1
|
Lu X, Zhang SL, Zhou CH. Identification of hydroxyphenyl cyanovinyl thiazoles as new structural scaffold of potential antibacterial agents. Bioorg Med Chem Lett 2025; 124:130258. [PMID: 40288698 DOI: 10.1016/j.bmcl.2025.130258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/15/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
Unique hydroxyphenyl cyanovinyl thiazoles (HCTs) as new structural scaffolds of potential antibacterial agents were developed to overcome global increasingly serious drug resistance. Some synthesized HCTs could suppress the growth of the tested strains, especially, benzothiophenyl HCT 5c exhibited superior anti-Escherichia coli activity with a lower MIC of 0.5 μg/mL to norfloxacin (MIC = 1 μg/mL). The active benzothiophenyl HCT 5c displayed no obvious hemolysis, low cytotoxicity and a much lower trend for the development of drug-resistance than norfloxacin. Further exploration revealed that benzothiophenyl HCT 5c could intercalate to DNA to form a DNA-5c complex, which disturbed the biological functions to facilitate bacterial death. ADME analysis indicated that compound 5c possessed favorable druggability and promising pharmacokinetic properties. This work provided an insight into further developing hydroxyphenyl cyanovinyl thiazoles as new structural scaffold of promising antibacterial candidates.
Collapse
Affiliation(s)
- Xing Lu
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, PR China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
2
|
Peng J, Zhou L, Chen J, Hu D, Gan X. Zein and resveratrol Schiff base nanocomplexes: An efficient delivery system to enhance the antibacterial efficacy of berberine. Int J Biol Macromol 2025; 306:141496. [PMID: 40020850 DOI: 10.1016/j.ijbiomac.2025.141496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/16/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
Plant-derived bactericides with limited drug resistance and environmental friendliness are promising alternatives to traditional chemical bactericides. Berberine (BBR) is a natural product with excellent biological activity against bacteria. Novel pesticide delivery systems were designed and constructed based on the plant-derived zein resveratrol (RSV) and its derivative 4-((E)-((2-hydroxyphenyl)imino)methyl)-5-((E)-4-hydroxystyryl)benzene-1,3-diol (XF) to improve the efficacy of BBR. BBR@Zein-RSV and BBR@Zein-XF nanoparticles (NPs) had uniform dispersion and were approximately 119.19 and 86.82 nm, with encapsulation rates of 55.71 % and 83.34 %, respectively. BBR@Zein-RSV and BBR@Zein-XF NPs used dual pH and redox reaction mechanisms to achieve a controlled release into the environment. Especially, BBR@Zein-XF NPs exhibited antibacterial activity against Xanthomonas oryzae pv. oryzicola with an EC50 value of 0.98 mg/L. Additionally, it showed excellent protective (51.52 %) and curative (48.17 %) effects against rice bacterial leaf streaks. NPs could inhibit biofilm formation and extracellular polysaccharide production but promote reactive oxygen species levels, thereby destroying the integrity of bacteria and eventually leading to cell death. Proteomic analysis revealed that BBR@Zein-XF NPs regulated the expression of phosphoenolpyruvate carboxykinase and lactoylglutathione lyase, thereby influencing plant growth, energy metabolism, and maintaining a normal redox state. This study provides new ideas for extensively utilizing plant-derived antibacterial agents by developing innovative and eco-friendly nano-pesticides.
Collapse
Affiliation(s)
- Ju Peng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China; Guizhou Rice Research Institute, Guizhou Provincial Academy of Agricultural Sciences, Guiyang 550006, China
| | - Leliang Zhou
- Guizhou Rice Research Institute, Guizhou Provincial Academy of Agricultural Sciences, Guiyang 550006, China
| | - Jixiang Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Deyu Hu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Xiuhai Gan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
3
|
Guo S, Wang Y, Li J, Liu Y, Han Y, Huang C, Wu H, Hu J, Liu Z. In vitro killing effect of berberine and niclosamide on ocular Demodex folliculorum. Cont Lens Anterior Eye 2025; 48:102336. [PMID: 39616005 DOI: 10.1016/j.clae.2024.102336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 03/18/2025]
Abstract
PURPOSE To explore the in vitro killing effect of water-soluble berberine and lipid-soluble niclosamide against ocular Demodex folliculorum. METHODS Demodex with good vigor were collected from patients' eyelashes. These mites were randomly distributed into different groups with 20 mites in each group. Saline, Double Distilled Water (DDW), Polysorbate 80 (TWEEN 80), Polyethylene glycol 300 (PEG 300) and Castor Oil were used to screen solvents and cosolvents. 20 % Tea Tree Oil (TTO) and Anhydrous Ethanol (EtOH) were used as positive controls. 0.2 % Berberine, 0.25 % Niclosamide and 0.5 % Niclosamide, were designated as experimental groups. Following treatment, the analysis of Kaplan-Meier survival curves and survival time of mites and safety of drugs were then performed. RESULTS The survival of Demodex in vitro in Saline and DDW, was not significant different. Therefore, DDW, which was more conducive to the dissolution of berberine, was chosen as the solvent for berberine. 0.2 % Berberine significantly inhibited the survival distribution and survival time (P < 0.001) of Demodex in vitro compared with the DDW group. Through the evaluation of several cosolvents, PEG300 had milder effects on Demodex. Hence, the proportion of PEG300 in the niclosamide solvent group was increased to reduce the irritability of the vehicle. Furthermore, niclosamide could significantly inhibit the survival of Demodex compared with the vehicle group, and the effect of 0.5 % Niclosamide was more obvious (P < 0.001), and was better than 20 %TTO (P < 0.001). In addition, after niclosamide administration, Demodex bodies exhibited gradual distortion along with increased transparency and the presence of blurred dark particles compared to those in the vehicle group. Moreover, both drugs showed good subjective tolerability and safety in a mouse model. CONCLUSION 0.2 % berberine and 0.5 % niclosamide effectively inhibited Demodex survival in vitro, with 0.5 % niclosamide superior to 20 % TTO. These two drugs, with anti-Demodex, anti-bacterial, and anti-inflammatory properties, may offer alternative treatment for Demodex blepharitis.
Collapse
Affiliation(s)
- Shujia Guo
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Yuqian Wang
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Jiani Li
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Yuwen Liu
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Yi Han
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| | - Caihong Huang
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Huping Wu
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Jiaoyue Hu
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China.
| | - Zuguo Liu
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China; Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian 361005, China; Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
4
|
Ding J, Yan Z, Peng L, Li J, Yang F, Zheng D. Inhibitory effects of berberine on fungal growth, biofilm formation, virulence, and drug resistance as an antifungal drug and adjuvant with prospects for future applications. World J Microbiol Biotechnol 2024; 41:5. [PMID: 39690297 DOI: 10.1007/s11274-024-04223-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024]
Abstract
Berberine (BBR), an isoquinoline alkaloid found in medicinal plants such as Coptidis rhizoma, Berberis sp., and Hydrastis canadensis, is a distinctive compound known for its dual ability to exhibit broad-spectrum antifungal activity while offering beneficial effects to the host. These attributes make it a highly valuable candidate for antifungal therapy and as an antibiotic adjuvant. This review provides a comprehensive evaluation of BBR's antifungal properties, focusing on its in vitro and in vivo activity, underlying mechanisms, and its influence on fungal pathogenicity, including virulence, biofilm formation, and resistance. Additionally, the antifungal potential of BBR extracts, derivatives, and nanoformulations is examined in detail. BBR demonstrates fungicidal effects through multiple mechanisms. It targets critical fungal components such as mitochondria, cell membranes, and cell walls, while also inhibiting enzymatic activity and transcription processes. Furthermore, it suppresses the expression of virulence factors, effectively diminishing fungal pathogenicity. Beyond its direct antifungal activity, BBR exerts beneficial effects on the host by modulating gut microbiota, thereby bolstering host defenses against fungal infections and reducing potential adverse effects. BBR's interaction with conventional antifungal drugs presents a unique complexity, particularly in the context of resistance mechanisms. When used in combination therapies, conventional antifungal drugs enhance the intracellular accumulation of BBR, thereby amplifying its antifungal potency as the primary active agent. These synergistic effects position BBR as a promising candidate for combination strategies, especially in addressing drug-resistant fungal infections and persistent biofilms. As antifungal resistance and biofilm-associated infections continue to rise, the multifaceted properties of BBR and its advanced formulations highlight their significant therapeutic potential. However, the scarcity of robust in vivo and clinical studies limits a full understanding of its efficacy and safety profile. To bridge this gap, future investigations should prioritize well-designed in vivo and clinical trials to thoroughly evaluate the therapeutic effectiveness and safety of BBR in diverse clinical settings. This approach could pave the way for its broader application in combating fungal infections.
Collapse
Affiliation(s)
- Junping Ding
- Department of Pharmacy, Second People's Hospital of Ya'an City, Ya'an, 625000, China
| | - Zhong Yan
- Department of Nuclear Medicine, Ya'an People's Hospital, Ya'an, 625000, China
| | - Liang Peng
- Ya'an Polytechnic College Affiliated Hospital, Ya'an, 625000, China
| | - Jing Li
- Department of Wellness and Nursing, Tianfu College of SWUFE, Deyang, 618000, China
| | - Fuzhou Yang
- Department of Nuclear Medicine, Ya'an People's Hospital, Ya'an, 625000, China.
| | - Dongming Zheng
- Department of Nuclear Medicine, Ya'an People's Hospital, Ya'an, 625000, China.
| |
Collapse
|
5
|
Zeng Z, Yang Z, Li C, Liu S, Wei W, Zhou Y, Wang S, Sui M, Li M, Lin S, Cheng Y, Hou P. Advancing Cancer Immunotherapy through Engineering New PD-L1 Degraders: A Comprehensive Study from Small Molecules to PD-L1-Specific Peptide-Drug Conjugates. J Med Chem 2024; 67:19216-19233. [PMID: 39420825 PMCID: PMC11571110 DOI: 10.1021/acs.jmedchem.4c01652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Despite the considerable achievements of antibodies targeting PD-1/PD-L1 in cancer immunotherapy, limitations in antitumor immune response and pharmacokinetics hinder their clinical adoption. Small molecules toward PD-L1 degradation signifies an innovative avenue to modulate PD-1/PD-L1 axis. Herein, we unveil a comprehensive engineering involving the development of new PD-L1 degraders based on the berberine (BBR) and palmatine (PMT) bioactive frameworks and explore their translational potential for cancer immunotherapy using a peptide-drug conjugate strategy. Chemical modifications at the O-9 position of PMT dramatically enhance the PD-L1 degradation capacity. Further conjugation of PMT degraders with an anti-PD-L1 peptide featuring disulfide linkers enables efficient GSH-specific prodrug activation, yielding synergistic immunotherapeutic benefits through both external PD-L1 blockade and internal PD-L1 degradation mechanisms. This work elucidates the compelling charm of the discovery and application of PD-L1 degraders, offering solutions to the challenges in advancing cancer immunotherapy in widespread clinics.
