1
|
Eissa IH, Elwan A, Al-Qadhi MA, Husein DZ, Amin FG, Alsfouk AA, Elkaeed EB, Elkady H, Metwaly AM. Targeting VEGFR-2 in breast cancer: synthesis and in silico and in vitro characterization of quinoxaline-based inhibitors. RSC Adv 2025; 15:12896-12916. [PMID: 40271404 PMCID: PMC12013614 DOI: 10.1039/d5ra00526d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/13/2025] [Indexed: 04/25/2025] Open
Abstract
A novel series of quinoxaline derivatives was designed and synthesized to target VEGFR-2, a receptor critical in cancer progression, with a focus on favorable pharmacophoric features. Among these derivatives, compound 11d emerged as a promising candidate, exhibiting potent cytotoxicity against MDA-MB-231 and MCF-7 cancer cell lines, with IC50 values of 21.68 μM and 35.81 μM, respectively, while displaying significantly reduced toxicity in normal cell lines WI-38 and WISH (IC50 values of 82.46 μM and 75.27 μM). Compared to standard treatments doxorubicin and sorafenib, compound 11d demonstrated a favorable therapeutic window. Inhibition assays showed that 11d inhibits VEGFR-2 with an IC50 of 62.26 nM ± 2.77, comparable to sorafenib. Mechanistically, treatment with 11d upregulated pro-apoptotic markers BAX, caspase-8, and caspase-9, while downregulating the anti-apoptotic marker Bcl-2, resulting in a significant BAX/Bcl-2 ratio increase (16.11). A wound healing assay confirmed 11d's anti-migratory effects, limiting wound closure in MDA-MB-231 cells to 27.51% compared to untreated cells. Additionally, flow cytometry revealed that 11d induced both early (46.43%) and late apoptosis (31.49%) in MDA-MB-231 cells, alongside G1 phase cell cycle arrest, reducing S and G2/M phase progression. Molecular docking and dynamics simulations over 200 ns demonstrated stable binding of compound 11d to VEGFR-2, with docking scores superior and comparable to sorafenib. Density Functional Theory (DFT) calculations underscored 11d's stability and reactivity, while in silico ADMET analysis predicted a favorable safety profile over sorafenib, particularly with respect to carcinogenic and chronic toxicity risks. These findings indicate that quinoxaline derivative 11d holds potential as a selective and effective VEGFR-2 inhibitor with promising antitumor and anti-metastatic properties, warranting further investigation.
Collapse
Affiliation(s)
- Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Cairo 11884 Egypt
| | - Alaa Elwan
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Cairo 11884 Egypt
| | - Mustafa A Al-Qadhi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Sana'a University 18084 Sana'a Yemen
| | - Dalal Z Husein
- Chemistry Department, Faculty of Science, New Valley University El-Kharja 72511 Egypt
| | - Fatma G Amin
- Physics Department, Faculty of Science, Alexandria University Alexandria Egypt
| | - Aisha A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University P. O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University P.O. Box 71666 Riyadh 11597 Saudi Arabia
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Cairo 11884 Egypt
| | - Ahmed M Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University Cairo 11884 Egypt
| |
Collapse
|
2
|
Nafie MS, Kahwash SH, Youssef MM, Dawood KM. Recent advances on quinoxalines as target-oriented chemotherapeutic anticancer agents through apoptosis. Arch Pharm (Weinheim) 2024; 357:e2400225. [PMID: 38822393 DOI: 10.1002/ardp.202400225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
The current review outlines all possible recent synthetic platforms to quinoxaline derivatives and the potent stimulated apoptosis mechanisms targeted by anticancer therapies. The currently reported results disclosed that quinoxaline derivatives had promising anticancer potencies against a wide array of cancer cell lines, better than the reference drugs, through target inhibition. This review summarizes some potent quinoxaline derivatives with their synthesis strategies and their potential activities against various molecular targets. Quinoxalines can be considered an important scaffold for apoptosis inducers in cancer cells through inhibiting some molecular targets, so they can be further developed as target-oriented chemotherapeutics.
Collapse
Affiliation(s)
- Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Shaima H Kahwash
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Magdy M Youssef
- Chemistry Department, Biochemistry Division, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Kamal M Dawood
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
3
|
Altharawi A, Alqahtani SM, Aldakhil T, Sharma P, Kumar A, Ramadan MF. A novel green and efficient heterogeneous acid catalyst for the one-pot synthesis of benzopyrazine-aminoimidazole hybrids with antiproliferative potential. RSC Adv 2024; 14:26219-26232. [PMID: 39161442 PMCID: PMC11332591 DOI: 10.1039/d4ra04725g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024] Open
Abstract
A novel, green, efficient, and stable magnetically heterogeneous nanocatalyst was developed by immobilizing butanesulfonic acid (BuSO3H) onto the surface of MFe2O4 magnetic nanoparticles (MNPs). The resulting core-shell structure of the MFe2O4@PDA@BuSO3H nanocatalyst was thoroughly characterized using various analytical techniques, including Fourier-Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), Energy-Dispersive X-ray Spectroscopy (EDS), Field Emission Scanning Electron Microscopy (FESEM), Transmission Electron Microscopy (TEM), Vibrating Sample Magnetometry (VSM), and Brunauer-Emmett-Teller (BET) analysis. A nanocatalyst was used to synthesize 2-benzopyrazine-aminoimidazole hybrid derivatives through a domino multicomponent Knoevenagel-condensation-cyclization reaction (5a-p) in an environmentally friendly manner. The resulting compounds were then tested for their anticancer activity against three types of human cancer cells (MCF-7, A549, and U87) using the MTT assay. The experiment showed that the nanocatalyst had excellent catalytic activity, and the synthesized compounds exhibited promising antiproliferative activity. Notably, compounds 5g and 5h, containing a 2-naphthyl ring, showed the highest antiproliferative effects against MCF-7 cells, with IC50 values of 0.03 and 0.32 μM, respectively. Additionally, the activity of compounds 5g and 5h in tubulin polymerization, apoptosis induction, and cell cycle arrest in MCF-7 cells were investigated. The results demonstrated that these compounds effectively induced apoptosis and cell cycle arrest. The binding of representative compounds to the colchicine binding site of tubulin was confirmed through molecular modeling studies.
Collapse
Affiliation(s)
- Ali Altharawi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University Al-Kharj 11942 Saudi Arabia
| | - Safar M Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University Al-Kharj 11942 Saudi Arabia
| | - Taibah Aldakhil
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University Al-Kharj 11942 Saudi Arabia
| | - Pawan Sharma
- Department of Chemistry, School of Sciences, Jain (Deemed-to-be) University Bengaluru Karnataka 560069 India
- Department of Sciences, Vivekananda Global University Jaipur Rajasthan 303012 India
| | - Abhishek Kumar
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University Gangoh Uttar Pradesh 247341 India
- Department of Pharmacy, Arka Jain University Jamshedpur Jharkhand 831001 India
| | | |
Collapse
|
4
|
Montero V, Montana M, Carré M, Vanelle P. Quinoxaline derivatives: Recent discoveries and development strategies towards anticancer agents. Eur J Med Chem 2024; 271:116360. [PMID: 38614060 DOI: 10.1016/j.ejmech.2024.116360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/15/2024]
Abstract
Cancer is a leading cause of death and a major health problem worldwide. While many effective anticancer agents are available, most drugs currently on the market are not specific, raising issues like the common side effects of chemotherapy. However, recent research hold promises for the development of more efficient and safer anticancer drugs. Quinoxaline and its derivatives are becoming recognized as a novel class of chemotherapeutic agents with activity against different tumors. The present review compiles and discusses studies concerning the therapeutic potential of the anticancer activity of quinoxaline derivatives, covering articles published between January 2018 and January 2023.
Collapse
Affiliation(s)
- Vincent Montero
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, CEDEX 05, 13385, Marseille, France; AP-HM, Service de Pharmacologie Clinique et Pharmacovigilance, Hôpital de la Timone, Marseille CEDEX 05, 13385, France.
| | - Marc Montana
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, CEDEX 05, 13385, Marseille, France; AP-HM, Oncopharma, Hôpital Nord, Marseille, France
| | - Manon Carré
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm UMR1068, CNRS UMR7258, Aix-Marseille Université UM105, Institut Paoli Calmettes - Faculté de Pharmacie, Marseille, France
| | - Patrice Vanelle
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, CEDEX 05, 13385, Marseille, France; AP-HM, Service Central de la Qualité et de l'Information Pharmaceutiques, Hôpital Conception, Marseille, 13005, France
| |
Collapse
|
5
|
Elsakka MEG, Tawfik MM, Barakat LAA, Nafie MS. A quinoxaline-based derivative exhibited potent and selective anticancer activity with apoptosis induction in PC-3 cells through Topo II inhibition. J Biomol Struct Dyn 2024:1-19. [PMID: 38486408 DOI: 10.1080/07391102.2024.2327538] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/03/2024] [Indexed: 03/25/2025]
Abstract
Quinoxaline constitutes a variety of derivatives that exhibit a range of biological characteristics, including anti-inflammatory and antitumor effects, and their importance in therapeutic chemistry is rising. The cytotoxicity effects of four quinoxaline compounds (I, II, III, and IV) against liver cancer cells (HepG2), prostate cancer cells (PC-3), and normal cells (Vero) were evaluated using the MTT assay. Compounds III and IV had the most anti-proliferative effects and highly selective indices against PC-3 cells with IC50 values of 4.11 and 2.11 µM, respectively. The apoptotic cell death for compounds III and IV in PC-3 cells was investigated using cell cycle, Annexin V-FITC/PI double staining-based flow cytometry, and DNA fragmentation assay. Compounds III or IV arrested the cell cycle at the S phase and caused apoptosis in PC-3 cells. Compounds III and IV showed inhibitory effects against topoisomerase II enzyme with IC50 values 21.98 and 7.529 µM, respectively, when compared to doxorubicin as a reference drug. Western Blot analysis displayed that compound IV treatment has significantly upregulated the pro-apoptotic proteins (p53, caspase-3, caspase-8) and downregulated the anti-apoptotic protein Bcl-2 in PC-3 cells in a dose-dependent manner, leading to cell apoptosis. The molecular docking study exhibited that compound IV had a good binding affinity for inhibiting topoisomerase II, consistent with the apoptotic mechanism. In vivo study using Ehrlich solid tumor model demonstrated that compound IV significantly reduced tumor volume and weight in vivo with minimal toxicity. This study reveals significant evidence for the antitumor efficacy of compound IV against prostate cancer cells as a topoisomerase II inhibitor.
