Therapies R&D; 1 rue Tesnière, 76130 Mont Saint-Aignan, France.
| | - Vincent Gembus
- VFP Therapies R&D; 1 rue Tesnière, 76130 Mont Saint-Aignan, France.
| | - Cyril Papamicaël
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France.
| | - Vincent Levacher
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France.
| |
Collapse
|
22
|
Ţînţaş ML, Azzouz R, Peauger L, Gembus V, Petit E, Bailly L, Papamicaël C, Levacher V. Access to Highly Enantioenriched Donepezil-like 1,4-Dihydropyridines as Promising Anti-Alzheimer Prodrug Candidates via Enantioselective Tsuji Allylation and Organocatalytic Aza-Ene-Type Domino Reactions. J Org Chem 2018; 83:10231-10240. [PMID: 30004228 DOI: 10.1021/acs.joc.8b01442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This work aims at exploiting both the enantioselective Tsuji allylation of allyl carbonate 6 and an organocatalytic aza-ene-type domino reaction between enal 3a and β-enaminone 4a to develop a straightforward access to all of the four possible stereoisomers of a donepezil-like 1,4-dihydropyridine 1a (er up to 99.5:0.5; overall yield up 64%), an anti-Alzheimer's prodrug candidate. This strategy was extended to the preparation of other enantioenriched 1,4-dihydropyridines 1b-i (eight examples), highlighting its potential in the development of these chiral AChE inhibitors.
Collapse
Affiliation(s)
| | - Rabah Azzouz
- VFP Therapies, R&D , 1 rue Tesnière , 76130 Mont Saint-Aignan , France
| | - Ludovic Peauger
- VFP Therapies, R&D , 1 rue Tesnière , 76130 Mont Saint-Aignan , France
| | - Vincent Gembus
- VFP Therapies, R&D , 1 rue Tesnière , 76130 Mont Saint-Aignan , France
| | - Emilie Petit
- Normandie Université , UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen , France
| | - Laetitia Bailly
- Normandie Université , UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen , France
| | - Cyril Papamicaël
- Normandie Université , UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen , France
| | - Vincent Levacher
- Normandie Université , UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen , France
| |
Collapse
|
23
|
Gabr MT, Abdel-Raziq MS. Structure-based design, synthesis, and evaluation of structurally rigid donepezil analogues as dual AChE and BACE-1 inhibitors. Bioorg Med Chem Lett 2018; 28:2910-2913. [PMID: 30017317 DOI: 10.1016/j.bmcl.2018.07.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 11/15/2022]
Abstract
A new series of structurally rigid donepezil analogues was designed, synthesized and evaluated as potential multi-target-directed ligands (MTDLs) against neurodegenerative diseases. The investigated compounds 10-13 displayed dual AChE and BACE-1 inhibitory activities in comparison to donepezil, the FDA-approved drug. The hybrid compound 13 bearing 2-aminoquinoline scaffold exhibited potent AChE inhibition (IC50 value of 14.7 nM) and BACE-1 inhibition (IC50 value of 13.1 nM). Molecular modeling studies were employed to reveal potential dual binding mode of 13 to AChE and BACE-1. The effect of the investigated compounds on the viability of SH-SY5Y neuroblastoma cells and their ability to cross the blood-brain barrier (BBB) in PAMPA-BBB assay were further studied.
Collapse
Affiliation(s)
- Moustafa T Gabr
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA.
| | - Mohammed S Abdel-Raziq
- Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia 4072, Queensland, Australia
| |
Collapse
|
24
|
Gabr MT, Abdel-Raziq MS. Design and synthesis of donepezil analogues as dual AChE and BACE-1 inhibitors. Bioorg Chem 2018; 80:245-252. [PMID: 29966870 DOI: 10.1016/j.bioorg.2018.06.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/20/2018] [Accepted: 06/23/2018] [Indexed: 11/26/2022]
Abstract
Multi-target-directed ligands (MTDLs) centered on β-secretase 1 (BACE-1) inhibition are emerging as innovative therapeutics in addressing the complexity of neurodegenerative diseases. A new series of donepezil analogues was designed, synthesized and evaluated as MTDLs against neurodegenerative diseases. Profiling of donepezil, a potent acetylcholinesterase (hAChE) inhibitor, into BACE-1 inhibition was achieved through introduction of backbone amide linkers to the designed compounds which are capable of hydrogen-bonding with BACE-1 catalytic site. In vitro assays and molecular modeling studies revealed the dual mode of action of compounds 4-6 against hAChE and BACE-1. Notably, compound 4 displayed potent hAChE inhibition (IC50 value of 4.11 nM) and BACE-1 inhibition (IC50 value of 18.3 nM) in comparison to donepezil (IC50 values of 6.21 and 194 nM against hAChE and BACE-1, respectively). Moreover, 4 revealed potential metal chelating property, low toxicity on SH-SY5Y neuroblastoma cells and ability to cross the blood-brain barrier (BBB) in PAMPA-BBB assay which renders 4 a potential lead for further optimization of novel small ligands for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Moustafa T Gabr
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA.
| | - Mohammed S Abdel-Raziq
- Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia 4072, Queensland, Australia
| |
Collapse
|
25
|
Caliandro R, Pesaresi A, Cariati L, Procopio A, Oliverio M, Lamba D. Kinetic and structural studies on the interactions of Torpedo californica acetylcholinesterase with two donepezil-like rigid analogues. J Enzyme Inhib Med Chem 2018; 33:794-803. [PMID: 29651884 PMCID: PMC6009889 DOI: 10.1080/14756366.2018.1458030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Acetylcholinesterase inhibitors were introduced for the symptomatic treatment of Alzheimer’s disease (AD). Among the currently approved inhibitors, donepezil (DNP) is one of the most preferred choices in AD therapy. The X-ray crystal structures of Torpedo californica AChE in complex with two novel rigid DNP-like analogs, compounds 1 and 2, have been determined. Kinetic studies indicated that compounds 1 and 2 show a mixed-type inhibition against TcAChE, with Ki values of 11.12 ± 2.88 and 29.86 ± 1.12 nM, respectively. The DNP rigidification results in a likely entropy-enthalpy compensation with solvation effects contributing primarily to AChE binding affinity. Molecular docking evidenced the molecular basis for the binding of compounds 1 and 2 to the active site of β-secretase-1. Overall, these simplified DNP derivatives may represent new structural templates for the design of lead compounds for a more effective therapeutic strategy against AD by foreseeing a dual AChE and BACE-1 inhibitory activity.
Collapse
Affiliation(s)
- Rosanna Caliandro
- a Istituto di Cristallografia, Consiglio Nazionale delle Ricerche , Trieste , Italy
| | - Alessandro Pesaresi
- a Istituto di Cristallografia, Consiglio Nazionale delle Ricerche , Trieste , Italy
| | - Luca Cariati
- b Dipartimento di Scienze della Salute , Università degli Studi "Magna Graecia" , Catanzaro , Italy
| | - Antonio Procopio
- b Dipartimento di Scienze della Salute , Università degli Studi "Magna Graecia" , Catanzaro , Italy
| | - Manuela Oliverio
- b Dipartimento di Scienze della Salute , Università degli Studi "Magna Graecia" , Catanzaro , Italy
| | - Doriano Lamba
- a Istituto di Cristallografia, Consiglio Nazionale delle Ricerche , Trieste , Italy
| |
Collapse
|