Collapse
Affiliation(s)
- Zekun Zeng
- International
Joint Research Center for Tumor Precision Medicine of Shaanxi Province
and Department of Endocrinology, The First
Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| | - Zhiwei Yang
- MOE
Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed
Matter, School of Physics, Xi’an
Jiaotong University, Xi’an 710049, P. R. China
| | - Chenghao Li
- International
Joint Research Center for Tumor Precision Medicine of Shaanxi Province
and Department of Endocrinology, The First
Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| | - Shujing Liu
- International
Joint Research Center for Tumor Precision Medicine of Shaanxi Province
and Department of Endocrinology, The First
Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| | - Wei Wei
- Department
of Ultrasound Medicine, The First Affiliated
Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, P. R. China
| | - Ye Zhou
- International
Joint Research Center for Tumor Precision Medicine of Shaanxi Province
and Department of Endocrinology, The First
Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| | - Simeng Wang
- International
Joint Research Center for Tumor Precision Medicine of Shaanxi Province
and Department of Endocrinology, The First
Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| | - Mengjun Sui
- International
Joint Research Center for Tumor Precision Medicine of Shaanxi Province
and Department of Endocrinology, The First
Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| | - Mengdan Li
- Department
of Cardiology, The Second Affiliated Hospital
of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| | - Shumei Lin
- Department
of Infectious Disease Medicine, The First
Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| | - Yangyang Cheng
- International
Joint Research Center for Tumor Precision Medicine of Shaanxi Province
and Department of Endocrinology, The First
Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| | - Peng Hou
- International
Joint Research Center for Tumor Precision Medicine of Shaanxi Province
and Department of Endocrinology, The First
Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| |
Collapse
|
6
|
Luo XF, Zhou H, Deng P, Zhang SY, Wang YR, Ding YY, Wang GH, Zhang ZJ, Wu ZR, Liu YQ. Current development and structure-activity relationship study of berberine derivatives. Bioorg Med Chem 2024; 112:117880. [PMID: 39216382 DOI: 10.1016/j.bmc.2024.117880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/28/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Berberine is a quaternary ammonium isoquinoline alkaloid derived from traditional Chinese medicines Coptis chinensis and Phellodendron chinense. It has many pharmacological activities such as hypoglycemic, hypolipidemic, anti-tumor, antimicrobial and anti-inflammatory. Through structural modifications at various sites of berberine, the introduction of different groups can change berberine's physical and chemical properties, thereby improving the biological activity and clinical efficacy, and expanding the scope of application. This paper reviews the research progress and structure-activity relationships of berberine in recent years, aiming to provide valuable insights for the exploration of novel berberine derivatives.
Collapse
Affiliation(s)
- Xiong-Fei Luo
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Han Zhou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Peng Deng
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Shao-Yong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China.
| | - Yi-Rong Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yan-Yan Ding
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Guang-Han Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zheng-Rong Wu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China; State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
7
|
Zang ZL, Wang YX, Battini N, Gao WW, Zhou CH. Synthesis and antibacterial medicinal evaluation of carbothioamido hydrazonyl thiazolylquinolone with multitargeting antimicrobial potential to combat increasingly global resistance. Eur J Med Chem 2024; 275:116626. [PMID: 38944934 DOI: 10.1016/j.ejmech.2024.116626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
The global microbial resistance is a serious threat to human health, and multitargeting compounds are considered to be promising to combat microbial resistance. In this work, a series of new thiazolylquinolones with multitargeting antimicrobial potential were developed through multi-step reactions using triethoxymethane and substituted anilines as start materials. Their structures were confirmed by 1H NMR, 13C NMR and HRMS spectra. Antimicrobial evaluation revealed that some of the target compounds could effectively inhibit microbial growth. Especially, carbothioamido hydrazonyl aminothiazolyl quinolone 8a showed strong inhibitory activity toward drug-resistant Staphylococcus aureus with MIC value of 0.0047 mM, which was 5-fold more active than that of norfloxacin. The highly active compound 8a exhibited negligible hemolysis, no significant toxicity in vitro and in vivo, low drug resistance, as well as rapidly bactericidal effects, which suggested its favorable druggability. Furthermore, compound 8a was able to effectively disrupt the integrity of the bacterial membrane, intercalate into DNA and inhibit the activity of topoisomerase IV, suggesting multitargeting mechanism of action. Compound 8a could form hydrogen bonds and hydrophobic interactions with DNA-topoisomerase IV complex, indicating the insertion of aminothiazolyl moiety was beneficial to improve antibacterial efficiency. These findings indicated that the active carbothioamido hydrazonyl aminothiazolyl quinolone 8a as a chemical therapeutic candidate demonstrated immense potential to tackle drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Zhong-Lin Zang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yi-Xin Wang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Narsaiah Battini
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Wei-Wei Gao
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
8
|
Zang ZL, Gao WW, Zhou CH. Unique aminothiazolyl coumarins as potential DNA and membrane disruptors towards Enterococcus faecalis. Bioorg Chem 2024; 148:107451. [PMID: 38759357 DOI: 10.1016/j.bioorg.2024.107451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
Aminothiazolyl coumarins as potentially new antimicrobial agents were designed and synthesized in an effort to overcome drug resistance. Biological activity assay revealed that some target compounds exhibited significantly inhibitory efficiencies toward bacteria and fungi including drug-resistant pathogens. Especially, aminothiazolyl 7-propyl coumarin 8b and 4-dichlorobenzyl derivative 11b exhibited bactericidal potential (MBC/MIC = 2) toward clinically drug-resistant Enterococcus faecalis with low cytotoxicity to human lung adenocarcinoma A549 cells, rapidly bactericidal effects and no obvious bacterial resistance development against E. faecalis. The preliminary antibacterial action mechanism studies suggested that compound 11b was able to disturb E. faecalis membrane effectively, and interact with bacterial DNA isolated from resistant E. faecalis through noncovalent bonds to cleave DNA, thus inhibiting the growth of E. faecalis strain. Further molecular modeling indicated that compounds 8b and 11b could bind with SER-1084 and ASP-1083 residues of gyrase-DNA complex through hydrogen bonds and hydrophobic interactions. Moreover, compound 11b showed low hemolysis and in vivo toxicity. These findings of aminothiazolyl coumarins as unique structural scaffolds might hold a large promise for the treatments of drug-resistant bacterial infection.
Collapse
Affiliation(s)
- Zhong-Lin Zang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Wei-Wei Gao
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
9
|
Arrigoni R, Ballini A, Jirillo E, Santacroce L. Current View on Major Natural Compounds Endowed with Antibacterial and Antiviral Effects. Antibiotics (Basel) 2024; 13:603. [PMID: 39061285 PMCID: PMC11274329 DOI: 10.3390/antibiotics13070603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Nowadays, infectious diseases of bacterial and viral origins represent a serious medical problem worldwide. In fact, the development of antibiotic resistance is responsible for the emergence of bacterial strains that are refractory even to new classes of antibiotics. Furthermore, the recent COVID-19 pandemic suggests that new viruses can emerge and spread all over the world. The increase in infectious diseases depends on multiple factors, including malnutrition, massive migration of population from developing to industrialized areas, and alteration of the human microbiota. Alternative treatments to conventional antibiotics and antiviral drugs have intensively been explored. In this regard, plants and marine organisms represent an immense source of products, such as polyphenols, alkaloids, lanthipeptides, and terpenoids, which possess antibacterial and antiviral activities. Their main mechanisms of action involve modifications of bacterial cell membranes, with the formation of pores, the release of cellular content, and the inhibition of bacterial adherence to host cells, as well as of the efflux pump. Natural antivirals can interfere with viral replication and spreading, protecting the host with the enhanced production of interferon. Of note, these antivirals are not free of side effects, and their administration to humans needs more research in terms of safety. Preclinical research with natural antibacterial and antiviral compounds confirms their effects against bacteria and viruses, but there are still only a few clinical trials. Therefore, their full exploitation and more intensive clinical studies represent the next steps to be pursued in this area of medicine.
Collapse
Affiliation(s)
- Roberto Arrigoni
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), 70124 Bari, Italy
| | - Andrea Ballini
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Emilio Jirillo
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| |
Collapse
|
10
|
Gupta S, Luxami V, Paul K. Bacterial cell death to overcome drug resistance with multitargeting bis-naphthalimides as potent antibacterial agents against Enterococcus faecalis. J Mater Chem B 2024; 12:5645-5660. [PMID: 38747306 DOI: 10.1039/d3tb02804f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The increasing frequency of drug-resistant pathogens poses serious health issues to humans around the globe, leading to the development of new antibacterial agents to conquer drug resistance and bacterial infections. In view of this, we have synthesized a series of bis-naphthalimides to respond to awful drug resistance. Bioactivity assay and structure-activity relationship disclosed that compounds 5d and 5o exhibit potent antibacterial activity against E. faecalis, outperforming the marketed antibiotics. These drug candidates not only inhibit the biofilm formation of E. faecalis but also display rapid bactericidal properties, thus delaying the development of drug resistance within 20 passages. To explore the mechanism of antibacterial activity against E. faecalis, biofunctional examination was carried out which unveiled that 5d and 5o effectively disrupt bacterial cell membranes, causing the leakage of cytoplasmic contents and metabolic activity loss. Concurrently, 5d and 5o effectively intercalate with DNA to block DNA replication, causing the build-up of excessive reactive oxygen species and inhibiting the glutathione activity, ultimately leading to oxidative damage of E. faecalis and cell death. In addition, these compounds readily bind with HSA with a high binding constant, indicating that these drug candidates could be easily delivered to the target site. The above finding manifested that these newly synthesized bis-naphthalimides with multitargeting antibacterial properties offer a new prospect to overcome drug resistance.
Collapse
Affiliation(s)
- Saurabh Gupta
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147001, India.
| | - Vijay Luxami
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147001, India.
| | - Kamaldeep Paul
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147001, India.
| |
Collapse
|
11
|
Patra S, Biswas P, Karmakar S, Biswas K. Repression of resistance mechanisms of Pseudomonas aeruginosa: implications of the combination of antibiotics and phytoconstituents. Arch Microbiol 2024; 206:294. [PMID: 38850339 DOI: 10.1007/s00203-024-04012-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 06/10/2024]
Abstract
Antimicrobial resistance is a prevalent problem witnessed globally and creating an alarming situation for the treatment of infections caused by resistant pathogens. Available armaments such as antibiotics often fail to exhibit the intended action against resistant pathogens, leading to failure in the treatments that are causing mortality. New antibiotics or a new treatment approach is necessary to combat this situation. P. aeruginosa is an opportunistic drug resistant pathogen and is the sixth most common cause of nosocomial infections. P. aeruginosa due to its genome organization and other factors are exhibiting resistance against drugs. Bacterial biofilm formation, low permeability of outer membrane, the production of the beta-lactamase, and the production of several efflux systems limits the antibacterial potential of several classes of antibiotics. Combination of phytoconstituents with antibiotics is a promising strategy to combat multidrug resistant P. aeruginosa. Phytoconstituents such as flavonoids, terpenoids, alkaloids, polypeptides, phenolics, and essential oils are well known antibacterial agents. In this review, the activity of combination of the phytoconstituents and antibiotics, and their corresponding mechanism of action was discussed elaborately. The combination of antibiotics and plant-derived compounds exhibited better efficacy compared to antibiotics alone against the antibiotic resistance P. aeruginosa infections.