Collapse
Affiliation(s)
- Mayada E G Elsakka
- Chemistry Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Mohamed M Tawfik
- Zoology Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Lamiaa A A Barakat
- Chemistry Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
6
|
Farghaly TA, Alqurashi RM, Masaret GS, Abdulwahab HG. Recent Methods for the Synthesis of Quinoxaline Derivatives and their Biological Activities. Mini Rev Med Chem 2024; 24:920-982. [PMID: 37885112 DOI: 10.2174/0113895575264375231012115026] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 10/28/2023]
Abstract
Quinoxaline derivatives have been incorporated into numerous marketed drugs used for the treatment of various diseases. Examples include glecaprevir (Mavyret), voxilaprevir (Vosevi), Balversa (L01EX16) (erdafitinib), carbadox, XK469R (NSC698215), and becampanel (AMP397). These quinoxaline derivatives exhibit a diverse range of pharmacological activities, including antibacterial, antitubercular, antiviral, anti-HIV, anti-inflammatory, antifungal, anticancer, antiproliferative, antitumor, kinase inhibition, antimicrobial, antioxidant, and analgesic effects. Recognizing the significance of these bioactive quinoxaline derivatives, researchers have dedicated their efforts to developing various synthetic methods for their production. This review aimed to compile the most recent findings on the synthesis and biological properties of quinoxaline derivatives from 2015 to 2023.
Collapse
Affiliation(s)
- Thoraya A Farghaly
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Raghad M Alqurashi
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ghada S Masaret
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hanan Gaber Abdulwahab
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
7
|
Rastogi SK, Ciliberto VC, Trevino MZ, Campbell BA, Brittain WJ. Green Approach Toward Triazole Forming Reactions for Developing Anticancer Drugs. Curr Org Synth 2024; 21:380-420. [PMID: 37157212 DOI: 10.2174/1570179420666230508125144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 05/10/2023]
Abstract
Compounds containing triazole have many significant applications in the dye and ink industry, corrosion inhibitors, polymers, and pharmaceutical industries. These compounds possess many antimicrobial, antioxidant, anticancer, antiviral, anti-HIV, antitubercular, and anticancer activities. Several synthetic methods have been reported for reducing time, minimizing synthetic steps, and utilizing less hazardous and toxic solvents and reagents to improve the yield of triazoles and their analogues synthesis. Among the improvement in methods, green approaches towards triazole forming biologically active compounds, especially anticancer compounds, would be very important for pharmaceutical industries as well as global research community. In this article, we have reviewed the last five years of green chemistry approaches on click reaction between alkyl azide and alkynes to install 1,2,3-triazole moiety in natural products and synthetic drug-like molecules, such as in colchicine, flavanone cardanol, bisphosphonates, thiabendazoles, piperazine, prostanoid, flavonoid, quinoxalines, C-azanucleoside, dibenzylamine, and aryl-azotriazole. The cytotoxicity of triazole hybrid analogues was evaluated against a panel of cancer cell lines, including multidrug-resistant cell lines.
Collapse
Affiliation(s)
- Shiva K Rastogi
- Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - Veronica C Ciliberto
- Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - Monica Z Trevino
- Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - Brooke A Campbell
- Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - William J Brittain
- Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| |
Collapse
|
8
|
Chowdhary S, Raza A, Preeti, Kaur S, Anand A, Sharma AK, Kumar V. Isatin-indoloquinoxaline click adducts with a potential to overcome platinum-based drug-resistance in ovarian cancer. Bioorg Chem 2024; 142:106953. [PMID: 37925887 DOI: 10.1016/j.bioorg.2023.106953] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
Herein, a series of isatin tethered indolo[2,3-b]quinoxaline hybrids was synthesized by considering the pharmacophoric features of known DNA intercalators and topoisomerase II inhibitors. The anti-proliferative properties of the synthesized compounds were evaluated against ovarian cancer cell lines (SKOV-3 and Hey A8). Four of the compounds exhibited promising anti-proliferative activities, with one of them being 10-fold more potent than cisplatin against drug-resistant Hey A8 cells. Further investigations were carried out to determine the DNA intercalating affinities of the most active compounds as potential mechanisms for their anti-proliferative activities. ADMET in silico studies were performed to assess the physicochemical, pharmacokinetics, and toxicity parameters of active compounds. This study, to the best of our knowledge, is the first report on the potential of isatin-indoloquinoxaline hybrids as structural blueprints for the development of new DNA intercalators. Additionally, it explores their potential to circumvent platinum-based resistance in ovarian cancer.
Collapse
Affiliation(s)
| | - Asif Raza
- Department of Pharmacology, Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Preeti
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| | - Sukhmeet Kaur
- Department of Chemistry, Khalsa College, Amritsar, India
| | - Amit Anand
- Department of Chemistry, Khalsa College, Amritsar, India
| | - Arun K Sharma
- Department of Pharmacology, Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India.
| |
Collapse
|
9
|
Mamedov VA, Galimullina VR, Qu ZW, Zhu H, Syakaev VV, Shamsutdinova LR, Sergeev MA, Rizvanov IK, Gubaidullin AT, Sinyashin OG, Grimme S. AlCl 3-Promoted Intramolecular Indolinone-Quinolone Rearrangement of Spiro[indoline-3,2'-quinoxaline]-2,3'-diones: Easy Access to Quinolino[3,4- b]quinoxalin-6-ones. J Org Chem 2023. [PMID: 38151045 DOI: 10.1021/acs.joc.3c01906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
A facile and direct intramolecular indolinone-quinolone rearrangement was developed for the synthesis of quinolino[3,4-b]quinoxalin-6-ones from spiro[indoline-3,2'-quinoxaline]-2,3'-diones, which are readily available with use of isatines, malononitrile, and 1,2-phenylenediamines under quite mild conditions. This efficient approach provides excellent yields and could potentially be used for the construction of a diverse library of quinolino[3,4-b]quinoxalin-6-ones for high-throughput screening in medicinal chemistry. The reaction mechanism is explored by extensive DFT calculations.
Collapse
Affiliation(s)
- Vakhid A Mamedov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Venera R Galimullina
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Zheng-Wang Qu
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Hui Zhu
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Victor V Syakaev
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Leisan R Shamsutdinova
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Mikhail A Sergeev
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Il'dar Kh Rizvanov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Aidar T Gubaidullin
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Oleg G Sinyashin
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| |
Collapse
|
10
|
Rykowski S, Gurda-Woźna D, Fedoruk-Wyszomirska A, Orlicka-Płocka M, Kowalczyk A, Stączek P, Denel-Bobrowska M, Biniek-Antosiak K, Rypniewski W, Wyszko E, Olejniczak AB. Carboranyl-1,8-naphthalimide intercalators induce lysosomal membrane permeabilization and ferroptosis in cancer cell lines. J Enzyme Inhib Med Chem 2023; 38:2171028. [PMID: 36715272 PMCID: PMC9888480 DOI: 10.1080/14756366.2023.2171028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
The synthesis of carborane-1,8-naphthalimide conjugates and evaluation of their DNA-binding ability and anticancer activity were performed. A series of 4-carboranyl-3-nitro-1,8-naphthalimide derivatives, mitonafide and pinafide analogs, were synthesised via amidation and reductive amination reactions, and their calf thymus DNA (ct-DNA)-binding properties were investigated using circular dichroism, UV-vis spectroscopy, and thermal denaturation. Results showed that conjugates 34-37 interacted very strongly with ct-DNA (ΔTm = 10.00-13.00 °C), indicating their ability to intercalate with DNA, but did not inhibit the activity of topoisomerase II. The conjugates inhibited the cell growth of the HepG2 cancer cell line in vitro. The same compounds caused the G2M phase arrest. Cell lines treated with these conjugates showed an increase in reactive oxygen species, glutathione, and Fe2+ levels, lipid peroxidation, and mitochondrial membrane potential relative to controls, indicating the involvement of ferroptosis. Furthermore, these conjugates caused lysosomal membrane permeabilization in HepG2 cells but not in MRC-5 cells.
Collapse
Affiliation(s)
| | - Dorota Gurda-Woźna
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | | | - Aleksandra Kowalczyk
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | - Paweł Stączek
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | | | | | - Wojciech Rypniewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Eliza Wyszko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | |
Collapse
|
11
|
Lee HM, Wright WC, Pan M, Low J, Currier D, Fang J, Singh S, Nance S, Delahunty I, Kim Y, Chapple RH, Zhang Y, Liu X, Steele JA, Qi J, Pruett-Miller SM, Easton J, Chen T, Yang J, Durbin AD, Geeleher P. A CRISPR-drug perturbational map for identifying compounds to combine with commonly used chemotherapeutics. Nat Commun 2023; 14:7332. [PMID: 37957169 PMCID: PMC10643606 DOI: 10.1038/s41467-023-43134-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Combination chemotherapy is crucial for successfully treating cancer. However, the enormous number of possible drug combinations means discovering safe and effective combinations remains a significant challenge. To improve this process, we conduct large-scale targeted CRISPR knockout screens in drug-treated cells, creating a genetic map of druggable genes that sensitize cells to commonly used chemotherapeutics. We prioritize neuroblastoma, the most common extracranial pediatric solid tumor, where ~50% of high-risk patients do not survive. Our screen examines all druggable gene knockouts in 18 cell lines (10 neuroblastoma, 8 others) treated with 8 widely used drugs, resulting in 94,320 unique combination-cell line perturbations, which is comparable to the largest existing drug combination screens. Using dense drug-drug rescreening, we find that the top CRISPR-nominated drug combinations are more synergistic than standard-of-care combinations, suggesting existing combinations could be improved. As proof of principle, we discover that inhibition of PRKDC, a component of the non-homologous end-joining pathway, sensitizes high-risk neuroblastoma cells to the standard-of-care drug doxorubicin in vitro and in vivo using patient-derived xenograft (PDX) models. Our findings provide a valuable resource and demonstrate the feasibility of using targeted CRISPR knockout to discover combinations with common chemotherapeutics, a methodology with application across all cancers.
