1
|
Wang F, Ma J, Yang L, Hu P, Tang S, Wang J, Li Z. Discovery of novel CXCR4 inhibitors for the treatment of inflammation by virtual screening and biological evaluation. Eur J Med Chem 2024; 275:116605. [PMID: 38885550 DOI: 10.1016/j.ejmech.2024.116605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
C-X-C chemokine receptor type 4 (CXCR4) exerts considerable influence on the pathogenesis of inflammatory disorders and offers a potent avenue for drug intervention. This research utilizes a hybrid virtual screening methodology constructed using computer-aided drug design to discover novel CXCR4 inhibitors for the treatment of inflammation. First, a compound library was screened by Lipinski's five rules and adsorption, distribution, metabolism, excretion and toxicity properties. Second, the HypoGen algorithm was used in constructing a 3D-QSAR pharmacophore model and verify it layer by layer, and the obtained optimal pharmacophore 1 (Hypo 1) was used as a 3D query for compound screening. Then, hit compounds were obtained through molecular docking (Libdock and CDOCKER). The toxicity of the compounds to MDA-MB-231 cells was evaluated in vitro, and their binding affinity to the target was evaluated according to how they compete with 12G5 antibody for CXCR4 on the surfaces of the MDA-MB-231 cells. Compound Hit14 showed the strongest binding affinity among the hit compounds and inhibited cell migration and invasion in Matrigel invasion and wound healing assay at a concentration of 100 nM, demonstrating a better effect than AMD3100. Western Blot experiments further showed that Hit14 blocked the CXCR4/CXCL12-mediated phosphorylation of Akt. Meanwhile, cellular thermal displacement assay analysis showed that CXCR4 protein bound to Hit14 had high thermal stability. Finally, through in vivo experiments, we found that Hit14 inhibited mouse ear inflammation and reduced ear swelling and damage. Therefore, Hit14 is a promising drug for the further development of CXCR4 inhibitors for inflammation treatment.
Collapse
Affiliation(s)
- Fang Wang
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jie Ma
- The Central Hospital of Wuhan, Tongji Medical College of HUST, Wuhan, China
| | - Lili Yang
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Ping Hu
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Siming Tang
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jing Wang
- Department of Dermatology and Venereology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| | - Zeng Li
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.
| |
Collapse
|
2
|
Jiang X, Lu L, Li J, Jiang J, Zhang J, Zhou S, Wen H, Cai H, Luo X, Li Z, Wang J, Ju B, Bai R. Synthetically Feasible De Novo Molecular Design of Leads Based on a Reinforcement Learning Model: AI-Assisted Discovery of an Anti-IBD Lead Targeting CXCR4. J Med Chem 2024; 67:10057-10075. [PMID: 38863440 DOI: 10.1021/acs.jmedchem.4c00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Artificial intelligence (AI) de novo molecular generation provides leads with novel structures for drug discovery. However, the target affinity and synthesizability of the generated molecules present critical challenges for the successful application of AI technology. Therefore, we developed an advanced reinforcement learning model to bridge the gap between the theory of de novo molecular generation and the practical aspects of drug discovery. This model utilizes chemical reaction templates and commercially available building blocks as a starting point and employs forward reaction prediction to generate molecules, while real-time docking and drug-likeness predictions are conducted to ensure synthesizability and drug-likeness. We applied this model to design active molecules targeting the inflammation-related receptor CXCR4 and successfully prepared them according to the AI-proposed synthetic routes. Several molecules exhibited potent anti-CXCR4 and anti-inflammatory activity in subsequent in vitro and in vivo assays. The top-performing compound XVI alleviated symptoms related to inflammatory bowel disease and showed reasonable pharmacokinetic properties.