Collapse
Affiliation(s)
- Susmita Patra
- Eminent College of Pharmaceutical Technology, Barbaria, Barasat, North 24 Parganas, Kolkata, West Bengal, 700126, India
| | - Poulomi Biswas
- Eminent College of Pharmaceutical Technology, Barbaria, Barasat, North 24 Parganas, Kolkata, West Bengal, 700126, India
| | - Sanmoy Karmakar
- Department of Pharmaceutical Technology, Jadavpur University, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Kaushik Biswas
- Eminent College of Pharmaceutical Technology, Barbaria, Barasat, North 24 Parganas, Kolkata, West Bengal, 700126, India.
| |
Collapse
|
12
|
Niu ZX, Wang YT, Wang JF. Recent advances in total synthesis of protoberberine and chiral tetrahydroberberine alkaloids. Nat Prod Rep 2024. [PMID: 38712365 DOI: 10.1039/d4np00016a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Covering: Up to 2024Due to the widespread distribution of protoberberine alkaloids (PBs) and tetrahydroberberine alkaloids (THPBs) in nature, coupled with their myriad unique physiological activities, they have garnered considerable attention from medical practitioners. Over the past few decades, synthetic chemists have devised various total synthesis methods to attain these structures, continually expanding reaction pathways to achieve more efficient synthetic strategies. Simultaneously, the chiral construction of THPBs has become a focal point. In this comprehensive review, we categorically summarized the developmental trajectory of the total synthesis of these alkaloids based on the core closure strategies of protoberberine and tetrahydroberberine.
Collapse
Affiliation(s)
- Zhen-Xi Niu
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China.
| | - Ya-Tao Wang
- First People's Hospital of Shangqiu, Shangqiu 476000, Henan Province, China.
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Jun-Feng Wang
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, 125 Nashua Street, Suite 660, Boston, Massachusetts 02114, USA.
| |
Collapse
|
13
|
Li W, Yang X, Ahmad N, Zhang SL, Zhou CH. Novel aminothiazoximone-corbelled ethoxycarbonylpyrimidones with antibiofilm activity to conquer Gram-negative bacteria through potential multitargeting effects. Eur J Med Chem 2024; 268:116219. [PMID: 38368710 DOI: 10.1016/j.ejmech.2024.116219] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/20/2024]
Abstract
The emergence of drug-resistant microorganisms threatens human health, and it is usually exacerbated by the formation of biofilm, which forces the development of new antibacterial agents with antibiofilm activity. In this work, a novel category of aminothiazoximone-corbelled ethoxycarbonylpyrimidones (ACEs) was designed and synthesized, and some of the prepared ACEs showed potent bioactivity against the tested bacteria. In particular, imidazolyl ACE 6c showed better inhibitory activity towards Acinetobacter baumannii and Escherichia coli with MIC values both of 0.0066 mmol/L than norfloxacin. It was also revealed that imidazolyl ACE 6c not only possessed inconspicuous hemolytic rate and cytotoxicity, low drug resistance and no risk of penetrating the blood-brain barrier, but also exhibited obvious biofilm inhibition and eradication activities. The preliminary mechanism research suggested that imidazolyl ACE 6c could induce metabolic dysfunction by deactivating lactate dehydrogenase and promote the accumulation of reactive oxygen species to decrease the reduced glutathione and ultimately cause oxidative damage in bacteria. Furthermore, ACE 6c was also found that could insert into DNA to form the supramolecular complex of 6c-DNA and trigger cell death. The multidimensional effect might promote bacterial cell rupture, leading to the leakage of intracellular content. These findings manifested that novel imidazolyl ACE 6c as a potential multitargeting antibacterial agent with potent antibiofilm activity could provide new possibility for the treatment of refractory biofilm-intensified bacterial infections.
Collapse
Affiliation(s)
- Wei Li
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Xi Yang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Nisar Ahmad
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing, 401331, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
14
|
An Y, Fang X, Cheng J, Yang S, Chen Z, Tong Y. Research progress of metal-organic framework nanozymes in bacterial sensing, detection, and treatment. RSC Med Chem 2024; 15:380-398. [PMID: 38389881 PMCID: PMC10880901 DOI: 10.1039/d3md00581j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/30/2023] [Indexed: 02/24/2024] Open
Abstract
The high efficiency and specificity of enzymes make them play an important role in life activities, but the high cost, low stability and high sensitivity of natural enzymes severely restrict their application. In recent years, nanozymes have become convincing alternatives to natural enzymes, finding utility across diverse domains, including biosensing, antibacterial interventions, cancer treatment, and environmental preservation. Nanozymes are characterized by their remarkable attributes, encompassing high stability, cost-effectiveness and robust catalytic activity. Within the contemporary scientific landscape, metal-organic frameworks (MOFs) have garnered considerable attention, primarily due to their versatile applications, spanning catalysis. Notably, MOFs serve as scaffolds for the development of nanozymes, particularly in the context of bacterial detection and treatment. This paper presents a comprehensive review of recent literature pertaining to MOFs and their pivotal role in bacterial detection and treatment. We explored the limitations and prospects for the development of MOF-based nanozymes as a platform for bacterial detection and therapy, and anticipate their great potential and broader clinical applications in addressing medical challenges.
Collapse
Affiliation(s)
- Yiwei An
- School of Pharmacy, Guangdong Medical University Dongguan 523808 China
- Guangdong Second Provincial General Hospital Guangzhou 510317 China
| | - Xuankun Fang
- School of Pharmacy, Guangdong Medical University Dongguan 523808 China
- Guangdong Second Provincial General Hospital Guangzhou 510317 China
| | - Jie Cheng
- School of Pharmaceutical Sciences, SunYat-sen University Guangzhou 510006 China +86 20 39943071 +86 20 39943044
| | - Shuiyuan Yang
- Guangdong Second Provincial General Hospital Guangzhou 510317 China
| | - Zuanguang Chen
- School of Pharmaceutical Sciences, SunYat-sen University Guangzhou 510006 China +86 20 39943071 +86 20 39943044
| | - Yanli Tong
- School of Pharmacy, Guangdong Medical University Dongguan 523808 China
- Guangdong Second Provincial General Hospital Guangzhou 510317 China
| |
Collapse
|
15
|
Pacyga K, Pacyga P, Topola E, Viscardi S, Duda-Madej A. Bioactive Compounds from Plant Origin as Natural Antimicrobial Agents for the Treatment of Wound Infections. Int J Mol Sci 2024; 25:2100. [PMID: 38396777 PMCID: PMC10889580 DOI: 10.3390/ijms25042100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
The rising prevalence of drug-resistant bacteria underscores the need to search for innovative and nature-based solutions. One of the approaches may be the use of plants that constitute a rich source of miscellaneous compounds with a wide range of biological properties. This review explores the antimicrobial activity of seven bioactives and their possible molecular mechanisms of action. Special attention was focused on the antibacterial properties of berberine, catechin, chelerythrine, cinnamaldehyde, ellagic acid, proanthocyanidin, and sanguinarine against Staphylococcus aureus, Enterococcus spp., Klebsiella pneumoniae, Acinetobacter baumannii, Escherichia coli, Serratia marcescens and Pseudomonas aeruginosa. The growing interest in novel therapeutic strategies based on new plant-derived formulations was confirmed by the growing number of articles. Natural products are one of the most promising and intensively examined agents to combat the consequences of the overuse and misuse of classical antibiotics.
Collapse
Affiliation(s)
- Katarzyna Pacyga
- Department of Environment Hygiene and Animal Welfare, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Paweł Pacyga
- Department of Thermodynamics and Renewable Energy Sources, Faculty of Mechanical and Power Engineering, Wrocław University of Science and Technology, 50-370 Wrocław, Poland;
| | - Ewa Topola
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (E.T.); (S.V.)
| | - Szymon Viscardi
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (E.T.); (S.V.)
| | - Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland
| |
Collapse
|
16
|
Jorge J, Del Pino Santos KF, Timóteo F, Vasconcelos RRP, Ayala Cáceres OI, Granja IJA, de Souza DM, Frizon TEA, Di Vaccari Botteselle G, Braga AL, Saba S, Rashid HU, Rafique J. Recent Advances on the Antimicrobial Activities of Schiff Bases and their Metal Complexes: An Updated Overview. Curr Med Chem 2024; 31:2330-2344. [PMID: 36823995 DOI: 10.2174/0929867330666230224092830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/12/2022] [Accepted: 12/29/2022] [Indexed: 02/25/2023]
Abstract
Schiff bases represent a valuable class of organic compounds, synthesized via condensation of primary amines with ketones or aldehydes. They are renowned for possessing innumerable applications in agricultural chemistry, organic synthesis, chemical and biological sensing, coating, polymer and resin industries, catalysis, coordination chemistry, and drug designing. Schiff bases contain imine or azomethine (-C=N-) functional groups which are important pharmacophores for the design and synthesis of lead bioactive compounds. In medicinal chemistry, Schiff bases have attracted immense attention due to their diverse biological activities. This review aims to encompass the recent developments on the antimicrobial activities of Schiff bases. The article summarizes the antibacterial, antifungal, antiviral, antimalarial, and antileishmanial activities of Schiff bases reported since 2011.