Collapse
Affiliation(s)
- Hyeong-Min Lee
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - William C Wright
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Min Pan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jonathan Low
- Department of Chemical Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Duane Currier
- Department of Chemical Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jie Fang
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Shivendra Singh
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Stephanie Nance
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Ian Delahunty
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yuna Kim
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Richard H Chapple
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yinwen Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Xueying Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jacob A Steele
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jun Qi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jun Yang
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Department of Pathology and Laboratory Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| | - Adam D Durbin
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Paul Geeleher
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
12
|
Ravindar L, Hasbullah SA, Rakesh KP, Hassan NI. Triazole hybrid compounds: A new frontier in malaria treatment. Eur J Med Chem 2023; 259:115694. [PMID: 37556947 DOI: 10.1016/j.ejmech.2023.115694] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Reviewing the advancements in malaria treatment, the emergence of triazole hybrid compounds stands out as a groundbreaking development. Combining the advantages of triazole and other moieties, these hybrid compounds offer a new frontier in the battle against malaria. Their potential as effective antimalarial agents has captured the attention of researchers and holds promise for overcoming the challenges posed by drug-resistant malaria strains. We focused on their broad spectrum of antimalarial activity of diverse hybridized 1,2,3-triazoles and 1,2,4-triazoles, structure-activity relationship (SAR), drug-likeness, bioavailability and pharmacokinetic properties reported since 2018 targeting multiple stages of the Plasmodium life cycle. This versatility makes them highly effective against both drug-sensitive and drug-resistant strains of P. falciparum, making them invaluable tools in regions where resistance is prevalent. The synergistic effects of combining the triazole moiety with other pharmacophores have resulted in even greater antimalarial potency. This approach has the potential to circumvent existing resistance mechanisms and provide a more sustainable solution to malaria treatment. While triazole hybrid compounds show great promise, further research and clinical trials are warranted to fully evaluate their safety, efficacy and long-term effects. As research progresses, these compounds can potentially revolutionize the field and contribute to global efforts to eradicate malaria, ultimately saving countless lives worldwide.
Collapse
Affiliation(s)
- Lekkala Ravindar
- Department of Chemical Sciences, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - Siti Aishah Hasbullah
- Department of Chemical Sciences, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - K P Rakesh
- Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nurul Izzaty Hassan
- Department of Chemical Sciences, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia.
| |
Collapse
|
13
|
Patinote C, Raevens S, Baumann A, Pellegrin E, Bonnet PA, Deleuze-Masquéfa C. [1,2,4]triazolo[4,3- a]quinoxaline as Novel Scaffold in the Imiqualines Family: Candidates with Cytotoxic Activities on Melanoma Cell Lines. Molecules 2023; 28:5478. [PMID: 37513350 PMCID: PMC10384284 DOI: 10.3390/molecules28145478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Cutaneous melanoma is one of the most aggressive human cancers and is the deadliest form of skin cancer, essentially due to metastases. Novel therapies are always required, since cutaneous melanoma develop resistance to oncogenic pathway inhibition treatment. The Imiqualine family is composed of heterocycles diversely substituted around imidazo[1,2-a]quinoxaline, imidazo[1,2-a]pyrazine, imidazo[1,5-a]quinoxaline, and pyrazolo[1,5-a]quinoxaline scaffolds, which display interesting activities on a panel of cancer cell lines, especially melanoma cell lines. We have designed and prepared novel compounds based on the [1,2,4]triazolo[4,3-a]quinoxaline scaffold through a common synthetic route, using 1-chloro-2-hydrazinoquinoxaline and an appropriate aldehyde. Cyclization is ensured by an oxidation-reduction mechanism using chloranil. The substituents on positions 1 and 8 were chosen based on previous structure-activity relationship (SAR) studies conducted within our heterocyclic Imiqualine family. Physicochemical parameters of all compounds have also been predicted. A375 melanoma cell line viability has been evaluated for 16 compounds. Among them, three novel [1,2,4]triazolo[4,3-a]quinoxalines display cytotoxic activities. Compounds 16a and 16b demonstrate relative activities in the micromolar range (respectively, 3158 nM and 3527 nM). Compound 17a shows the best EC50 of the novel series (365 nM), even if EAPB02303 remains the lead of the entire Imiqualine family (3 nM).
Collapse
Affiliation(s)
- Cindy Patinote
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 F16, (CNRS, ENSCM, Université de Montpellier), 1919 Route de Mende, 34090 Montpellier, France
| | - Sandy Raevens
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 F16, (CNRS, ENSCM, Université de Montpellier), 1919 Route de Mende, 34090 Montpellier, France
| | - Amélie Baumann
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 F16, (CNRS, ENSCM, Université de Montpellier), 1919 Route de Mende, 34090 Montpellier, France
| | - Eloise Pellegrin
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 F16, (CNRS, ENSCM, Université de Montpellier), 1919 Route de Mende, 34090 Montpellier, France
| | - Pierre-Antoine Bonnet
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 F16, (CNRS, ENSCM, Université de Montpellier), 1919 Route de Mende, 34090 Montpellier, France
| | - Carine Deleuze-Masquéfa
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 F16, (CNRS, ENSCM, Université de Montpellier), 1919 Route de Mende, 34090 Montpellier, France
| |
Collapse
|
14
|
Keri RS, Reddy D, Budagumpi S, Adimule V. Reusable nano-catalyzed green protocols for the synthesis of quinoxalines: an overview. RSC Adv 2023; 13:20373-20406. [PMID: 37425629 PMCID: PMC10326672 DOI: 10.1039/d3ra03646d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/28/2023] [Indexed: 07/11/2023] Open
Abstract
Heterocyclic compounds are very widely distributed in nature and are essential for life activities. They play a vital role in the metabolism of all living cells, for example, vitamins and co-enzyme precursors thiamine, riboflavin etc. Quinoxalines are a class of N-heterocycles that are present in a variety of natural and synthetic compounds. The distinct pharmacological activities of quinoxalines have attracted medicinal chemists considerably over the past few decades. Quinoxaline-based compounds possess extensive potential applications as medicinal drugs, presently; more than fifteen drugs are available for the treatment of different diseases. Diverse synthetic protocols have been developed via a one-pot approach using efficient catalysts, reagents, and nano-composites/nanocatalysts etc. But the use of homogeneous and transition metal-based catalysts suffers some demerits such as low atom economy, recovery of catalysts, harsh reaction conditions, extended reaction period, expensive catalysts, the formation of by-products, and unsatisfactory yield of products as well as toxic solvents. These drawbacks have shifted the attention of chemists/researchers to develop green and efficient protocols for synthesizing quinoxaline derivatives. In this context, many efficient methods have been developed for the synthesis of quinoxalines using nanocatalysts or nanostructures. In this review, we have summarized the recent progress (till 2023) in the nano-catalyzed synthesis of quinoxalines using condensation of o-phenylenediamine with diketone/other reagents with plausible mechanistic details. With this review, we hope that some more efficient ways of synthesizing quinoxalines can be developed by synthetic chemists.
Collapse
Affiliation(s)
- Rangappa S Keri
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University) Jain Global Campus, Kanakapura Bangalore Karnataka 562112 India +918027577199 +919620667075
| | - Dinesh Reddy
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University) Jain Global Campus, Kanakapura Bangalore Karnataka 562112 India +918027577199 +919620667075
| | - Srinivasa Budagumpi
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University) Jain Global Campus, Kanakapura Bangalore Karnataka 562112 India +918027577199 +919620667075
| | - Vinayak Adimule
- Angadi Institute of Technology and Management (AITM) Savagaon Road Belagavi-5800321 Karnataka India
| |
Collapse
|
15
|
Rani P, Prakash M, Samanta S. Organobase-catalyzed Mannich reaction of cyclic N-sulfonyl imines and 1,2-diketones: a sustainable approach to 4-(3-arylquinoxalin-2-ylmethyl)sufamidates. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
16
|
Gaber AA, Sobhy M, Turky A, Eldehna WM, El-Sebaey SA, El-Metwally SA, El-Naggar AM, Ibrahim IM, Elkaeed EB, Metwaly AM, Eissa IH. New [1,2,4]triazolo[4,3-c]quinazolines as intercalative Topo II inhibitors: Design, synthesis, biological evaluation, and in silico studies. PLoS One 2023; 18:e0274081. [PMID: 36716311 PMCID: PMC9886266 DOI: 10.1371/journal.pone.0274081] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/23/2022] [Indexed: 02/01/2023] Open
Abstract
Fifteen quinazoline derivatives were designed and synthesized as DNA intercalators. The cytotoxicity of the designed members was assessed against HCT-116 and HepG2 cancer cell lines. In addition, the topoisomerase II (Topo II) inhibitory effect was assessed. Compound 16 was the most cytotoxic and Topo II inhibitor with low cytotoxicity against Vero cells. Compounds 16, 17, and 18 showed significant DNA binding affinities. Compound 16 showed Topo II catalytic inhibitory effect at a concentration of 10 μM. Further mechanistic investigations revealed the capability of compound 16 to induce apoptosis in HCT-116 cells and arrest the growth at the S and G2/M phases. Also, compound 16 showed a significant increase in the level of BAX (2.18-fold) and a marked decrease in the level of Bcl-2 (1.9-fold) compared to the control cells. In silico studies revealed the ability of the synthesized members to bind to the DNA-Topo II complex.
Collapse
Affiliation(s)
- Ahmed A. Gaber
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohamed Sobhy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Abdallah Turky
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Samiha A. El-Sebaey
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Souad A. El-Metwally
- Department of Basic Science, Higher Technological institute, 10th of Ramadan City, Egypt
| | - Abeer M. El-Naggar
- Department of Chemistry, Faculty of Science, Ain Shams University, Abassia, Cairo, Egypt
| | - Ibrahim M. Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah, Riyadh, Saudi Arabia
| | - Ahmed M. Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
17
|
Okoro CO, Fatoki TH. A Mini Review of Novel Topoisomerase II Inhibitors as Future Anticancer Agents. Int J Mol Sci 2023; 24:ijms24032532. [PMID: 36768852 PMCID: PMC9916523 DOI: 10.3390/ijms24032532] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Several reviews of inhibitors of topoisomerase II have been published, covering research before 2018. Therefore, this review is focused primarily on more recent publications with relevant points from the earlier literature. Topoisomerase II is an established target for anticancer drugs, which are further subdivided into poisons and catalytic inhibitors. While most of the topoisomerase II-based drugs in clinical use are mostly topoisomerase II poisons, their mechanism of action has posed severe concern due to DNA damaging potential, including the development of multi-drug resistance. As a result, we are beginning to see a gradual paradigm shift towards non-DNA damaging agents, such as the lesser studied topoisomerase II catalytic inhibitors. In addition, this review describes some novel selective catalytic topoisomerase II inhibitors. The ultimate goal is to bring researchers up to speed by curating and delineating new scaffolds as the leads for the optimization and development of new potent, safe, and selective agents for the treatment of cancer.