Collapse
Affiliation(s)
- Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Liuxin Lu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Junjie Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Jing Jiang
- SanOmics AI Co. Ltd., Hangzhou 311103, PR China
| | - Jiapeng Zhang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, PR China
| | - Shengbin Zhou
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, PR China
| | - Hao Wen
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Hong Cai
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Xinyu Luo
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Zhen Li
- SanOmics AI Co. Ltd., Hangzhou 311103, PR China
| | - Jiahui Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Bin Ju
- SanOmics AI Co. Ltd., Hangzhou 311103, PR China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| |
Collapse
|
3
|
Du J, Liu P, Zhu Y, Wang G, Xing S, Liu T, Xia J, Dong S, Lv N, Li Z. Novel tryptanthrin derivatives with benzenesulfonamide substituents: Design, synthesis, and anti-inflammatory evaluation. Eur J Med Chem 2023; 246:114956. [PMID: 36450214 DOI: 10.1016/j.ejmech.2022.114956] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/13/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
Herein, two series of tryptanthrin derivatives with benzenesulfonamide substituents were designed and synthesized to discover novel anti-inflammatory agents. The anti-inflammatory activities of all derivatives were screened by evaluating their inhibitory effects on lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW264.7 cells. Among them, compound 8j exhibited the best NO inhibitory activity (IC50 = 1.25 ± 0.21 μM), with no obvious toxicity. Further evaluation showed that 8j could also significantly reduce the levels of pro-inflammatory cytokines interleukin-1β (IL-1β, IC50 = 8.48 ± 0.23 μM) and tumor necrosis factor-α (TNF-α, IC50 = 11.53 ± 0.35 μM) and downregulate the LPS-induced expression of iNOS and COX-2. Reverse docking of 8j suggested p38α as the molecular target, which is a well-known crucial player in the p38 MAPK signaling pathway that controls the transcription of pro-inflammatory mediators. Cellular thermal shift assay showed that 8j efficiently stabilized p38α in LPS-treated RAW264.7 cells. Western blot showed that inflammatory response was inhibited by 8j through inhibiting the phosphorylation of p38α and MK2 in the p38 MAPK signaling pathway. Finally, In vivo studies showed that 8j could significantly ameliorate the degree of foot swelling and knee joint pathology in adjuvant-induced arthritis (AIA) rats and reduce levels of TNF-α and IL-1β in serum, achieving the effect of protecting synovial tissue and ameliorating arthritis. These findings suggested that 8j may be a promising compound for further development of anti-inflammatory agents.
Collapse
Affiliation(s)
- Jiyu Du
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Peipei Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; Anhui BioX-Vision Biological Technology Co., Ltd, Hefei, China
| | - Yanan Zhu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Guoxing Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; Anhui BioX-Vision Biological Technology Co., Ltd, Hefei, China
| | - Siqi Xing
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Tongtong Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jucheng Xia
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Shuanghong Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Na Lv
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Zeng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.
| |
Collapse
|
4
|
Bai R, Jiang X, Hui Z, Yoon Y, Ge J, longZhu J, Shim H. Bisamide CXCR4 Modulators: Novel Anti‐IBD Agents Acting on the Chemotaxis of Inflammatory Cells. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202100223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Renren Bai
- School of Pharmacy Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicine of Zhejiang Province Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province Collaborative Innovation Center of Chinese Medicines from Zhejiang Province Hangzhou Normal University Hangzhou 311121 PR China
| | - Xiaoying Jiang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education Hangzhou Normal University Hangzhou 311121 P.R. China
| | - Zi Hui
- School of Pharmacy Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicine of Zhejiang Province Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province Collaborative Innovation Center of Chinese Medicines from Zhejiang Province Hangzhou Normal University Hangzhou 311121 PR China
| | - Younghyoun Yoon
- Department of Radiation Oncology, School of Medicine Emory University Atlanta GA 30322 USA
| | - Jiamin Ge