Collapse
Affiliation(s)
- Juliana Jorge
- Instituto de Química, Universidade Federal do Mato Grosso do Sul, Campo Grande, 79074-460, MS, Brazil
| | | | - Fernanda Timóteo
- Instituto de Química, Universidade Federal do Mato Grosso do Sul, Campo Grande, 79074-460, MS, Brazil
| | | | | | | | - David Monteiro de Souza
- Instituto de Química, Universidade Federal do Mato Grosso do Sul, Campo Grande, 79074-460, MS, Brazil
| | - Tiago Elias Allievi Frizon
- Department of Energy and Sustainability, Universidade Federal de Santa Catarina - UFSC, Campus Araranguá, Araranguá, 88905-120, SC, Brazil
| | | | - Antonio Luiz Braga
- Departamento de Química, Universidade Federal de Santa Catarina, 88040-970, Florianópolis, SC, Brazil
| | - Sumbal Saba
- Instituto de Química, Universidade Federal de Goiás - UFG, Goiânia, 74690-900, GO, Brazil
| | - Haroon Ur Rashid
- Instituto de Química, Universidade Federal do Mato Grosso do Sul, Campo Grande, 79074-460, MS, Brazil
- Departamento de Química, Universidade Federal de Santa Catarina, 88040-970, Florianópolis, SC, Brazil
| | - Jamal Rafique
- Instituto de Química, Universidade Federal do Mato Grosso do Sul, Campo Grande, 79074-460, MS, Brazil
- Instituto de Química, Universidade Federal de Goiás - UFG, Goiânia, 74690-900, GO, Brazil
| |
Collapse
|
17
|
Alipour Noghabi S, Ghamari kargar P, Bagherzade G, Beyzaei H. Comparative study of antioxidant and antimicrobial activity of berberine-derived Schiff bases, nitro-berberine and amino-berberine. Heliyon 2023; 9:e22783. [PMID: 38058428 PMCID: PMC10696212 DOI: 10.1016/j.heliyon.2023.e22783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023] Open
Abstract
In recent years, the scientific community has focused on traditional natural products and their potential therapeutic benefits. Berberine is a plant-derived isoquinoline alkaloid with a variety of biological properties and identified as a promising pharmacophore for discovering new therapeutic agents against various diseases. However, unfavorable pharmacokinetic properties of berberine have limited its clinical application so much that researchers pursue its structure modification to overcome this problem. This study focuses on the synthesis of new berberine derivatives to improve its antioxidant and antimicrobial potentials, which were characterized using CHNO and NMR instruments. Berberine extracted from barberry root was nitrated, reduced to amine and condensed with benzaldehyde derivatives to produce berberine-based Schiff bases. The H atom donating ability of all compounds was measured against DPPH free radicals, with IC50 values ranging from 18.28 to 108.20 μg ml-1. All berberine-based Schiff bases exhibited stronger antioxidant activity than nitro-berberine and amino-berberine. Only Schiff base derived from 4-hydroxybenzaldehyde showed slightly better antioxidant effects than original berberine. The inhibitory effects of the synthesized compounds were evaluated against important pathogenic fungal and bacterial strains using disk diffusion assays, with inhibition zone diameters ranging from 8.36 to 25.48 μg ml-1. Berberine itself only affected Candida albicans fungus. Nitrated berberine was effective against all microorganisms except Gram-negative Acinetobacter baumannii. The results suggest that structural modifications and functionalization can enhance the antimicrobial and antioxidant properties of berberine.
Collapse
Affiliation(s)
- Soheila Alipour Noghabi
- Department of Chemistry, Faculty of Sciences, University of Birjand, Birjand, 97175-615, Iran
| | - Pouya Ghamari kargar
- Department of Chemistry, Faculty of Sciences, University of Birjand, Birjand, 97175-615, Iran
| | - Ghodsieh Bagherzade
- Department of Chemistry, Faculty of Sciences, University of Birjand, Birjand, 97175-615, Iran
| | - Hamid Beyzaei
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| |
Collapse
|
18
|
Nguyen DV, Hengphasatporn K, Danova A, Suroengrit A, Boonyasuppayakorn S, Fujiki R, Shigeta Y, Rungrotmongkol T, Chavasiri W. Structure-yeast α-glucosidase inhibitory activity relationship of 9-O-berberrubine carboxylates. Sci Rep 2023; 13:18865. [PMID: 37914757 PMCID: PMC10620162 DOI: 10.1038/s41598-023-45116-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023] Open
Abstract
Thirty-five 9-O-berberrubine carboxylate derivatives were synthesized and evaluated for yeast α-glucosidase inhibitory activity. All compounds demonstrated better inhibitory activities than the parent compounds berberine (BBR) and berberrubine (BBRB), and a positive control, acarbose. The structure-activity correlation study indicated that most of the substituents on the benzoate moiety such as methoxy, hydroxy, methylenedioxy, benzyloxy, halogen, trifluoromethyl, nitro and alkyl can contribute to the activities except multi-methoxy, fluoro and cyano. In addition, replacing benzoate with naphthoate, cinnamate, piperate or diphenylacetate also led to an increase in inhibitory activities except with phenyl acetate. 9, 26, 27, 28 and 33 exhibited the most potent α-glucosidase inhibitory activities with the IC50 values in the range of 1.61-2.67 μM. Kinetic study revealed that 9, 26, 28 and 33 interacted with the enzyme via competitive mode. These four compounds were also proved to be not cytotoxic at their IC50 values. The competitive inhibition mechanism of these four compounds against yeast α-glucosidase was investigated using molecular docking and molecular dynamics simulations. The binding free energy calculations suggest that 26 exhibited the strongest binding affinity, and its binding stability is supported by hydrophobic interactions with D68, F157, F158 and F177. Therefore, 9, 26, 28 and 33 would be promising candidates for further studies of antidiabetic activity.
Collapse
Affiliation(s)
- Duy Vu Nguyen
- Department of Chemistry, Faculty of Science, Center of Excellence in Natural Products Chemistry, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Kowit Hengphasatporn
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Ade Danova
- Department of Chemistry, Faculty of Science, Center of Excellence in Natural Products Chemistry, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
- Organic Chemistry Division, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, West Java, 40132, Indonesia
| | - Aphinya Suroengrit
- Department of Microbiology, Faculty of Medicine, Center of Excellence in Applied Medical Virology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Siwaporn Boonyasuppayakorn
- Department of Microbiology, Faculty of Medicine, Center of Excellence in Applied Medical Virology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ryo Fujiki
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Thanyada Rungrotmongkol
- Bioinformatics and Computational Biology Program, Graduated School, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Biochemistry, Faculty of Science, Center of Excellence in Biocatalyst and Sustainable Biotechnology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Warinthorn Chavasiri
- Department of Chemistry, Faculty of Science, Center of Excellence in Natural Products Chemistry, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
19
|
Habib Adam M, Tandon N, Singh I, Tandon R. The Phytochemical Tactics for Battling Antibiotic Resistance in Microbes: Secondary Metabolites and Nano Antibiotics Methods. Chem Biodivers 2023; 20:e202300453. [PMID: 37535351 DOI: 10.1002/cbdv.202300453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023]
Abstract
One of the most serious threats to human health is antibiotic resistance, which has left the world without effective antibiotics. While continuous research and inventions for new antibiotics are going on, especially those with new modes of action, it is unlikely that this alone would be sufficient to win the battle. Furthermore, it is also important to investigate additional approaches. One such strategy for improving the efficacy of existing antibiotics is the discovery of adjuvants. This review has collected data from various studies on the current crisis and approaches for combating multi-drug resistance in microbial pathogens using phytochemicals. In addition, the nano antibiotic approaches, are discussed, highlighting the high potentials of essential oils, alkaloids, phenolic compounds, and nano antibiotics in combating antibiotic resistance.
Collapse
Affiliation(s)
- Mujahid Habib Adam
- School of Pharmaceutical Sciences, Lovely Professional University, 144411, Phagwara, India
| | - Nitin Tandon
- Department of Chemistry, School of Physical Sciences, Lovely Professional University, 144411, Phagwara, India
| | - Iqubal Singh
- School of Pharmaceutical Sciences, Lovely Professional University, 144411, Phagwara, India
| | - Runjhun Tandon
- Department of Chemistry, School of Physical Sciences, Lovely Professional University, 144411, Phagwara, India
| |
Collapse
|
20
|
Zhao WH, Xu JH, Tangadanchu VKR, Zhou CH. Thiazolyl hydrazineylidenyl indolones as unique potential multitargeting broad-spectrum antimicrobial agents. Eur J Med Chem 2023; 256:115452. [PMID: 37167780 DOI: 10.1016/j.ejmech.2023.115452] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/22/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
The emergence of pathogenic and drug-resistant microorganisms seriously threatens public safety. This work constructed a unique type of thiazolyl hydrazineylidenyl indolones (THIs) to combat global microbial multidrug-resistance. Bioactive evaluation discovered that some target THIs displayed much superior antimicrobial efficacy than clinical chloromycetin, norfloxacin, cefdinir or fluconazole against the tested strains. Eminently, butyl THI 6c displayed a broad antimicrobial spectrum with low MICs of 0.25-1 μg/mL. The highly active THI 6c not only showed low cytotoxicity and hemolysis, rapidly bactericidal ability, good antibiofilm activity and promising pharmacokinetic properties, but also could significantly impede the development of bacterial resistance. Preliminary exploration of antibacterial mechanism revealed that THI 6c could effectively penetrate the cell membrane of MRSA and embed DNA to form 6c‒DNA supramolecular complex and thus hinder DNA replication. Moreover, THI 6c could reduce cell metabolic activity, which might be attributed to the fact that THI 6c could target the pyruvate kinase of MRSA and interfere with the function of the enzyme. These results provided powerful information for further developing thiazolyl hydrazineylidenyl indolones as new broad-spectrum antimicrobial agents.
Collapse
Affiliation(s)
- Wen-Hao Zhao
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Jia-He Xu
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Vijai Kumar Reddy Tangadanchu
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
21
|
Li SR, Tan YM, Zhang L, Zhou CH. Comprehensive Insights into Medicinal Research on Imidazole-Based Supramolecular Complexes. Pharmaceutics 2023; 15:1348. [PMID: 37242590 PMCID: PMC10222694 DOI: 10.3390/pharmaceutics15051348] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
The electron-rich five-membered aromatic aza-heterocyclic imidazole, which contains two nitrogen atoms, is an important functional fragment widely present in a large number of biomolecules and medicinal drugs; its unique structure is beneficial to easily bind with various inorganic or organic ions and molecules through noncovalent interactions to form a variety of supramolecular complexes with broad medicinal potential, which is being paid an increasing amount of attention regarding more and more contributions to imidazole-based supramolecular complexes for possible medicinal application. This work gives systematical and comprehensive insights into medicinal research on imidazole-based supramolecular complexes, including anticancer, antibacterial, antifungal, antiparasitic, antidiabetic, antihypertensive, and anti-inflammatory aspects as well as ion receptors, imaging agents, and pathologic probes. The new trend of the foreseeable research in the near future toward imidazole-based supramolecular medicinal chemistry is also prospected. It is hoped that this work provides beneficial help for the rational design of imidazole-based drug molecules and supramolecular medicinal agents and more effective diagnostic agents and pathological probes.