Collapse
|
18
|
Avula B, Reddivari CKR, Muchumarri RMR, Eraganaboyina S, Zyryanov GV, Nemallapudi BR. Recent Advances in the Synthesis of Quinoxalines. A Mini Review. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2167215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Balakrishna Avula
- Department of Chemistry, Rajeev Gandhi Memorial College of Engineering and Technology (Autonomous), Nandyal, India
| | | | | | - Suneetha Eraganaboyina
- Department of Chemistry, Rajeev Gandhi Memorial College of Engineering and Technology (Autonomous), Nandyal, India
| | - Grigory V. Zyryanov
- Chemical Engineering Institute, Ural Federal University, Yekaterinburg, Russia
- Ural Division of the Russian Academy of Sciences, I. Ya. Postovskiy Institute of Organic Synthesis, Yekaterinburg, Russia
| | | |
Collapse
|
19
|
Elzahabi HSA, Nossier ES, Alasfoury RA, El-Manawaty M, Sayed SM, Elkaeed EB, Metwaly AM, Hagras M, Eissa IH. Design, synthesis, and anti-cancer evaluation of new pyrido[2,3-d]pyrimidin-4(3H)-one derivatives as potential EGFRWT and EGFRT790M inhibitors and apoptosis inducers. J Enzyme Inhib Med Chem 2022; 37:1053-1076. [PMID: 35821615 PMCID: PMC9291687 DOI: 10.1080/14756366.2022.2062752] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A new series of pyrido[2,3-d]pyrimidin-4(3H)-one derivatives having the essential pharmacophoric features of EGFR inhibitors has been designed and synthesised. Cell viability screening was performed for these compounds against A-549, PC-3, HCT-116, and MCF-7 cell lines at a dose of 100 μM. The highest active derivatives (8a, 8 b, 8d, 9a, and 12b) were selected for IC50 screening. Compounds 8a, 8 b, and 9a showed the highest cytotoxic activities and were further investigated for wild EGFRWT and mutant EGFRT790M inhibitory activities. Compound 8a showed the highest inhibitory activities against EGFRWT and EGFRT790M with IC50 values of 0.099 and 0.123 µM, respectively. In addition, it arrested the cell cycle at pre-G1 phase and induced a significant apoptotic effect in PC-3 cells. Furthermore, compound 8a induced a 5.3-fold increase in the level of caspase-3 in PC-3 cells. Finally, docking studies were carried out to examine the binding mode of the synthesised compounds against both EGFRWT and EGFRT790M.
Collapse
Affiliation(s)
- Heba S A Elzahabi
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Eman S Nossier
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Rania A Alasfoury
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - May El-Manawaty
- Pharmacognosy Department, National Research Centre, Dokki, Cairo, Egypt
| | - Sara M Sayed
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Ahmed M Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt.,Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Mohamed Hagras
- Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
20
|
Belal A, Abdel Gawad NM, Mehany ABM, Abourehab MAS, Elkady H, Al-Karmalawy AA, Ismael AS. Design, synthesis and molecular docking of new fused 1 H-pyrroles, pyrrolo[3,2- d]pyrimidines and pyrrolo[3,2- e][1, 4]diazepine derivatives as potent EGFR/CDK2 inhibitors. J Enzyme Inhib Med Chem 2022; 37:1884-1902. [PMID: 35801486 PMCID: PMC9272933 DOI: 10.1080/14756366.2022.2096019] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A new series of 1H-pyrrole (6a-c, 8a-c), pyrrolo[3,2-d]pyrimidines (9a-c) and pyrrolo[3,2-e][1, 4]diazepines (11a-c) were designed and synthesised. These compounds were designed to have the essential pharmacophoric features of EGFR Inhibitors, they have shown anticancer activities against HCT116, MCF-7 and Hep3B cancer cells with IC50 values ranging from 0.009 to 2.195 µM. IC50 value of doxorubicin is 0.008 µM, compounds 9a and 9c showed IC50 values of 0.011 and 0.009 µM respectively against HCT-116 cells. Compound 8b exerted broad-spectrum activity against all tested cell lines with an IC50 value less than 0.05 µM. Compound 8b was evaluated against a panel of kinases. This compound potently inhibited CDK2/Cyclin A1, DYRK3 and GSK3 alpha kinases with 10-23% compared to imatinib (1-10%). It has also arrested the cell cycle of MCF-7 cells at the S phase. Its antiproliferative activity was further augmented by molecular docking into the active sites of EGFR and CDK2 cyclin A1.
Collapse
Affiliation(s)
- Amany Belal
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.,Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Nagwa M Abdel Gawad
- Medicinal Chemistry Department, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Ahmed B M Mehany
- Department of Zoology, Faculty of Science, Al-Azhar University, Nasr City, Egypt
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Minia University, Minia, Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University- Egypt, New Damietta, Egypt
| | - Ahmed S Ismael
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
21
|
Khalifa MM, Al-Karmalawy AA, Elkaeed EB, Nafie MS, Tantawy MA, Eissa IH, Mahdy HA. Topo II inhibition and DNA intercalation by new phthalazine-based derivatives as potent anticancer agents: design, synthesis, anti-proliferative, docking, and in vivo studies. J Enzyme Inhib Med Chem 2022; 37:299-314. [PMID: 34894955 PMCID: PMC8667898 DOI: 10.1080/14756366.2021.2007905] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 02/08/2023] Open
Abstract
This research presents the design and synthesis of a novel series of phthalazine derivatives as Topo II inhibitors, DNA intercalators, and cytotoxic agents. In vitro testing of the new compounds against HepG-2, MCF-7, and HCT-116 cell lines confirmed their potent cytotoxic activity with low IC50 values. Topo II inhibition and DNA intercalating activities were evaluated for the most cytotoxic members. IC50 values determination demonstrated Topo II inhibitory activities and DNA intercalating affinities of the tested compounds at a micromolar level. Amongst, compound 9d was the most potent member. It inhibited Topo II enzyme at IC50 value of 7.02 ± 0.54 µM with DNA intercalating IC50 of 26.19 ± 1.14 µM. Compound 9d was then subjected to an in vivo antitumor examination. It inhibited tumour proliferation reducing solid tumour volume and mass. Additionally, it restored liver enzymes, proteins, and CBC parameters near-normal, indicating a remarkable amelioration in their functions along with histopathological examinations.
Collapse
Affiliation(s)
- Mohamed M. Khalifa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed A. Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Mohamed S. Nafie
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Mohamed A. Tantawy
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Egypt
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Cairo, Egypt
| | - Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Hazem A. Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
22
|
Hagras M, Saleh MA, Ezz Eldin RR, Abuelkhir AA, Khidr EG, El-Husseiny AA, El-Mahdy HA, Elkaeed EB, Eissa IH. 1,3,4-Oxadiazole-naphthalene hybrids as potential VEGFR-2 inhibitors: design, synthesis, antiproliferative activity, apoptotic effect, and in silico studies. J Enzyme Inhib Med Chem 2022; 37:380-396. [PMID: 34923885 PMCID: PMC8725909 DOI: 10.1080/14756366.2021.2015342] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/23/2021] [Accepted: 12/01/2021] [Indexed: 01/09/2023] Open
Abstract
In the current work, some 1,3,4-oxadiazole-naphthalene hybrids were designed and synthesised as VEGFR-2 inhibitors. The synthesised compounds were evaluated in vitro for their antiproliferative activity against two human cancer cell lines namely, HepG-2 and MCF-7. Compounds that exhibited promising cytotoxicity (5, 8, 15, 16, 17, and 18) were further evaluated for their VEGFR-2 inhibitory activities. Compound 5 showed good antiproliferative activity against both cell lines and inhibitory effect on VEGFR-2. Besides, it induced apoptosis by 22.86% compared to 0.51% in the control (HepG2) cells. This apoptotic effect was supported by a 5.61-fold increase in the level of caspase-3 compared to the control cells. Moreover, it arrested the HepG2 cell growth mostly at the Pre-G1 phase. Several in silico studies were performed including docking, ADMET, and toxicity studies to predict binding mode against VEGFR-2 and to anticipate pharmacokinetic, drug-likeness, and toxicity of the synthesised compounds.
Collapse
Affiliation(s)
- Mohamed Hagras
- Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Marwa A. Saleh
- Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Rogy R. Ezz Eldin
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | | | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed A. El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Hesham A. El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
23
|
Gaber AA, Sobhy M, Turky A, Abdulwahab HG, Al-Karmalawy AA, Elhendawy MA, Radwan MM, Elkaeed EB, Ibrahim IM, Elzahabi HSA, Eissa IH. Discovery of new 1 H-pyrazolo[3,4- d]pyrimidine derivatives as anticancer agents targeting EGFR WT and EGFR T790M. J Enzyme Inhib Med Chem 2022; 37:2283-2303. [PMID: 36000168 PMCID: PMC9466626 DOI: 10.1080/14756366.2022.2112575] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/21/2022] [Accepted: 08/06/2022] [Indexed: 10/28/2022] Open
Abstract
New 1H-pyrazolo[3,4-d]pyrimidine derivatives were designed and synthesised to act as epidermal growth factor receptor inhibitors (EGFRIs). The synthesised derivatives were assessed for their in vitro anti-proliferative activities against A549 and HCT-116 cancer cells. Compounds 8, 10, 12a, and 12b showed potent anti-proliferative activities. Compound 12b was the most promising member with IC50 values of 8.21 and 19.56 µM against A549 and HCT-116, respectively. Compounds 8, 10, 12a, and 12b were evaluated for their kinase inhibitory activities against wild EGFR (EGFRWT). Compound 12b was the most potent member showing an IC50 value of 0.016 µM. In addition, compound 12b showed noticeable activity against mutant EGFR (EGFRT790M) (IC50 = 0.236 µM). Flow cytometric analyses revealed that compound 12b is a good apoptotic inducer and can arrest the cell cycle at S and G2/M phases. Furthermore, it produced an 8.8-fold increase in BAX/Bcl-2 ratio. Molecular docking studies were carried out against EGFRWT and EGFRT790M.
Collapse
Affiliation(s)
- Ahmed A. Gaber
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohamed Sobhy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Abdallah Turky
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Hanan Gaber Abdulwahab
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Ahmed A. Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| | - Mostafa. A. Elhendawy
- Department of Chemistry and Biochemistry, University of Mississippi, MS, USA
- Department of Agriculture Chemistry, Faculty of Agriculture, Damietta University, Damietta, Egypt
| | - Mohamed. M. Radwan
- National Center for Natural Products Research, University of Mississippi, University, MS, USA
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Ibrahim M. Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Heba S. A. Elzahabi
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
24
|
El-Shwiniy WH, El-Desoky SI, Alrabie A, Abd El-Wahaab B. Spectrophotometric determination of Zr(IV), Hg(II) and U(VI) in solution with their analytical applications: Structural characterization and molecular docking of the solid complexes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121400. [PMID: 35609395 DOI: 10.1016/j.saa.2022.121400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/11/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Spectrophotometry was used to determine trace amounts of Zirconium(IV), Mercury(II) and Uranium(VI) in environmental, biological, pharmaceutical and industrial samples. The determination depend on the complexation reactions between albendazole reagent and metal ions [Zr(IV), Hg(II) and U(VI)] at 555 nm, 485 nm and 510 nm, respectively. The experimental conditions were explored to reach the optimum conditions for albendazole-metal ions interaction, including detection of a suitable wavelength, medium (pH), reagent concentration, surfactants effect, reaction time and temperature. Under optimum conditions, the complexes displayed apparent molar absorptivities of 0.8350 × 104, 0.6210 × 104 and 0.7012 × 104 L mol-1 cm-1; Sandell's sensitivity of 0.01092, 0.03230 and 0.03394 µg cm-2 and with linearity ranges of 1.0-120.0, 3.0-200.0 and 1.0-150.0 µg mL-1 for the developed methods, respectively. Furthermore, Elemental analysis, thermal analysis (TGA, DTG), IR, 1HNMR, spectroscopies, electrical molar conductivity and magnetic moment measurements were used to determine the structures and characteristics of the complexes. A careful examination of the IR spectra revealed that the ligand interacted with all of the metal ions described as a bidentate via the oxygen of the carbonyl of the ester moiety and the nitrogen atom of the heterocyclic CN group. An octahedral geometry for Zr(IV), Hg(II) and U(VI) complexes has been postulated based on magnetic and electronic spectrum data. The band gap values indicated that these complexes were semi-conductors and belong to the same class of extremely effective solar materials. The albendazole ligand and its complexes have been biologically tested against a variety of bacterial and fungal strains, and molecular docking studies have been conducted to evaluate the optimal binding site and its inhibitory action.