- School of Pharmacy Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicine of Zhejiang Province Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province Collaborative Innovation Center of Chinese Medicines from Zhejiang Province Hangzhou Normal University Hangzhou 311121 PR China
| | - Jun longZhu
- School of Pharmacy Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicine of Zhejiang Province Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province Collaborative Innovation Center of Chinese Medicines from Zhejiang Province Hangzhou Normal University Hangzhou 311121 PR China
| | - Hyunsuk Shim
- Department of Radiation Oncology, School of Medicine Emory University Atlanta GA 30322 USA
- Winship Cancer Institute Emory University Atlanta Georgia 30322 USA
| |
Collapse
|
5
|
Discovery of small-molecule candidates against inflammatory bowel disease. Eur J Med Chem 2020; 185:111805. [DOI: 10.1016/j.ejmech.2019.111805] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/19/2019] [Accepted: 10/20/2019] [Indexed: 12/12/2022]
|
6
|
Guo Z, Jie X, Zhu P, Sun J, Gu J, Su F, Bai R, Xie Y. Fragmentation pathways of deprotonated amide-sulfonamide CXCR4 inhibitors investigated by ESI-IT-MS n , ESI-Q-TOF-MS/MS and DFT calculations. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:869-877. [PMID: 31749257 DOI: 10.1002/jms.4439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
Amide-sulfonamides provide a potent anti-inflammatory scaffold targeting the CXCR4 receptor. A series of novel amide-sulfonamide derivatives were investigated for their gas-phase fragmentation behaviors using electrospray ionization ion trap mass spectrometry and quadrupole time-of-flight mass spectrometry in negative ion mode. Upon collision-induced dissociation (CID), deprotonated amide-sulfonamides mainly underwent either an elimination of the amine to form the sulfonyl anion and amide anion or a benzoylamide derivative to provide sulfonamide anion bearing respective substituent groups. Based on the characteristic fragment ions and the deuterium-hydrogen exchange experiments, three possible fragmentation mechanisms corresponding to ion-neutral complexes including [sulfonyl anion/amine] complex (INC-1), [sulfonamide anion/benzoylamide derivative] complex (INC-2) and [amide anion/sulfonamide] complex (INC-3), respectively, were proposed. These three ion-neutral complexes might be produced by the cleavages of S-N and C-N bond from the amide-sulfonamides, which generated the sulfonyl anion (Route 1), sulfonamide anion (Route 2) and the amide anion (Route 3). DFT calculations suggested that Route 1, which generated the sulfonyl anion (ion c) is more favorable. In addition, the elimination of SO2 through a three-membered-ring transition state followed by the formation of C-N was observed for all the amide-sulfonamides.
Collapse
Affiliation(s)
- Zili Guo
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - Xiaokang Jie
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Peixi Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jian Sun
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jinping Gu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Feng Su
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Renren Bai
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yuanyuan Xie
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
7
|
Wu R, Yu W, Yao C, Liang Z, Yoon Y, Xie Y, Shim H, Bai R. Amide-sulfamide modulators as effective anti-tumor metastatic agents targeting CXCR4/CXCL12 axis. Eur J Med Chem 2019; 185:111823. [PMID: 31698158 DOI: 10.1016/j.ejmech.2019.111823] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/31/2022]
Abstract
Breast cancer is the most frequently diagnosed malignancy and the second common cause of death in women worldwide. High mortality in breast cancer is frequently associated with metastatic progression rather than the primary tumor itself. It has been recently identified that the CXCR4/CXCL12 axis plays a pivotal role in breast cancer metastasis, especially in directing metastatic cancer cells to CXCL12-riched organs and tissues. Herein, taking the amide-sulfamide as the lead structure, the second-round structural modifications to the sulfamide structure were performed to obtain more active CXCR4 modulators against tumor metastasis. Both in vivo and in vitro experiments illustrated that compound IIIe possessed potent CXCR4 binding affinity, excellent anti-metastatic and anti-angiogenetic activity against breast cancer. More importantly, in a mouse breast cancer lung metastasis model, compound IIIe exerted a significant inhibitory effect on breast cancer metastasis. Taken together, all these positive results demonstrated that developing of CXCR4 modulators is a promising strategy to mediate breast cancer metastasis.