Collapse
Affiliation(s)
- Shu-Rui Li
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yi-Min Tan
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ling Zhang
- School of Chemical Technology, Shijiazhuang University, Shijiazhuang 050035, China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
22
|
Wang T, Yang XC, Ding Y, Zhang YJ, Ru YQ, Tan JJ, Xu F, Gao WW, Xia YM. Cuprous oxide-demethyleneberberine nanospheres for single near-infrared light-triggered photoresponsive-enhanced enzymatic synergistic antibacterial therapy. J Mater Chem B 2023; 11:1760-1772. [PMID: 36723366 DOI: 10.1039/d2tb02594a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In this work, novel cuprous oxide-demethyleneberberine (Cu2O-DMB) nanomaterials are successfully synthesized for photoresponsive-enhanced enzymatic synergistic antibacterial therapy under near-infrared (NIR) irradiation (808 nm). Cu2O-DMB has a spherical morphology with a smaller nanosize and positive ζ potential, can trap bacteria through electrostatic interactions resulting in a targeting function. Cu2O-DMB nanospheres show both oxidase-like and peroxidase-like activities, and serve as a self-cascade platform, which can deplete high concentrations of GSH to produce O2˙- and H2O2, then H2O2 is transformed into ˙OH, without introducing exogenous H2O2. At the same time, Cu2O-DMB nanospheres become photoresponsive, producing 1O2 and having an efficient photothermal conversion effect upon NIR irradiation. The proposed mechanism is that the generated ROS (O2˙-, ˙OH and 1O2) and hyperthermia can have synergetic effects for killing bacteria. Moreover, hyperthermia is not only beneficial for destroying bacteria, but also effectively enhances the efficiency of ˙OH production and accelerates GSH oxidation. Upon NIR irradiation, Cu2O-DMB nanospheres exhibit excellent antibacterial ability against methicillin-resistant Staphylococcus aureus (MRSA) and ampicillin-resistant Escherichia coli (AREC) with low cytotoxicity and bare bacterial resistance, destroy the bacterial membrane causing an efflux of proteins and disrupt the bacterial biofilm formation. Animal experiments show that the Cu2O-DMB + NIR group can efficiently treat MRSA infection and promote wound healing. These results suggest that Cu2O-DMB nanospheres are effective materials for combating bacterial infections highly efficiently and to aid the development of photoresponsive enzymatic synergistic antibacterial therapy.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Xiao-Chan Yang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Yong Ding
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Yu-Jiao Zhang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Yu-Qing Ru
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Jia-Jun Tan
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Fang Xu
- Key laboratory of Processing and Quality Evaluation Technology of Green Plastics of China National Light Industry Council, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Wei-Wei Gao
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Ya-Mu Xia
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
23
|
Zhou XM, Hu YY, Fang B, Zhou CH. Benzenesulfonyl thiazoloimines as unique multitargeting antibacterial agents towards Enterococcus faecalis. Eur J Med Chem 2023; 248:115088. [PMID: 36623329 DOI: 10.1016/j.ejmech.2023.115088] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/26/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023]
Abstract
New efficient antimicrobial agents are urgently needed to combat invasive multidrug-resistant pathogens infections. Structurally unique benzenesulfonyl thiazoloimines (BSTIs) were exploited as novel potential antibacterial victors to confront terrific drug resistance. Some developed BSTIs exerted effectively antimicrobial efficacy against the tested strains. Notably, 2-pyridyl BSTI 14d exhibited good antibacterial activity against E. faecalis with MIC value of 1 μg/mL, which was superior to sulfathiazole and norfloxacin. The most active compound 14d not only showed rapid bactericidal properties and impeded E. faecalis biofilm formation to effectually relieve the development of drug resistance, but also performed low toxicity toward human red blood cells, human normal squamous epithelial cells and human non-neoplastic colon epithelial cells. Mechanistic investigation demonstrated that molecule 14d could exert efficient membrane destruction leading to the leakage of intracellular materials and metabolism inhibition, cause oxidative damage of E. faecalis through accumulation of excess reactive oxygen species and reduction of glutathione activity, and intercalate into DNA to hinder replication of DNA. Molecular docking indicated that the formation of 14d-dihydrofolate synthetase supramolecular complex could hinder the function of this enzyme. ADME analysis displayed that compound 14d possessed promising pharmacokinetic properties. These findings suggested that the newly developed benzenesulfonyl thiazoloimines with multitargeting antibacterial potential provided a new possibility for evading resistance.
Collapse
Affiliation(s)
- Xue-Mei Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yuan-Yuan Hu
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Bo Fang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, PR China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
24
|
Li R, Zhang Z, Li H, Ji J, Liu C, Dong C, Zhang Y, Hong J. Synthesis and Biological Activity of Aminoisoquinoline Schiff Bases. HETEROCYCLES 2023. [DOI: 10.3987/com-22-14776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
25
|
Zhang PL, Laiche MH, Li YL, Gao WW, Lin JM, Zhou CH. An unanticipated discovery of novel naphthalimidopropanediols as potential broad-spectrum antibacterial members. Eur J Med Chem 2022; 241:114657. [PMID: 35964427 DOI: 10.1016/j.ejmech.2022.114657] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/20/2022] [Accepted: 08/01/2022] [Indexed: 12/14/2022]
Abstract
Constructing a new antibacterial structural framework is an effective strategy to combat drug resistance. This work discovered a class of naphthalimidopropanediols (NIOLs) as a novel structural type of potential broad-spectrum antibacterial agents. Especially, NIOLs 9u, 12i, 15 against Staphylococcus aureus and NIOLs 9l, 13a against Pseudomonas aeruginosa showed excellent inhibitory activities, and they displayed high membrane selectivity from an electrostatic distinction on the membranes between bacteria and mammalian cells. These highly active NIOLs could effectually inhibit the bacterial growths, and relieve the resistance developments. Moreover, the facts of membrane depolarization, outer/inner membrane permeabilization and leakage of intracellular materials, demonstrated that these NIOLs could target and destroy the S. aureus or P. aeruginosa membranes. In particular, they could disrupt the antioxidant defense systems of S. aureus or P. aeruginosa through up-regulation of reactive oxygen species. Simultaneously, they could render the metabolic inactivation of the tested strains, and eradicate the formed biofilms and efficiently kill the strains within the biofilms. The in vitro and in vivo cytotoxicity assay indicated that these compounds possessed low toxicity. These findings of novel NIOLs as potential broad-spectrum antibacterial members provided a bright hope for conquering drug resistance.
Collapse
Affiliation(s)
- Peng-Li Zhang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Mouna Hind Laiche
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yan-Liang Li
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Wei-Wei Gao
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Jian-Mei Lin
- Department of Infections, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
26
|
Sun H, Li ZZ, Jeyakkumar P, Zang ZL, Fang B, Zhou CH. A New Discovery of Unique 13-(Benzimidazolylmethyl)berberines as Promising Broad-Spectrum Antibacterial Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12320-12329. [PMID: 36135960 DOI: 10.1021/acs.jafc.2c03849] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A new hybridization of berberine and benzimidazoles was performed to produce 13-(benzimidazolylmethyl)berberines (BMB) as potentially broad-spectrum antibacterial agents with the hope of confronting multidrug-resistant bacterial infections in the livestock industry. Some of the newly prepared hybrids showed obvious antibacterial effects against tested strains. Particularly, 13-((1-octyl-benzimidazolyl)methyl)berberine 6f (OBMB-6f) was found to be the most promising compound that not only exerted a strong activity (MIC = 0.25-2 μg/mL) and low cytotoxicity but also possessed a fast bactericidal capacity and low propensity to develop resistance toward Staphylococcus aureus and Escherichia coli even after 26 serial passages. Moreover, OBMB-6f displayed the ability to prevent bacterial biofilm formation at low and high temperatures. The mechanistic exploration revealed that OBMB-6f could significantly disintegrate bacterial membranes, markedly facilitate intracellular ROS generation, and efficiently intercalate into DNA. These results provided a profound insight into BMB against multidrug-resistant bacterial infections in the livestock industry.
Collapse
Affiliation(s)
- Hang Sun
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhen-Zhen Li
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ponmani Jeyakkumar
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhong-Lin Zang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Bo Fang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
27
|
Fawad Ansari M, Tan YM, Sun H, Li S, Zhou CH. Unique iminotetrahydroberberine-corbelled metronidazoles as potential membrane active broad-spectrum antibacterial agents. Bioorg Med Chem Lett 2022; 76:129012. [DOI: 10.1016/j.bmcl.2022.129012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 12/21/2022]
|
28
|
Chen D, Yu X, Qin Y, Liao ZY, Li T, Guo FF, Song KX, Yu RL, Xia YM, Gao WW. Electrochemical detection of DNA damage caused by novel potential 2-nitroimidazole naphthalimide-based hypoxia tumor-targeting agent with mimimum side effects. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Deng Z, Sun H, Bheemanaboina RRY, Luo Y, Zhou CH. Natural aloe emodin-hybridized sulfonamide aminophosphates as novel potential membrane-perturbing and DNA-intercalating agents against Enterococcus faecalis. Bioorg Med Chem Lett 2022; 64:128695. [PMID: 35314326 DOI: 10.1016/j.bmcl.2022.128695] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/02/2022] [Accepted: 03/16/2022] [Indexed: 11/27/2022]
Abstract
The dramatic rise in drug resistance accelerated the desire for new antibacterial agents to safeguard human health. This work constructed a novel type of aloe emodin-hybridized sulfonamide aminophosphates as unique potential antibacterial agents. The biological assay revealed that some target hybrids possessed potent inhibitory activity. Particularly, ethyl aminophosphate-hybridized sulfadiazine aloe emodin 7a (EASA-7a) not only displayed preponderant antibacterial efficiency against drug-resistant E. faecalis at low concentration as 0.25 μg/mL but also possessed strong bacteriostatic capacity and low propensity to develop resistance toward E. faecalis. The weak hemolysis toward human red blood cells and efficient biofilm-disruptive ability further implied the therapeutic potential of EASA-7a. Preliminary studies disclosed that the excellent antibacterial behavior of EASA-7a might be attributed to its capacity to permeate and depolarize the bacterial membrane, as well as promote ROS accumulation and intercalate with DNA. These findings manifested that EASA-7a was worthy of further development to combat life-threatening bacterial infections.