Collapse
Affiliation(s)
- Walaa H El-Shwiniy
- Faculty of Science, Chemistry Department, Zagazig University, Zagazig 44519, Egypt; Department of Chemistry, College of Science, University of Bisha, Bisha 61922, Saudi Arabia
| | - Sameh I El-Desoky
- Regional Joint Laboratory, Directorate of Health Affairs, the Arab Republic of Egypt, Zagazig, Egypt
| | - Ali Alrabie
- Chemistry Department, Faculty of Education Albaydha, Albaydha University, Yemen
| | - Badr Abd El-Wahaab
- Faculty of Science, Chemistry Department, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
25
|
Mamedov VA, Zhukova NA, Voloshina AD, Syakaev VV, Beschastnova T, Lyubina AP, Amerhanova SK, Samigullina AI, Gubaidullin AT, Buzyurova DN, Rizvanov I, Sinyashin OG. Synthesis of Morpholine-, Piperidine-, and N-Substituted Piperazine-Coupled 2-(Benzimidazol-2-yl)-3-arylquinoxalines as Novel Potent Antitumor Agents. ACS Pharmacol Transl Sci 2022; 5:945-962. [PMID: 36268120 PMCID: PMC9578144 DOI: 10.1021/acsptsci.2c00118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Indexed: 11/29/2022]
Abstract
A novel series of 2-(benzimidazol-2-yl)quinoxalines with three types of pharmacophore groups, namely, piperazine, piperidine, and morpholine moieties, which are part of known antitumor drugs, was designed and synthesized. The compounds have been characterized by NMR and IR spectroscopy, high- and low-resolution mass spectrometry, and X-ray crystallography. 2-(Benzimidazol-2-yl)quinoxalines with N-methylpiperazine substituents showed promising activity against a wide range of cancer lines, without causing hemolysis and showing little cytotoxicity against normal human Wi-38 cells (human fetal lung). A mixture of regioisomers 2-(benzimidazol-2-yl)-3-(4-fluorophenyl)-6(and 7)-(4-methylpiperazin-1-yl)quinoxalines (mri BIQ 13da/14da) showed a highly selective cytotoxic effect against human lung adenocarcinoma (cell line A549) with a half-maximal inhibitory concentration at the level of doxorubicin with a selectivity index of 12. The data obtained by flow cytometry, fluorescence microscopy, and multiparametric fluorescence analysis suggested that the mechanism of the cytotoxic effect of the mri BIQ 13da/14da on A549 cells may be associated with the stopping of the cell cycle in phase S and inhibition of DNA synthesis as well as with the induction of mithochondrial apoptosis. Thus, mri BIQ 13da/14da can be considered as a leading compound deserving further study, optimization, and development as a new anticancer agent.
Collapse
Affiliation(s)
- Vakhid A. Mamedov
- A.E. Arbuzov Institute of
Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088Kazan, Russian Federation
| | - Nataliya A. Zhukova
- A.E. Arbuzov Institute of
Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088Kazan, Russian Federation
| | - Alexandra D. Voloshina
- A.E. Arbuzov Institute of
Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088Kazan, Russian Federation
| | - Victor V. Syakaev
- A.E. Arbuzov Institute of
Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088Kazan, Russian Federation
| | - Tat’yana
N. Beschastnova
- A.E. Arbuzov Institute of
Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088Kazan, Russian Federation
| | - Anna P. Lyubina
- A.E. Arbuzov Institute of
Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088Kazan, Russian Federation
| | - Syumbelya K. Amerhanova
- A.E. Arbuzov Institute of
Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088Kazan, Russian Federation
| | - Aida I. Samigullina
- A.E. Arbuzov Institute of
Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088Kazan, Russian Federation
| | - Aidar T. Gubaidullin
- A.E. Arbuzov Institute of
Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088Kazan, Russian Federation
| | - Daina N. Buzyurova
- A.E. Arbuzov Institute of
Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088Kazan, Russian Federation
| | - Il′dar
Kh. Rizvanov
- A.E. Arbuzov Institute of
Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088Kazan, Russian Federation
| | - Oleg G. Sinyashin
- A.E. Arbuzov Institute of
Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088Kazan, Russian Federation
| |
Collapse
|
26
|
Nawareg NA, Mostafa AS, El-Messery SM, Nasr MNA. New benzimidazole based hybrids: Synthesis, molecular modeling study and anticancer evaluation as TopoII inhibitors. Bioorg Chem 2022; 127:106038. [PMID: 35870412 DOI: 10.1016/j.bioorg.2022.106038] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 12/17/2022]
Abstract
Three series of new benzimidazole hybrids were designed and synthesized as promising human TopoII inhibitors. They were characterized by different spectroscopic techniques (1H, 13C NMR, ESI-MS and IR). All hybrids (6-23) were screened for their in vitro antiproliferative activity against five human cancer cell lines namely; HepG-2, MCF-7, PC-3, HCT-116 and Hela. Compound 21 showed the most potent anticancer activity against all cancer cell lines, with IC50 range of 2.82 to 12.59 µM, while proving safe towards normal cells WI-38 (IC50 = 31.89 µM) compared to the reference drug doxorubicin (IC50 = 6.72 µM). The most active candidates 13, 20, 21, 22 and 23 were further assessed for their human TopoII inhibition. The best of which, compounds 13 and 20 showed IC50 of 6.72 and 8.18 µM respectively compared to staurosporine (IC50 = 4.64 µM). Further mechanistic studies for compound 13 showed cell cycle arrest at S-phase by 51.29 % and a significant increase in the total apoptosis by 62.5 folds. Furthermore, apoptosis study proved that it induced apoptosis by decreasing both IAP and Bcl-2, activating caspases 3, 8 and 9, and increasing accumulation of ROS in HepG-2 cells. Besides, it decreased transcription factors' binding activity to DNA. Comparative molecular docking study was performed between the most potent TopoII inhibitors 13 and 20, and the least potent one 23 to relate the binding pattern with TopoII catalytic active site to the biological activity, where all results came in agreement with the biological results. Additional molecular modeling studies including surface mapping and contact preferences were performed to emphasize the importance of hydrophobicity. Physicochemical calculations were assessed where compounds 13 and 20 represented very promising orally active drug candidates.
Collapse
Affiliation(s)
- Nareman A Nawareg
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| | - Amany S Mostafa
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Shahenda M El-Messery
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Magda N A Nasr
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
27
|
Farghaly TA, Gaber Abdulwahab H, Medrasi HY, Al-sheikh MA, Katowah DF, Alsaedi AM. Novel 6,7,8-trihydrobenzo[6‘,7‘]cyclohepta[2‘,1‘-e]pyrazolo[2,3-a]pyrimidine derivatives as Topo IIα inhibitors with potential cytotoxic activity. Bioorg Chem 2022; 128:106043. [DOI: 10.1016/j.bioorg.2022.106043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 01/05/2023]
|
28
|
AL-Adhreai A, ALSaeedy M, Alrabie A, Al-Qadsy I, Dawbaa S, Alaizeri ZM, Alhadlaq HA, Al-Kubati A, Ahamed M, Farooqui M. Design and synthesis of novel enantiopure Bis(5-Isoxazolidine) derivatives: insights into their antioxidant and antimicrobial potential via in silico drug-likeness, pharmacokinetic, medicinal chemistry properties, and molecular docking studies. Heliyon 2022; 8:e09746. [PMID: 35800717 PMCID: PMC9253851 DOI: 10.1016/j.heliyon.2022.e09746] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/04/2022] [Accepted: 06/15/2022] [Indexed: 11/24/2022] Open
Abstract
A series of novel compounds, mono-5-isoxazolidines, and bis (5-isoxazolidines) derivatives, were prepared as bicycloadducts. The new series of isoxazolidines were designed and synthesized via 1,3-dipolar cycloaddition reaction of nitrones with 3,9-Divinyl-2,4,8,10-tetra oxaspiro (5-5) undecane in the context of new antimicrobial and antioxidant drugs discovery and were fully characterized by FT-IR, 13C-NMR, and 1H-NMR spectroscopy. The physicochemical properties of all the novel cycloadducts, like bioactivity score and lipophilicity, were predicted using calculative methods. Similarly, the pharmacokinetic properties such as metabolism, absorption, distribution, and excretion (ADME) were also predicted. Most of the tested compounds exhibited antimicrobial properties to varying degrees against various bacterial species, including the Gram-negative bacteria Pseudomonas aeruginosa and Escherichia coli, and the Gram-positive bacteria Streptococcus pyogenus and Staphylococcus aureus, Antifungal properties were also observed against the tested fungi like Candida albicans, Aspergillus niger, and Aspergillus clavatus. The activity data exhibited that most compounds have high activity as compared to the standard drugs. In the range of graded doses, the results of some selected compounds revealed that some are high antioxidants while others are moderate or weak antioxidants. As evidenced by the molecular docking studies, the synthesized compounds showed good binding mode better than a standard drug, against the protein of a Pantothenate Synthetase enzyme (PDB-2X3F).