Collapse
Affiliation(s)
- Rui Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Wenyan Yu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Chuansheng Yao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Zhongxing Liang
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Younghyoun Yoon
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Yuanyuan Xie
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Hyunsuk Shim
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| | - Renren Bai
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
8
|
Taher ES, Ibrahim TS, Fares M, Al-Mahmoudy AMM, Radwan AF, Orabi KY, El-Sabbagh OI. Novel benzenesulfonamide and 1,2-benzisothiazol-3(2H)-one-1,1-dioxide derivatives as potential selective COX-2 inhibitors. Eur J Med Chem 2019; 171:372-382. [PMID: 30928709 DOI: 10.1016/j.ejmech.2019.03.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/01/2019] [Accepted: 03/16/2019] [Indexed: 02/07/2023]
Abstract
Two new series of 1,2-benzisothiazol-3(2H)-one-1,1-dioxide derivatives containing either five membered heterocyclic rings or aryl hydrazones were synthesized and evaluated for their in vitro COX-1/COX-2 inhibitory activity. In vivo anti-inflammatory evaluation revealed that benzenesulfonamides bearing pyrazole moiety 19, 20 and its cyclized form 23 exhibited the highest anti-inflammatory activity with comparable potency to celecoxib. Furthermore, the ulcerogenic activity evaluation showed that compounds 19, 20 and 23 exerted the minimal ulcer index in comparison to indomethacin as a reference drug. Docking studies of the most selective COX-2 derivatives were also carried out against COX-2 active site. Benzenesulfonamide derivatives 19 and 20 displayed higher predicted binding affinities inside the COX-2 active site. Molecular modelling simulation and drug likeness studies showed good agreement with the obtained biological evaluation.
Collapse
Affiliation(s)
- Ehab S Taher
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, 71524, Assiut, Egypt.
| | - Tarek S Ibrahim
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, King Abdulaziz University, 21589, Saudi Arabia; Pharmaceutical Organic Chemistry Department Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed Fares
- School of Chemistry, University of Wollongong, Wollongong, 2522, NSW, Australia; School of Chemistry, The University of Sydney, 2006, NSW, Australia
| | - Amany M M Al-Mahmoudy
- Pharmaceutical Organic Chemistry Department Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Abdullah F Radwan
- Biochemistry Department, Faculty of Pharmacy, Egyptian Russian University, 11829, Cairo, Egypt
| | - Khaled Y Orabi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Health Sciences Center, Kuwait University, 13110, Safat, Kuwait
| | - Osama I El-Sabbagh
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Taif University, 11099, Taif, Saudi Arabia; Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, 44519, Zagazig, Egypt
| |
Collapse
|
9
|
Development of CXCR4 modulators based on the lead compound RB-108. Eur J Med Chem 2019; 173:32-43. [PMID: 30981691 DOI: 10.1016/j.ejmech.2019.03.065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/28/2019] [Accepted: 03/31/2019] [Indexed: 12/21/2022]
Abstract
The CXCR4/CXCL12 axis plays prominent roles in tumor metastasis and inflammation. CXCR4 has been shown to be involved in a variety of inflammation-related diseases. Therefore, CXCR4 is a promising potential target to develop novel anti-inflammatory agents. Taking our previously discovered CXCR4 modulator RB-108 as the lead compound, a series of derivatives were synthesized structurally modifying and optimizing the amide and sulfamide side chains. The derivatives successfully maintained potent CXCR4 binding affinity. Furthermore, compounds IIb, IIc, IIIg, IIIj, and IIIm were all efficacious in inhibiting the invasion of CXCR4-positive cells, displaying a much more potent effect than the lead compound RB-108. Notably, compound IIIm significantly decreased carrageenan-induced swollen volume and paw thickness in a mouse paw edema model. More importantly, IIIm exhibited satisfying PK profiles with a half-life of 4.77 h in an SD rat model. In summary, we have developed compound IIIm as a new candidate for further investigation based on the lead compound RB-108.
Collapse
|