Collapse
Affiliation(s)
- Zhao Deng
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Hang Sun
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Rammohan R Yadav Bheemanaboina
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yan Luo
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
30
|
Gallagher JF, Hehir N, Mocilac P, Violin C, O’Connor BF, Aubert E, Espinosa E, Guillot B, Jelsch C. Probing the Electronic Properties and Interaction Landscapes in a Series of N-(Chlorophenyl)pyridinecarboxamides. CRYSTAL GROWTH & DESIGN 2022; 22:3343-3358. [PMID: 35547941 PMCID: PMC9074230 DOI: 10.1021/acs.cgd.2c00153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/29/2022] [Indexed: 06/15/2023]
Abstract
A 3 × 3 isomer grid of nine N-(chlorophenyl)pyridinecarboxamides (NxxCl) is reported with physicochemical studies and single crystal structures (Nx = pyridinoyl moiety; xCl = aminochlorobenzene ring; x = para-/meta-/ortho-), as synthesized by the reaction of the substituted p-/m-/o-pyridinecarbonyl chlorides (Nx) with p-/m-/o-aminochlorobenzenes (xCl). Several of the nine NxxCl crystal structures display structural similarities with their halogenated NxxX and methylated NxxM relatives (x = p-/m-/o-substitutions; X = F, Br; M = methyl). Indeed, five of the nine NxxCl crystal structures are isomorphous with their NxxBr analogues as the NpmCl/Br, NpoCl/Br, NmoCl/NmoBr, NopCl/Br, and NooCl/Br pairs. In the NxxCl series, the favored hydrogen bonding mode is aggregation by N-H···Npyridine interactions, though amide···amide intermolecular interactions are noted in NpoCl and NmoCl. For the NoxCl triad, intramolecular N-H···Npyridine interactions influence molecular planarity, whereas NppCl·H2O (as a monohydrate) exhibits O-H···O, N-H···O1W, and O1W-H···N interactions as the primary hydrogen bonding. Analysis of chlorine-containing compounds on the CSD is noted for comparisons. The interaction environments are probed using Hirshfeld surface analysis and contact enrichment studies. The melting temperatures (T m) depend on both the lattice energy and molecular symmetry (Carnelley's rule), and the melting points can be well predicted from a linear regression of the two variables. The relationships of the T m values with the total energy, the electrostatic component, and the strongest hydrogen bond components have been analyzed.
Collapse
Affiliation(s)
- John F. Gallagher
- School
of Chemical Sciences, Dublin City University, Dublin D09 DXA0, Ireland
| | - Niall Hehir
- School
of Chemical Sciences, Dublin City University, Dublin D09 DXA0, Ireland
| | - Pavle Mocilac
- School
of Chemical Sciences, Dublin City University, Dublin D09 DXA0, Ireland
| | - Chloé Violin
- School
of Chemical Sciences, Dublin City University, Dublin D09 DXA0, Ireland
| | | | - Emmanuel Aubert
- CRM, CNRS UMR 7036, Faculté
des Sciences et Technologies, Université
de Lorraine, BP 70239, Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy, France
| | - Enrique Espinosa
- CRM, CNRS UMR 7036, Faculté
des Sciences et Technologies, Université
de Lorraine, BP 70239, Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy, France
| | - Benoît Guillot
- CRM, CNRS UMR 7036, Faculté
des Sciences et Technologies, Université
de Lorraine, BP 70239, Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy, France
| | - Christian Jelsch
- CRM, CNRS UMR 7036, Faculté
des Sciences et Technologies, Université
de Lorraine, BP 70239, Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy, France
| |
Collapse
|
31
|
Novel metronidazole-derived three-component hybrids as promising broad-spectrum agents to combat oppressive bacterial resistance. Bioorg Chem 2022; 122:105718. [DOI: 10.1016/j.bioorg.2022.105718] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/21/2022] [Accepted: 03/01/2022] [Indexed: 12/11/2022]
|
32
|
Srikanth D, Vinayak Joshi S, Ghouse Shaik M, Pawar G, Bujji S, Kanchupalli V, Chopra S, Nanduri S. A Comprehensive Review on Potential Therapeutic Inhibitors of Nosocomial Acinetobacter baumannii Superbugs. Bioorg Chem 2022; 124:105849. [DOI: 10.1016/j.bioorg.2022.105849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/20/2022]
|
33
|
Xie YP, Sangaraiah N, Meng JP, Zhou CH. Unique Carbazole-Oxadiazole Derivatives as New Potential Antibiotics for Combating Gram-Positive and -Negative Bacteria. J Med Chem 2022; 65:6171-6190. [PMID: 35389643 DOI: 10.1021/acs.jmedchem.2c00001] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Novel carbazole-oxadiazoles were developed as new potential antibacterial agents to combat dreadful resistance. Some target compounds displayed predominant inhibitory effects on the tested Gram-positive and -negative bacteria, and carbazole-oxadiazoles 5g, 5i-k, 16a-c, and tetrazole analogues 23b-c were found to be efficient in impeding the growth of MRSA and Pseudomonas aeruginosa ATCC 27853 (MICs = 0.25-4 μg/mL). Furthermore, compounds 5g and 23b-c not only possessed rapid bactericidal ability and low tendency to develop resistance but also exhibited low cytotoxic effects toward Hek 293T, HeLa, and red blood cells (RBCs), especially molecule 5g also showed low toxicity in vivo, which showed the therapeutic potential of these compounds. Further exploration indicated that compounds 5g, 5i, and 23b-c could disintegrate the integrity of bacterial cell membranes to leak the cytoplasmic contents, thus exerting excellent antibacterial effects. These facts mean that carbazole-based antibacterial agents might have bright prospects in confronting bacterial infections.
Collapse
Affiliation(s)
- Yun-Peng Xie
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Nagarajan Sangaraiah
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Jiang-Ping Meng
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing 402160, P. R. China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
34
|
Yang XC, Zhang PL, Kumar KV, Li S, Geng RX, Zhou CH. Discovery of unique thiazolidinone-conjugated coumarins as novel broad spectrum antibacterial agents. Eur J Med Chem 2022; 232:114192. [DOI: 10.1016/j.ejmech.2022.114192] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 01/06/2023]
|
35
|
Hu Y, Zhang L, Huang J, Wang T, Zhang J, Yu C, Pan G, Zhang L, Zhu Z, Zhang J. Novel Schiff Base‐conjugated
para
‐Aminobenzenesulfonamide Indole Hybrids as Potentially Muti‐targeting Blockers against
Staphylococcus aureus. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yuanyuan Hu
- Sauvage Laboratory for Smart Materials Harbin Institute of Technology (Shenzhen) Shenzhen 518055 P. R. China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology School of Materials Science and Engineering Harbin Institute of Technology Shenzhen 518055 P. R. China
| | - Ling Zhang
- School of Science Harbin Institute of Technology Shenzhen 518055 P. R. China
| | - Jinxu Huang
- Sauvage Laboratory for Smart Materials Harbin Institute of Technology (Shenzhen) Shenzhen 518055 P. R. China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology School of Materials Science and Engineering Harbin Institute of Technology Shenzhen 518055 P. R. China
| | - Tiansheng Wang
- Sauvage Laboratory for Smart Materials Harbin Institute of Technology (Shenzhen) Shenzhen 518055 P. R. China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology School of Materials Science and Engineering Harbin Institute of Technology Shenzhen 518055 P. R. China
| | - Jichuan Zhang
- Department of Chemistry University of Idaho Moscow Idaho 83844-2324 USA
| | - Congwei Yu
- College of Science China Agricultural University Beijing 100193 P. R. China
| | - Guangxing Pan
- Sauvage Laboratory for Smart Materials Harbin Institute of Technology (Shenzhen) Shenzhen 518055 P. R. China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology School of Materials Science and Engineering Harbin Institute of Technology Shenzhen 518055 P. R. China
| | - Ling Zhang
- School of Chemical Technology Shijiazhuang University Shijiazhuang Hebei 050035 P. R. China
| | - Zhenye Zhu
- Sauvage Laboratory for Smart Materials Harbin Institute of Technology (Shenzhen) Shenzhen 518055 P. R. China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology School of Materials Science and Engineering Harbin Institute of Technology Shenzhen 518055 P. R. China
| | - Jiaheng Zhang
- Sauvage Laboratory for Smart Materials Harbin Institute of Technology (Shenzhen) Shenzhen 518055 P. R. China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology School of Materials Science and Engineering Harbin Institute of Technology Shenzhen 518055 P. R. China
| |
Collapse
|
36
|
Liao Z, Xia Y, Zuo J, Wang T, Hu D, Li M, Shao N, Chen D, Song K, Yu X, Zhang X, Gao W. Metal-Organic Framework Modified MoS 2 Nanozyme for Synergetic Combating Drug-Resistant Bacterial Infections via Photothermal Effect and Photodynamic Modulated Peroxidase-Mimic Activity. Adv Healthc Mater 2022; 11:e2101698. [PMID: 34549554 DOI: 10.1002/adhm.202101698] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/11/2021] [Indexed: 12/13/2022]
Abstract
Bacterial infections have become major threats to public health all over the world. With the emergence of antibiotic resistance, it is urgent to develop novel antimicrobial materials to efficiently overcome drug resistance with high bactericidal activity. In this work, UiO-66-NH-CO-MoS2 nanocomposites (UNMS NCs) are constructed through the amidation reaction. The UNMS NCs are positively charged which is beneficial for capturing and restricting bacteria. Significantly, UNMS NCs possess a synergistic bactericidal efficiency based on near-infrared irradiation (808 nm) regulated combination of photothermal, photodynamic, and peroxidase-like enzymatic activities. Both the photodynamic property and nanozymatic activity of UNMS NCs can lead to the generation of reactive oxygen species. The UNMS NCs show high catalytic activity in a wide pH range and exhibit excellent antibacterial ability against ampicillin-resistant Escherichia coli and methicillin-resistant Staphylococcus aureus with negligible cytotoxicity. Interestingly, due to the 808 nm irradiation-induced hyperthermia in the presence of UNMS NCs, the glutathione oxidation process can be accelerated, resulting in bacterial death more easily. Mice wound models are established to further manifest that UNMS NCs can promote wound healing with good biosafety in living systems.