Collapse
Affiliation(s)
- Arwa AL-Adhreai
- Department of Chemistry, Maulana Azad of Arts, Science and Commerce, Aurangabad, 431004, India
| | - Mohammed ALSaeedy
- Department of Chemistry, Faculty of Science, Anadolu University, 26470, Eskişehir, Turkey
| | - Ali Alrabie
- Department of Chemistry, Maulana Azad of Arts, Science and Commerce, Aurangabad, 431004, India
| | - Inas Al-Qadsy
- Department of Chemistry, Maulana Azad of Arts, Science and Commerce, Aurangabad, 431004, India
| | - Sam Dawbaa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
| | - ZabnAllah M. Alaizeri
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hisham A. Alhadlaq
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdulrahman Al-Kubati
- Department of Chemistry "Giacomo Ciamician" University of Bologna, 40126, Bologna, BO, Italy
| | - Maqusood Ahamed
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mazahar Farooqui
- Department of Chemistry, Maulana Azad of Arts, Science and Commerce, Aurangabad, 431004, India
| |
Collapse
|
29
|
Elwan A, Sakr H, El-Helby AGA, El-morsy A, Abdelgawad MA, Ghoneim MM, El-Sherbiny M, El-Adl K. Triazoloquinoxalines-based DNA intercalators-Topo II inhibitors: design, synthesis, docking, ADMET and anti-proliferative evaluations. J Enzyme Inhib Med Chem 2022; 37:1556-1567. [PMID: 35635148 PMCID: PMC9154796 DOI: 10.1080/14756366.2022.2080205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Affiliation(s)
- Alaa Elwan
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Helmy Sakr
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Abdel-Ghany A. El-Helby
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed El-morsy
- Pharmaceutical Chemistry Department, College of Pharmacy, The Islamic University, Najaf, Iraq
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, Faculty of Pharmacy, AlMaarefa University, Ad Diriyah, Saudi Arabia
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Khaled El-Adl
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
- Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| |
Collapse
|
30
|
Alanazi MM, Elkady H, Alsaif NA, Obaidullah AJ, Alanazi WA, Al-Hossaini AM, Alharbi MA, Eissa IH, Dahab MA. Discovery of new quinoxaline-based derivatives as anticancer agents and potent VEGFR-2 inhibitors: Design, synthesis, and in silico study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132220] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
31
|
Elgiushy HR, Mohamed SH, Taha H, Sawaf H, Hassan Z, Abou-Taleb NA, El-labbad EM, Hassan AS, Abouzid KA, Hammad SF. Identification of a promising hit from a new series of pyrazolo[1,5-a]pyrimidine based compounds as a potential anticancer agent with potent CDK1 inhibitory and pro-apoptotic properties through a multistep in vitro assessment. Bioorg Chem 2022; 120:105646. [DOI: 10.1016/j.bioorg.2022.105646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/07/2021] [Accepted: 01/24/2022] [Indexed: 12/21/2022]
|
32
|
Recent Developments on 1,8-Naphthalimide Moiety as Potential Target for Anticancer Agents. Bioorg Chem 2022; 121:105677. [DOI: 10.1016/j.bioorg.2022.105677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 01/07/2023]
|
33
|
Alsaif NA, Mahdy HA, Alanazi MM, Obaidullah AJ, Alkahtani HM, Al-Hossaini AM, Al-Mehizi AA, Elwan A, Taghour MS. Targeting VEGFR-2 by new quinoxaline derivatives: Design, synthesis, antiproliferative assay, apoptosis induction, and in silico studies. Arch Pharm (Weinheim) 2021; 355:e2100359. [PMID: 34862634 DOI: 10.1002/ardp.202100359] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 12/18/2022]
Abstract
Twelve new triazolo[4,3-a]quinoxaline-based compounds are reported as anticancer agents with potential effects against vascular endothelial growth factor receptor-2 (VEGFR-2), using sorafenib as a reference molecule. With sorafenib as the positive control, the antiproliferative effects of the synthesized compounds against MCF-7 and HepG2 cells, as well as their VEGFR-2-inhibitory activities, were assessed. The most powerful VEGFR-2 inhibitor was compound 14a, which had an IC50 value of 3.2 nM, which is very close to that of sorafenib (IC50 = 3.12 nM). Furthermore, compounds 14c and 15d showed potential inhibitory activity against VEGFR-2, with IC50 values of 4.8 and 5.4 nM, respectively. Compound 14a caused apoptosis in HepG2 cells and stopped the cell cycle at the G2/M phase. In HepG2 cells, it also increased the levels of the proteases caspase-3 and caspase-9, as well as the Bax/Bcl-2 ratio. In silico ADMET (absorption, distribution, metabolism, excretion, and toxicity) and toxicity experiments revealed that the synthesized agents had acceptable drug-likeness.
Collapse
Affiliation(s)
- Nawaf A Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hazem A Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Egypt
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad J Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hamad M Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah M Al-Hossaini
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman A Al-Mehizi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Alaa Elwan
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Egypt
| | - Mohammed S Taghour
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Egypt
| |
Collapse
|
34
|
Alsaif NA, Taghour MS, Alanazi MM, Obaidullah AJ, Al-Mehizia AA, Alanazi MM, Aldawas S, Elwan A, Elkady H. Discovery of new VEGFR-2 inhibitors based on bis([1, 2, 4]triazolo)[4,3- a:3',4'- c]quinoxaline derivatives as anticancer agents and apoptosis inducers. J Enzyme Inhib Med Chem 2021; 36:1093-1114. [PMID: 34056992 PMCID: PMC8168755 DOI: 10.1080/14756366.2021.1915303] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/24/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023] Open
Abstract
Herein, a new wave of bis([1, 2, 4]triazolo)[4,3-a:3',4'-c]quinoxaline derivatives have been successfully designed and synthesised. The synthesised derivatives were biologically investigated for their cytotoxic activities against HepG2 and MCF-7. Also, the tested compounds were further examined in vitro for their VEGFR-2 inhibitory activity. The most promising derivative 23j was further investigated for its apoptotic behaviour in HepG2 cell lines using flow cytometric and western-plot analyses. Additional in-silico studies were performed to predict how the synthesised compounds can bind to VEGFR-2 and to determine the drug-likeness profiling of these derivatives. The results revealed that compounds 23a, 23i, 23j, 23l, and 23n displayed the highest antiproliferative activities against the two cell lines with IC50 values ranging from 6.4 to 19.4 µM. Furthermore, compounds 23a, 23d, 23h, 23i, 23j, 23l, 23 m, and 23n showed the highest VEGFR-2 inhibitory activities with IC50 values ranging from 3.7 to 11.8 nM, comparing to sorafenib (IC50 = 3.12 nM). Moreover, compound 23j arrested the HepG2 cell growth at the G2/M phase and induced apoptosis by 40.12% compared to the control cells (7.07%). As well, such compound showed a significant increase in the level of caspase-3 (1.36-fold), caspase-9 (2.80-fold), and BAX (1.65-fold), and exhibited a significant decrease in Bcl-2 level (2.63-fold).
Collapse
Affiliation(s)
- Nawaf A. Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed S. Taghour
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad J. Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman A. Al-Mehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Manal M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh Aldawas
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Alaa Elwan
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
35
|
Inhibition of Vascular Smooth Muscle and Cancer Cell Proliferation by New VEGFR Inhibitors and Their Immunomodulator Effect: Design, Synthesis, and Biological Evaluation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8321400. [PMID: 34745424 PMCID: PMC8568530 DOI: 10.1155/2021/8321400] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/16/2021] [Indexed: 11/25/2022]
Abstract
Abnormal vascular smooth muscle cell (VSMC) proliferation has an important role in the pathogenesis of both atherosclerosis restenosis and hypertension. Vascular endothelial growth factor (VEGF) has been shown to stimulate VSMC proliferation. In addition, angiogenesis is one of the hallmarks of cancerous growth. VEGF is the key modulator for the initial stages of angiogenesis that acts through the endothelial-specific receptor tyrosine kinases (VEGFRs). VEGFR-2 blockage is a good approach for suppression of angiogenesis. In order to discover novel VEGFR-2 TK inhibitors, we have designed and synthesized three new series of pyridine-containing compounds. The new compounds were all screened against a panel of three cell lines (HepG-2, HCT-116, and MCF-7). Promising results encouraged us to additionally evaluate the most active members for their in vitro VEGFR-2 inhibitory effect. Compound 7a, which is the most potent candidate, revealed a significant increase in caspase-3 level by 7.80-fold when compared to the control. In addition, Bax and Bcl-2 concentration levels showed an increase in the proapoptotic protein Bax (261.4 Pg/ml) and a decrease of the antiapoptotic protein Bcl-2 (1.25 Pg/ml) compared to the untreated cells. Furthermore, compound 7a arrested the cell cycle in the G2/M phase with induction of apoptosis. The immunomodulatory effect of compound 7a, the most active member, showed a reduction in TNF-α by 87%. Also, compound 7a caused a potent inhibitory effect on smooth muscle proliferation. Docking studies were also performed to get better insights into the possible binding mode of the target compounds with VEGFR-2 active sites.
Collapse
|
36
|
Mukherjee S, Hansda S, Nandi S, Chakraborty T, Samanta D, Acharya K, Das D. Azide-mediated unusual in situ transformation of Mannich base to Schiff-Mannich base and isolation of their Cu(II) complexes: crystal structure, theoretical inspection and anticancer activities. Dalton Trans 2021; 50:13374-13386. [PMID: 34473159 DOI: 10.1039/d1dt01740c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new "end-off" compartmental Mannich ligand (HL1) namely 3-((bis(2-methoxyethyl)amino)methyl)-5-bromo-2-hydroxybenzaldehyde containing two methoxyethyl pendant arms and one-CHO functionality has been synthesized through conventional C-C and C-N coupling reactions. On treatment with Cu(ClO4)2, HL1 yields a dinuclear μ-phenolatocopper(II) complex having the molecular formula [Cu2(L1)2](ClO4)2(H2O)1.5 (1). Surprisingly, the ligand HL1 is radically transformed into a new asymmetric Schiff-Mannich base ligand (HLF) in the presence of NaN3 and Cu(ClO4)2 forming a unique dinuclear centro-symmetric Cu(II) complex [Cu(LF)]2 (2) as evident from single-crystal X-ray diffraction (SCXRD) analysis. A probable mechanistic rationalization has been proposed on the basis of theoretical calculations, which suggests systematic fragmentation of HL1 in the presence of azide residue and re-condensation of the fragmented units to yield the final Cu-HLF complex (2). SCXRD analysis portrays a large inter-metallic distance in complex 2 in comparison with complex 1 (5.493 vs. 2.989 Å, respectively) along with other distinct structural features. After physicochemical characterization both the complexes have been exploited to evaluate their possible anticancer proficiency on lung adenocarcinoma cell line (A549). Complex 1 distinctly impeded the proliferation of lung adenocarcinoma cells in a dose-dependent manner more efficiently than complex 2. Due to the behavior of complex 1 as potential therapeutics, cellular transformations of A549 cells have been systematically investigated. As evidenced from various in vitro experiments, the cell death mechanism triggered by complex 1 turned out to be apoptosis, as indicated by the DNA fragmentation, chromatin condensation, membrane blebbing and imbalanced cell cycle distribution as well as retard migration in A549 cells.
Collapse
Affiliation(s)
- Somali Mukherjee
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India.
| | - Sili Hansda
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India.
| | - Sudeshna Nandi
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Tonmoy Chakraborty
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India.
| | - Debabrata Samanta
- Department of Chemistry, Dukhulal Nibaran Chandra (D.N.C.) College, Aurangabad, West Bengal 742201, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Debasis Das
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India.
| |
Collapse
|
37
|
Ma C, Taghour MS, Belal A, Mehany ABM, Mostafa N, Nabeeh A, Eissa IH, Al-Karmalawy AA. Design and Synthesis of New Quinoxaline Derivatives as Potential Histone Deacetylase Inhibitors Targeting Hepatocellular Carcinoma: In Silico, In Vitro, and SAR Studies. Front Chem 2021; 9:725135. [PMID: 34631658 PMCID: PMC8493129 DOI: 10.3389/fchem.2021.725135] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/29/2021] [Indexed: 02/05/2023] Open
Abstract
Guided by the structural optimization principle and the promising anticancer effect of the quinoxaline nucleus, a new series of novel HDAC inhibitors were designed and synthesized. The synthesized compounds were designed to bear the reported pharmacophoric features of the HDAC inhibitors in addition to an extra moiety to occupy the non-used vacant deep pocket of the HDAC receptor. The newly prepared compounds were evaluated for their in vitro anti-proliferative activities against HepG-2 and HuH-7 liver cancer cell lines. The tested compounds showed promising anti-proliferative activities against both cell lines. The most active ten candidates (6 c , 6 d , 6 f , 6 g , 6 k , 6 l , 7 b , 8, 10 h , and 12) were further evaluated for their effect on the gene expression levels of Bax as an apoptotic marker and Bcl-2 as an anti-apoptotic one. Moreover, they were evaluated for their ability to inhibit histone deacetylase (HDAC1, HDAC4, and HDAC6) activities. Compound 6 c achieved the best cytotoxic activities on both HepG-2 and HuH-7 cell lines with IC50 values of 1.53 and 3.06 µM, respectively, and also it showed the most inhibitory activities on HDAC1, HDAC4, and HDAC6 with IC50 values of 1.76, 1.39, and 3.46 µM, respectively, compared to suberoylanilide hydroxamic acid (SAHA) as a reference drug (IC50 = 0.86, 0.97, and 0.93 µM, respectively). Furthermore, it achieved a more characteristic arrest in the growth of cell population of HepG-2 at both G0/G1 and S phases with 1.23-, and 1.18-fold, respectively, compared to that of the control, as determined by cell cycle analysis. Also, compound 6 c showed a marked elevation in the AnxV-FITC apoptotic HepG-2 cells percentage in both early and late phases increasing the total apoptosis percentage by 9.98-, and 10.81-fold, respectively, compared to the control. Furthermore, docking studies were carried out to identify the proposed binding mode of the synthesized compounds towards the prospective target (HDAC4). In silico ADMET and toxicity studies revealed that most of the synthesized compounds have accepted profiles of drug-likeness with low toxicity. Finally, an interesting SAR analysis was concluded to help the future design of more potent HDACIs in the future by medicinal chemists.
Collapse
Affiliation(s)
- Chao Ma
- Hepatobiliary and Pancreatic Surgery, Cancer Hospital of Zhengzhou University, Zhengzhou City, China
| | - Mohammed S. Taghour
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Amany Belal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Ahmed B. M. Mehany
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Naglaa Mostafa
- Biophysics Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Ahmed Nabeeh
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed A. Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| |
Collapse
|
38
|
Alsaif NA, Taghour MS, Alanazi MM, Obaidullah AJ, Alanazi WA, Alasmari A, Albassam H, Dahab MA, Mahdy HA. Identification of new [1,2,4]triazolo[4,3-a]quinoxalines as potent VEGFR-2 tyrosine kinase inhibitors: Design, synthesis, anticancer evaluation, and in silico studies. Bioorg Med Chem 2021; 46:116384. [PMID: 34479065 DOI: 10.1016/j.bmc.2021.116384] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022]
Abstract
Tumor angiogenesis is mainly regulated by VEGFR-2. In this study, a new series of [1,2,4]triazolo[4,3-a]quinoxaline based-derivatives has been designed and synthesized to develop new anti-proliferative and anti-VEGFR-2 members. Anti-proliferative activities of the synthesized compounds were tested against MCF-7 and HepG2 cell lines. Compound 19a exhibited the highest activity towards both MCF-7 and HepG2 cell lines (IC50 = 8.2 and 5.4 µM, respectively), compared to sorafenib (IC50 = 3.51 and 2.17 µM, respectively). Additionally, all compounds were screened to evaluate their effect as VEGFR-2 inhibitors. Compound 19a (IC50 = 3.4 nM) exhibited good activity compared to sorafenib (IC50 = 3.12 nM). Furthermore, compound 19a disrupted the HepG2 cell cycle by arresting the G2/M phase. Also, marked increase in the percentage apoptotic cells was achieved by compound 19a. The induced apoptotic effect of compound 19a in HepG2 cells was assured by increased pro-apoptotic marker (Bax) expression by 2.33-fold and decreased anti-apoptotic (Bcl-2) expression by 1.88-fold, resulting in an elevation of the Bax/Bcl-2 ratio in HepG2 cells. Comparing to the control cells, compound 19a induced an increase in expression of cleaved caspase-3 and caspase-9 by 2.44- and 2.69-fold, respectively. Finally, the binding modes of the target derivatives were investigated through docking studies against the proposed molecular target (VEGFR-2, PDB ID: 2OH4).
Collapse
Affiliation(s)
- Nawaf A Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed S Taghour
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad J Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Wael A Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11541, Saudi Arabia
| | - Abdullah Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11541, Saudi Arabia
| | - Hussam Albassam
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11541, Saudi Arabia
| | - Mohammed A Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| | - Hazem A Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| |
Collapse
|
39
|
Alanazi MM, Elkady H, Alsaif NA, Obaidullah AJ, Alkahtani HM, Alanazi MM, Alharbi MA, Eissa IH, Dahab MA. New quinoxaline-based VEGFR-2 inhibitors: design, synthesis, and antiproliferative evaluation with in silico docking, ADMET, toxicity, and DFT studies. RSC Adv 2021; 11:30315-30328. [PMID: 35493991 PMCID: PMC9044819 DOI: 10.1039/d1ra05925d] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/30/2021] [Indexed: 01/26/2023] Open
Abstract
A new series of 3-methylquinoxaline-based derivatives having the same essential pharmacophoric features as VEGFR-2 inhibitors have been synthesized and evaluated for their antiproliferative activities against two human cancer cell lines, MCF-7 and HepG-2. Compounds 15b and 17b demonstrated a significant antiproliferative effect with IC50 ranging from 2.3 to 5.8 μM. An enzymatic assay was carried out for all the tested candidates against VEGFR-2. Compound 17b was the most potent VEGFR-2 inhibitor (IC50 = 2.7 nM). Mechanistic investigation including cell cycle arrest and apoptosis was performed for compound 17b against HepG-2 cells, and the results revealed that 17b induced cell apoptosis and arrested cell cycle in the G2/M phase. Moreover, apoptosis analyses were conducted for compound 17b to evaluate its apoptotic potential. The results showed upregulation in caspase-3 and caspase-9 levels, and improving the Bax/Bcl-2 ratio by more than 10-fold. Docking studies were performed to determine the possible interaction with the VEGFR-2 active site. Further docking studies were carried out for compound 17b against cytochrome P450 to present such compounds as non-inhibitors. In silico ADMET, toxicity, and physico-chemical properties revealed that most of the synthesized members have acceptable values of drug-likeness. Finally, DFT studies were carried out to calculate the thermodynamic, molecular orbital and electrostatic potential properties.
Collapse
Affiliation(s)
- Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11541 Saudi Arabia
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Cairo 11884 Egypt
| | - Nawaf A Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11541 Saudi Arabia
| | - Ahmad J Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11541 Saudi Arabia
| | - Hamad M Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11541 Saudi Arabia
| | - Manal M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11541 Saudi Arabia
| | - Madhawi A Alharbi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11541 Saudi Arabia
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Cairo 11884 Egypt
| | - Mohammed A Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Cairo 11884 Egypt
| |
Collapse
|
40
|
Tabassum R, Ashfaq M, Oku H. Current Pharmaceutical Aspects of Synthetic Quinoline Derivatives. Mini Rev Med Chem 2021; 21:1152-1172. [PMID: 33319670 DOI: 10.2174/1389557520999201214234735] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 11/22/2022]
Abstract
Quinoline derivatives are considered broad-spectrum pharmacological compounds that exhibit a wide range of biological activities. Integration of quinoline moiety can improve its physical and chemical properties and also pharmacological behavior. Due to its wide range of pharmaceutical applications, it is a very popular compound to design new drugs for the treatment of multiple diseases like cancer, dengue fever, malaria, tuberculosis, fungal infections, AIDS, Alzheimer's disease and diabetes. In this review, our major focus is to pay attention to the biological activities of quinoline compounds in the treatment of these diseases such as anti-viral, anti-cancer, anti-malarial, antibacterial, anti-fungal, anti-tubercular and anti-diabetic.
Collapse
Affiliation(s)
- Rukhsana Tabassum
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 36100, Pakistan
| | - Muhammad Ashfaq
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 36100, Pakistan
| | - Hiroyuki Oku
- Division of Molecular Science, Graduate School of Science & Engineering Gunma University, Gunma 376-8515, Japan
| |
Collapse
|
41
|
Discovery of new quinoxaline-2(1H)-one-based anticancer agents targeting VEGFR-2 as inhibitors: Design, synthesis, and anti-proliferative evaluation. Bioorg Chem 2021; 114:105105. [PMID: 34175720 DOI: 10.1016/j.bioorg.2021.105105] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/22/2021] [Accepted: 06/16/2021] [Indexed: 11/22/2022]
Abstract
VEGF/VEGFR2 pathway is the crucial therapeutic target in the treatment of cancer. So that, a new series of quinoxaline-2(1H)-one derivatives were designed and synthesized. The synthesized compounds were tested against three human cancer cell lines (HepG-2, MCF-7 and HCT-116) aiming to evaluate its anti-proliferative activities. Doxorubicin as a universal anticancer drug and sorafenib as a potent VEGFR-2 inhibitor were used as positive controls. The data obtained from biological activity were found highly correlated with that obtained from molecular modeling studies. The most sensitive cell line to the influence of our new derivatives was HCT-116. Compounds 13b, 15, 16e and 17b exert the highest cytotoxic activities against the tested cell lines. Overall, compound 15 was the most active member with IC50 values of 5.30, 2.20, 5.50 µM against HepG-2, MCF-7 and HCT-116, respectively. Compounds 15 and 17b showed better anti-proliferative activities than doxorubicin and sorafenib against the three cancer cell lines. Additionally, compound 16e showed better anti-proliferative activities than doxorubicin and sorafenib against HepG-2 and HCT-116 but exhibited lower activity against MCF-7 cell line. In addition, the most promising members were further evaluated for their inhibitory activities against VEGFR-2. Compounds 15 and 17b potently inhibited VEGFR-2 at lower IC50 values of 1.09 and 1.19 µM, respectively, compared to sorafenib (IC50 = 1.27 µM). Moreover, docking studies were conducted to investigate the binding pattern of the synthesized compounds against the prospective molecular target VEGFR-2.