Collapse
Affiliation(s)
- Zi‐Yang Liao
- Key Laboratory of Multiphase Flow Reaction and Separation Engineering of Shandong Province College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Ya‐Mu Xia
- Key Laboratory of Multiphase Flow Reaction and Separation Engineering of Shandong Province College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Jia‐Min Zuo
- Key Laboratory of Multiphase Flow Reaction and Separation Engineering of Shandong Province College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Tao Wang
- Key Laboratory of Multiphase Flow Reaction and Separation Engineering of Shandong Province College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Da‐Tong Hu
- College of Pharmacy Shan Dong University of Traditional Chinese Medicine Jinan 250355 China
| | - Ming‐Zhe Li
- Key Laboratory of Multiphase Flow Reaction and Separation Engineering of Shandong Province College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Ning‐Ning Shao
- Key Laboratory of Multiphase Flow Reaction and Separation Engineering of Shandong Province College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Dong Chen
- Key Laboratory of Multiphase Flow Reaction and Separation Engineering of Shandong Province College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Kai‐Xin Song
- Key Laboratory of Multiphase Flow Reaction and Separation Engineering of Shandong Province College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Xuan Yu
- Key Laboratory of Multiphase Flow Reaction and Separation Engineering of Shandong Province College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Xin‐Yue Zhang
- Key Laboratory of Multiphase Flow Reaction and Separation Engineering of Shandong Province College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Wei‐Wei Gao
- Key Laboratory of Multiphase Flow Reaction and Separation Engineering of Shandong Province College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
- Chongqing Key Laboratory of Soft‐Matter Material Chemistry and Function Manufacturing Southwest University Chongqing 400715 China
| |
Collapse
|
37
|
Filli MS, Ibrahim AA, Kesse S, Aquib M, Boakye-Yiadom KO, Farooq MA, Raza F, Zhang Y, Wang B. Synthetic berberine derivatives as potential new drugs. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902020000318835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
| | | | | | - Md Aquib
- China Pharmaceutical University, China
| | | | | | | | | | - Bo Wang
- China Pharmaceutical University, China
| |
Collapse
|
38
|
Sun H, Huang SY, Jeyakkumar P, Cai GX, Fang B, Zhou CH. Natural Berberine-derived Azolyl Ethanols as New Structural Antibacterial Agents against Drug-Resistant Escherichia coli. J Med Chem 2021; 65:436-459. [PMID: 34964345 DOI: 10.1021/acs.jmedchem.1c01592] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Natural berberine-derived azolyl ethanols as new structural antibacterial agents were designed and synthesized for fighting with dreadful bacterial resistance. Partial target molecules exhibited potent activity against the tested strains, particularly, nitroimidazole derivative 4d and benzothiazole-2-thoil compound 18b, with low cytotoxicity both exerted strong antibacterial activities against multidrug-resistant Escherichia coli at low concentrations as 0.007 and 0.006 mM, respectively. Meanwhile, the active compounds 4d and 18b possessed the ability to rapidly kill bacteria and observably eradicate the E. coli biofilm by reducing exopolysaccharide content to prevent bacterial adhesion, which was conducive to alleviating the development of E. coli resistance. Preliminary mechanistic explorations suggested that the excellent antibacterial potential of molecules 4d and 18b might be attributed to their ability to disintegrate membrane, accelerate ROS accumulation, reduce bacterial metabolism, and intercalate into DNA groove. These results provided powerful information for the further exploitation of natural berberine derivatives against bacterial pathogens.
Collapse
Affiliation(s)
- Hang Sun
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Shi-Yu Huang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ponmani Jeyakkumar
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Gui-Xin Cai
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Bo Fang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
39
|
Zhang PL, Gopala L, Zhang SL, Cai GX, Zhou CH. An unanticipated discovery towards novel naphthalimide corbelled aminothiazoximes as potential anti-MRSA agents and allosteric modulators for PBP2a. Eur J Med Chem 2021; 229:114050. [PMID: 34922190 DOI: 10.1016/j.ejmech.2021.114050] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/26/2021] [Accepted: 12/09/2021] [Indexed: 12/14/2022]
Abstract
Available therapeutic strategies are urgently needed to conquer multidrug resistance of MRSA. A visible effort was guided towards the advancement of novel antibacterial framework of naphthalimide corbelled aminothiazoximes, and desired to assert some insight on the conjunction of individual pharmacophore with distinct biological activities and unique action mechanism. Preliminary assessment displayed that dimethylenediamine derivative 13d presented a wonderful inhibition on MRSA (MIC = 0.5 μg/mL), and showed excellent membrane selectivity (HC50 > 200 μg/mL) from an electrostatic distinction of the electronegative bacterial membranes and the electroneutral mammalian membranes. Moreover, 13d could effectually relieve the development of MRSA resistance. Investigations into explaining the mechanism of anti-MRSA disclosed that 13d displayed strong lipase affinity, which facilitated its permeation into cell membrane, causing membrane depolarization, leakage of cytoplasmic contents and lactate dehydrogenase (LDH) inhibition. Meanwhile, 13d could exert interaction with DNA to hinder biological function of DNA, and disrupt the antioxidant defense system of MRSA through up-regulation of ROS subjected the strain to oxidative stress. In particular, the unanticipated mechanism for naphthalimide corbelled aminothiazoximes that 13d could suppress the expression of PBP2a by inducing allosteric modulation of PBP2a and triggering the open of the active site, was discovered for the first time. These findings of naphthalimide corbelled aminothiazoximes as a small-molecule class of anti-MRSA agents held promise in strategies for treatment of MRSA infections.
Collapse
Affiliation(s)
- Peng-Li Zhang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Lavanya Gopala
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing, 401331, China.
| | - Gui-Xin Cai
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
40
|
Identification of a novel antifungal backbone of naphthalimide thiazoles with synergistic potential for chemical and dynamic treatment. Future Med Chem 2021; 13:2047-2067. [PMID: 34672778 DOI: 10.4155/fmc-2021-0162] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: The high incidence and prevalence of fungal infections call for new antifungal drugs. This work was to develop naphthalimide thiazoles as potential antifungal agents. Results & methodology: These compounds showed significant antifungal potency toward some tested fungi. Especially, naphthalimide thiazole 4h with excellent anti-Candida tropicalis efficacy possessed good hemolysis level, low toxicity and no obvious resistance. Deciphering the mechanism showed that 4h interacted with DNA and disrupted the antioxidant defense system of C. tropicalis. Compound 4h also triggered membrane depolarization, leakage of cytoplasmic contents and LDH inhibition. Simultaneously, 4h rendered metabolic inactivation and eradicated the formed biofilms of C. tropicalis. Conclusion: The multifaceted synergistic effect initiated by naphthalimide thiazoles is a reasonable treatment window for prospective development.
Collapse
|
41
|
Bheemanaboina RRY, Wang J, Hu YY, Meng JP, Guan Z, Zhou CH. A facile reaction to access novel structural sulfonyl-hybridized imidazolyl ethanols as potential DNA-targeting antibacterial agents. Bioorg Med Chem Lett 2021; 47:128198. [PMID: 34119615 DOI: 10.1016/j.bmcl.2021.128198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022]
Abstract
A novel type of sulfonyl-hybridized imidazolyl ethanols as potential DNA-targeting antibacterial agents was constructed via the unique ring-opened reaction of oxiranes by imidazoles for the first time. Some developed target hybrids showed potential antimicrobial potency against the tested microbes. Especially, imidazole derivative 5f could strongly suppressed the growth of MRSA (MIC = 4 μg/mL), which was 2-fold and 16-fold more potent than the positive control sulfathiazole and norfloxacin. This compound exhibited quite low propensity to induce bacterial resistance. Antibacterial mechanism exploration indicated that compound 5f could embed in MRSA DNA to form steady 5f-DNA complex, which possibly hinder DNA replication to exert antimicrobial behavior. Molecular docking showed that molecule 5f could bind with dihydrofolate synthetase through hydrogen bonds. These results implied that imidazole derivative 5f could be served as a promising molecule for the exploration of novel antibacterial candidates.
Collapse
Affiliation(s)
- Rammohan R Yadav Bheemanaboina
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Juan Wang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yuan-Yuan Hu
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jiang-Ping Meng
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing 402160, China.
| | - Zhi Guan
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
42
|
Khare T, Anand U, Dey A, Assaraf YG, Chen ZS, Liu Z, Kumar V. Exploring Phytochemicals for Combating Antibiotic Resistance in Microbial Pathogens. Front Pharmacol 2021; 12:720726. [PMID: 34366872 PMCID: PMC8334005 DOI: 10.3389/fphar.2021.720726] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/28/2021] [Indexed: 01/09/2023] Open
Abstract
Antibiotic resistance or microbial drug resistance is emerging as a serious threat to human healthcare globally, and the multidrug-resistant (MDR) strains are imposing major hurdles to the progression of drug discovery programs. Newer antibiotic-resistance mechanisms in microbes contribute to the inefficacy of the existing drugs along with the prolonged illness and escalating expenditures. The injudicious usage of the conventional and commonly available antibiotics in human health, hygiene, veterinary and agricultural practices is proving to be a major driver for evolution, persistence and spread of antibiotic-resistance at a frightening rate. The drying pipeline of new and potent antibiotics is adding to the severity. Therefore, novel and effective new drugs and innovative therapies to treat MDR infections are urgently needed. Apart from the different natural and synthetic drugs being tested, plant secondary metabolites or phytochemicals are proving efficient in combating the drug-resistant strains. Various phytochemicals from classes including alkaloids, phenols, coumarins, terpenes have been successfully demonstrated their inhibitory potential against the drug-resistant pathogens. Several phytochemicals have proved effective against the molecular determinants responsible for attaining the drug resistance in pathogens like membrane proteins, biofilms, efflux pumps and bacterial cell communications. However, translational success rate needs to be improved, but the trends are encouraging. This review highlights current knowledge and developments associated challenges and future prospects for the successful application of phytochemicals in combating antibiotic resistance and the resistant microbial pathogens.
Collapse
Affiliation(s)
- Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Pune, India.,Department of Environmental Science, Savitribai Phule Pune University, Pune, India
| | - Uttpal Anand
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Abhijit Dey
- Ethnopharmacology and Natural Product Research Laboratory, Department of Life Sciences, Presidency University, Kolkata, India
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Zhijun Liu
- Department of Microbiology, Weifang Medical University, Weifang, China
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Pune, India.,Department of Environmental Science, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
43
|
Sun H, Ansari MF, Fang B, Zhou CH. Natural Berberine-Hybridized Benzimidazoles as Novel Unique Bactericides against Staphylococcus aureus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7831-7840. [PMID: 34228443 DOI: 10.1021/acs.jafc.1c02545] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Natural berberine-hybridized benzimidazoles as potential antibacterial agents were constructed to treat Staphylococcus aureus infection in the livestock industry. Bioassay showed that some new berberine-benzimidazole hybrids exhibited potent antibacterial efficacies, especially, the 2,4-dichlorobenzyl derivative 7d not only showed strong activity against S. aureus ATCC 29213 with the MIC value of 0.006 mM but also effectively eradicated bacterial biofilm and exhibited low toxicity toward mammalian cells. The drug combination experiments showed that compound 7d together with norfloxacin could enhance the antibacterial efficacy. Moreover, the 2,4-dichlorobenzyl derivative 7d did not show obvious propensity to develop bacterial resistance. Preliminary mechanism studies revealed that the active molecule 7d could damage the membrane integrity, stimulate ROS generation, and bind with DNA as well as S. aureus sortase A, thus exerting powerful antibacterial ability. In light of these facts, berberine-benzimidazole hybrid 7d showed a large potentiality as a new bactericide for treating S. aureus in the livestock industry.
Collapse
Affiliation(s)
- Hang Sun
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Bo Fang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
44
|
Zhang Y, Wang L, Li G, Gao J. Berberine-Albumin Nanoparticles: Preparation, Thermodynamic Study and Evaluation Their Protective Effects Against Oxidative Stress in Primary Neuronal Cells as a Model of Alzheimer's Disease. J Biomed Nanotechnol 2021; 17:1088-1097. [PMID: 34167623 DOI: 10.1166/jbn.2021.2995] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Berberine has shown an outstanding antioxidant activity, however the low bioavailability limits its applications in pharmaceutical platforms. Therefore, in this paper, after fabrication of the berberine-HSA nanoparticles by desolvation method, they were well characterized by TEM, SEM, DLS, and FTIR techniques. Afterwards the interaction of HSA and the berberine was evaluated by molecular docking analysis. Finally, the antioxidant activity of the berberine-HSA nanoparticles against H₂O₂-induced oxidative stress in cultured neurons as a model of AD was evaluated by cellular assays. The results showed that the prepared berberine-HSA nanoparticles have a spherical-shaped morphology with a size of around 100 nm and zeta potential value of -31.84 mV. The solubility value of nanoparticles was calculated to be 40.27%, with a berberine loading of 19.37%, berberine entrapment efficiency of 70.34%, and nanoparticles yield of 88.91%. Also, it was shown that the berberine is not significantly released from HSA nanoparticles within 24 hours. Afterwards, molecular docking investigation revealed that berberine spontaneously interacts with HSA through electrostatic interaction. Finally, cellular assays disclosed that the pretreatment of neuronal cultures with berberine-HSA nanoparticles decreased the H₂O₂-stimulated cytotoxicity and relevant morphological changes and enhanced the CAT activity. In conclusion, it can be indicated that the nanoformulation of the berberine can be used as a promising platform for inhibition of oxidative damage-induced Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Yaohui Zhang
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan Province 471009, P. R. China
| | - Lixiang Wang
- Department of Neurology, Laigang Hospital Affiliated to Shandong First Medical University, Jinan 271126, China
| | - Guichen Li
- Department of Clinical Psychology, Qingdao Mental Health Center Clinical Psychology, 266034, China
| | - Jianyuan Gao
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, P. R. China
| |
Collapse
|
45
|
Hu Y, Hu S, Pan G, Wu D, Wang T, Yu C, Fawad Ansari M, Yadav Bheemanaboina RR, Cheng Y, Bai L, Zhou C, Zhang J. Potential antibacterial ethanol-bridged purine azole hybrids as dual-targeting inhibitors of MRSA. Bioorg Chem 2021; 114:105096. [PMID: 34147878 DOI: 10.1016/j.bioorg.2021.105096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 11/30/2022]
Abstract
A new class of antibacterial ethanol-bridged purine azole hybrids as potential dual-targeting inhibitors was developed. Bioactivity evaluation showed that some of the target compounds had prominent antibacterial activity against the tested bacteria, notably, metronidazole hybrid 3a displayed significant inhibitory activity against MRSA (MIC = 6 μM), and had no obvious toxicity on normal mammalian cells (RAW 264.7). In addition, compound 3a also did not induce drug resistance of MRSA obviously, even after fifteen passages. Molecular modeling studies showed that the highly active molecule 3a could insert into the base pairs of topoisomerase IA-DNA as well as topoisomerase IV-DNA through hydrogen bonding. Furthermore, a preliminary study on the antibacterial mechanism revealed that the active molecule 3a could rupture the bacterial membrane of MRSA and insert into MRSA DNA to block its replication, thus possibly exhibiting strong antibacterial activity. These results strongly indicated that the highly active hybrid 3a could be used as a potential dual-targeting inhibitor of MRSA for further development of valuable antimicrobials.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055 China
| | - Shunyou Hu
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055 China
| | - Guangxing Pan
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055 China
| | - Dong Wu
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055 China
| | - Tiansheng Wang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055 China
| | - Congwei Yu
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055 China
| | - Mohammad Fawad Ansari
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Rammohan R Yadav Bheemanaboina
- Sokol Institute for Pharmaceutical Life Sciences, Department of Chemistry and Biochemistry, Montclair State University, New Jersey 07043, USA
| | - Yu Cheng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Ligang Bai
- School of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Chenghe Zhou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Jiaheng Zhang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055 China.
| |
Collapse
|
46
|
Novel chalcone-conjugated, multi-flexible end-group coumarin thiazole hybrids as potential antibacterial repressors against methicillin-resistant Staphylococcus aureus. Eur J Med Chem 2021; 222:113628. [PMID: 34139627 DOI: 10.1016/j.ejmech.2021.113628] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 12/22/2022]
Abstract
The increasing resistance of methicillin-resistant Staphylococcus aureus (MRSA) to antibiotics has led to a growing effort to design and synthesize novel structural candidates of chalcone-conjugated, multi-flexible end-group coumarin thiazole hybrids with outstanding bacteriostatic potential. Bioactivity screening showed that hybrid 5i, which was modified with methoxybenzene, exerted a significant inhibitory activity against MRSA (MIC = 0.004 mM), which was 6 times better than the anti-MRSA activity of the reference drug norfloxacin (MIC = 0.025 mM). Compound 5i neither conferred apparent resistance onto MRSA strains even after multiple passages nor triggered evident toxicity to human hepatocyte LO2 cells and normal mammalian cells (RAW 264.7). Molecular docking showed that highly active molecule 5i might bind to DNA gyrase by forming stable hydrogen bonds. In addition, molecular electrostatic potential surfaces were developed to explain the high antibacterial activity of the target compounds. Furthermore, preliminary mechanism studies suggested that hybrid 5i could disrupt the bacterial membrane of MRSA and insert itself into MRSA DNA to impede its replication, thus possibly becoming a potential antibacterial repressor against MRSA.
Collapse
|
47
|
Wang J, Zhang PL, Ansari MF, Li S, Zhou CH. Molecular design and preparation of 2-aminothiazole sulfanilamide oximes as membrane active antibacterial agents for drug resistant Acinetobacter baumannii. Bioorg Chem 2021; 113:105039. [PMID: 34091291 DOI: 10.1016/j.bioorg.2021.105039] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023]
Abstract
A series of 2-aminothiazole sulfanilamide oximes were developed as new membrane active antibacterial agents to conquer the microbial infection. Benzoyl derivative 10c was preponderant for the treatment of drug-resistant A. baumannii infection in contrast to norfloxacin and exerted excellent biocompatibility against mammalian cells including erythrocyte and LO2 cell line. Meanwhile, it had ability to eradicate established biofilm to alleviate the resistance burden. Mechanism investigation elucidated that compound 10c was able to disturb the membrane effectively and inhibit lactic dehydrogenase, which led to cytoplasmic content leakage. The cellular redox homeostasis was interfered via the production of reactive oxygen and nitrogen species (RONS), which further contributed to respiratory pathway inactivation and reduction of GSH activity. This work indicated that 2-aminothiazole sulfanilamide oximes could be a promising start for the exploitation of novel antibacterial agents against pathogens.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Peng-Li Zhang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Shuo Li
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
48
|
Xie YP, Ansari MF, Zhang SL, Zhou CH. Novel carbazole-oxadiazoles as potential Staphylococcus aureus germicides. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 175:104849. [PMID: 33993967 DOI: 10.1016/j.pestbp.2021.104849] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Staphylococcus aureus resistance poses nonnegligible threats to the livestock industry. In light of this, carbazole-oxadiazoles were designed and synthesized for treating S. aureus infection. Bioassay discovered that 3,6-dibromocarbazole derivative 13a had effective inhibitory activities to several Gram-positive bacteria, in particular to S. aureus, S. aureus ATCC 29213, MRSA and S. aureus ATCC 25923 (MICs = 0.6-4.6 nmol/mL), which was more active than norfloxacin (MICs = 6-40 nmol/mL). Subsequent studies showed that 3,6-dibromocarbazole derivative 13a acted rapidly on S. aureus ATCC 29213 and possessed no obvious tendency to induce bacterial resistance. Further evaluations indicated that 3,6-dibromocarbazole derivative 13a showed strong abilities to disrupt bacterial biofilm and interfere with DNA, which might be the power sources of antibacterial performances. Moreover, 3,6-dibromocarbazole derivative 13a also exhibited slight cell lethality toward Hek 293 T and LO2 cells and low hemolytic toxicity to red blood cells. The above results implied that the active molecule 13a could be studied in the future development of agricultural available antibiotics.
Collapse
Affiliation(s)
- Yun-Peng Xie
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
49
|
Sui YF, Ansari MF, Fang B, Zhang SL, Zhou CH. Discovery of novel purinylthiazolylethanone derivatives as anti-Candida albicans agents through possible multifaceted mechanisms. Eur J Med Chem 2021; 221:113557. [PMID: 34087496 DOI: 10.1016/j.ejmech.2021.113557] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022]
Abstract
An unprecedented amount of fungal and fungal-like infections has recently brought about some of the most severe die-offs and extinctions due to fungal drug resistance. Aimed to alleviate the situation, new effort was made to develop novel purinylthiazolylethanone derivatives, which were expected to combat the fungal drug resistance. Some prepared purinylthiazolylethanone derivatives possessed satisfactory inhibitory action towards the tested fungi, among which compound 8c gave a MIC value of 1 μg/mL against C. albicans. The active molecule 8c was able to kill C. albicans with undetectable resistance as well as low hematotoxicity and cytotoxicity. Furthermore, it could hinder the growth of C. albicans biofilm, thus avoiding the occurrence of drug resistance. Mechanism research manifested that purinylthiazolylethanone derivative 8c led to damage of cell wall and membrane disruption, so protein leakage and the cytoplasmic membrane depolarization were observed. On this account, the activity of fungal lactate dehydrogenase was reduced and metabolism was impeded. Meanwhile, the increased levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) disordered redox equilibrium, giving rise to oxidative damage to fungal cells and fungicidal effect.
Collapse
Affiliation(s)
- Yan-Fei Sui
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Bo Fang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators As Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing, 401331, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
50
|
Wang J, Ansari MF, Zhou CH. Identification of Unique Quinazolone Thiazoles as Novel Structural Scaffolds for Potential Gram-Negative Bacterial Conquerors. J Med Chem 2021; 64:7630-7645. [PMID: 34009979 DOI: 10.1021/acs.jmedchem.1c00334] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A class of quinazolone thiazoles was identified as new structural scaffolds for potential antibacterial conquerors to tackle dreadful resistance. Some prepared compounds exhibited favorable bacteriostatic efficiencies on tested bacteria, and the most representative 5j featuring the 4-trifluoromethylphenyl group possessed superior performances against Escherichia coli and Pseudomonas aeruginosa to norfloxacin. Further studies revealed that 5j with inappreciable hemolysis could hinder the formation of bacterial biofilms and trigger reactive oxygen species generation, which could take responsibility for emerging low resistance. Subsequent paralleled exploration discovered that 5j not only disintegrated outer and inner membranes to induce leakage of cytoplasmic contents but also broke the metabolism by suppressing dehydrogenase. Meanwhile, derivative 5j could intercalate into DNA to exert powerful antibacterial properties. Moreover, compound 5j gave synergistic effects against some Gram-negative bacteria in combination with norfloxacin. These findings indicated that this novel structural type of quinazolone thiazoles showed therapeutic foreground in struggling with Gram-negative bacterial infections.
Collapse
Affiliation(s)
- Jie Wang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|