Collapse
|
42
|
Kharb R. Updates on Receptors Targeted by Heterocyclic Scaffolds: New Horizon in Anticancer Drug Development. Anticancer Agents Med Chem 2021; 21:1338-1349. [PMID: 32560614 DOI: 10.2174/1871520620666200619181102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 03/02/2020] [Accepted: 03/13/2020] [Indexed: 11/22/2022]
Abstract
Anticancer is a high priority research area for scientists as cancer is one of the leading causes of death globally. It is pertinent to mention here that conventional anticancer drugs such as methotrexate, vincristine, cyclophosphamide, etoposide, doxorubicin, cisplatin, etc. are not much efficient for the treatment of different types of cancer; also these suffer from serious side effects leading to therapy failure. A large variety of cancerrelated receptors such as carbonic anhydrase, tyrosine kinase, topoisomerase, protein kinase, histone deacetylase, etc. have been identified which can be targeted by anticancer drugs. Heterocycles like oxadiazole, thiazole, thiadiazole, indole, pyridine, pyrimidine, benzimidazole, etc. play a pivotal role in modern medicinal chemistry because they have a broad spectrum of pharmacological activities including prominent anticancer activity. Therefore, it was considered significant to explore heterocyclic compounds reported in recent most literature which can bind effectively with the cancer-related receptors. This will not only provide a targeted approach to deal with cancer but also the safety profile of the drugs can be further improved. The information provided in this manuscript may be found useful for the design and development of anticancer drugs.
Collapse
Affiliation(s)
- Rajeev Kharb
- Centre for Pharmaceutical Chemistry & Pharmaceutical Analysis, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida-201313, Uttar Pradesh, India
| |
Collapse
|
43
|
Alanazi MM, Mahdy HA, Alsaif NA, Obaidullah AJ, Alkahtani HM, Al-Mehizia AA, Alsubaie SM, Dahab MA, Eissa IH. New bis([1,2,4]triazolo)[4,3-a:3',4'-c]quinoxaline derivatives as VEGFR-2 inhibitors and apoptosis inducers: Design, synthesis, in silico studies, and anticancer evaluation. Bioorg Chem 2021; 112:104949. [PMID: 34023640 DOI: 10.1016/j.bioorg.2021.104949] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/08/2021] [Accepted: 04/22/2021] [Indexed: 12/11/2022]
Abstract
A new series of bis([1,2,4]triazolo)[4,3-a:3',4'-c]quinoxaline derivatives were designed and synthesized to have the main essential pharmacophoric features of VEGFR-2 inhibitors. VEGFR-2 inhibitory activities were assessed for the designed compounds. In addition, cytotoxic activity was evaluated for all derivatives against two human cancer cell lines namely, HepG-2 and MCF-7. The most cytotoxic compound 20 h was subjected to further biological investigations including cell cycle, apoptosis, caspase-3, caspase-9, BAX, and Bcl-2 analyses. Different in silico studies as docking, ADMET and toxicity were carried out. The results exhibited that compounds 20b, 20e, 20h and20mshowed promising VEGFR-2 inhibitory activities with IC50values of 5.7, 6.7, 3.2, and 3.1 µM, respectively. Moreover, these promising members exhibited the highest antiproliferative activities against the two cell lines with IC50values ranging from 3.3 to 14.2 µM, comparing to sorafenib (IC50 = 2.17 and 3.43 µM against HepG2 and MCF-7, respectively). Additionally, compound 20h induced cell cycle arrest of HepG2 cells at G2/M phase. Also, such compound increased the progress of apoptosis by 3.5-fold compared to the control. As well, compound 20h showed a significant increase in the level of caspase-3 (2.07-fold), caspase-9 (1.72-fold), and BAX (1.83-fold), and a significant decrease in Bcl-2 level (1.92-fold). The in silico studies revealed that the synthesized compounds have binding pattern like that of sorafenib.
Collapse
Affiliation(s)
- Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, Saudi Arabia.
| | - Hazem A Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Nawaf A Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, Saudi Arabia
| | - Ahmad J Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, Saudi Arabia
| | - Hamad M Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, Saudi Arabia
| | - Abdulrahman A Al-Mehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, Saudi Arabia
| | - Sultan M Alsubaie
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, Saudi Arabia
| | - Mohammed A Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| |
Collapse
|
44
|
El-Metwally SA, Abou-El-Regal MM, Eissa IH, Mehany ABM, Mahdy HA, Elkady H, Elwan A, Elkaeed EB. Discovery of thieno[2,3-d]pyrimidine-based derivatives as potent VEGFR-2 kinase inhibitors and anti-cancer agents. Bioorg Chem 2021; 112:104947. [PMID: 33964580 DOI: 10.1016/j.bioorg.2021.104947] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/05/2021] [Accepted: 04/22/2021] [Indexed: 11/26/2022]
Abstract
Vascular endothelial growth factor-2 (VEGFR-2) is considered one of the most important factors in tumor angiogenesis, and consequently a number of anticancer therapeutics have been developed to inhibit VEGFR-2 signaling. Accordingly, eighteen derivatives of thieno[2,3-d]pyrimidines having structural characteristics similar to VEGFR-2 inhibitors were designed and synthesized. Anticancer activities of the new derivatives were assessed against three human cancer cell lines (HCT-116, HepG2, and MCF-7) using MTT. Sorafenib was used as positive control. Compounds 17c-i, and 20b showed excellent anticancer activities against HCT-116 and HepG2 cell lines, while compounds 17i and 17g was found to be active against MCF-7 cell line. Compound 17f exhibited the highest cytotoxic activities against the examined cell lines, HCT-116 and HepG2, with IC50 values of 2.80 ± 0.16 and 4.10 ± 0.45 µM, respectively. Aiming at exploring the mechanism of action of these compounds, the most active cytotoxic derivatives were in vitro tested for their VEGFR-2 inhibitory activity. Compound 17f showed high activity against VEGFR-2 with an IC50 value of 0.23 ± 0.03 µM, that is equal to that of reference, sorafenib (IC50 = 0.23 ± 0.04 µM). Molecular docking studies also were performed to investigate the possible binding interactions of the target compounds with the active sites of VEGFR-2. The synthesized compounds were analyzed for their ADMET and toxicity properties. Results showed that most of the compounds have low to very low BBB penetration levels and they have non-inhibitory effect against CYP2D6. All compounds were predicted to be non-toxic against developmental toxicity potential model except compounds 17b and 20b.
Collapse
Affiliation(s)
- Souad A El-Metwally
- Department of Basic Science, Higher Technological Institute, 10th of Ramadan City 228, Egypt
| | - Mohsen M Abou-El-Regal
- Department of Chemistry, Faculty of Science, Ain Shams University, Abassia, Cairo 11566, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| | - Ahmed B M Mehany
- Department of Zoology, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Hazem A Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Alaa Elwan
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Riyadh, Saudi Arabia; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| |
Collapse
|
45
|
Alsaif NA, Dahab MA, Alanazi MM, Obaidullah AJ, Al-Mehizia AA, Alanazi MM, Aldawas S, Mahdy HA, Elkady H. New quinoxaline derivatives as VEGFR-2 inhibitors with anticancer and apoptotic activity: Design, molecular modeling, and synthesis. Bioorg Chem 2021; 110:104807. [PMID: 33721808 DOI: 10.1016/j.bioorg.2021.104807] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 01/07/2023]
Abstract
New series of [1,2,4]triazolo[4,3-a]quinoxalin-4(5H)-one and [1,2,4]triazolo[4,3-a]quinoxaline derivatives have been designed, synthesized, and biologically assessed for their anti-proliferative activities against two selected tumor cell lines MCF-7 and HepG2. Comparing to sorafenib (IC50 = 2.17 ± 0.13 and 3.51 ± 0.21 µM against MCF-7 and HepG2, respectively), compound 25d, 25e, 25i, and 27e exhibited the highest activities against the examined cell lines with IC50 values extending from 4.1 ± 0.4 to 11.7 ± 1.1 µM. Furthermore, VEGFR-2 inhibitory activities were assessed for all the synthesized compounds as potential mechanisms for their anti-proliferative activities. Compounds 25d, 25e, 25i, and 27e displayed prominent inhibitory efficiency versus VEGFR-2 kinase with IC50 value ranging from 3.4 ± 0.3 to 6.8 ± 0.5 nM. Fascinatingly, the results of VEGFR-2 inhibitory assays were matched with that of the cytotoxicity data, where the most potent anti-proliferative derivatives exhibited promising VEGFR-2 inhibitory activities. Further studies displayed the ability of compound 25d to induce apoptosis in HepG2 cells and can arrest the growth of such cells at the G2/M phase. Also, compound 25d produced a significant increase in the level of BAX/Bcl-2 ratio (3.8-fold), caspase- 3 (1.8-fold), and caspase-9 (1.9-fold) compared to the control cells. Molecular docking studies were carried out to investigate the possible binding interaction inside the active site of the VEGFR-2.
Collapse
Affiliation(s)
- Nawaf A Alsaif
- Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Mohammed A Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Mohammed M Alanazi
- Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ahmad J Obaidullah
- Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdulrahman A Al-Mehizia
- Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Manal M Alanazi
- Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Saleh Aldawas
- Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Hazem A Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| |
Collapse
|
46
|
Alesawy MS, Al-Karmalawy AA, Elkaeed EB, Alswah M, Belal A, Taghour MS, Eissa IH. Design and discovery of new 1,2,4-triazolo[4,3-c]quinazolines as potential DNA intercalators and topoisomerase II inhibitors. Arch Pharm (Weinheim) 2021; 354:e2000237. [PMID: 33226150 DOI: 10.1002/ardp.202000237] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/27/2020] [Accepted: 10/31/2020] [Indexed: 02/05/2023]
Abstract
A new series of 1,2,4-triazolo[4,3-c]quinazoline derivatives was designed and synthesized as Topo II inhibitors and DNA intercalators. The cytotoxic effect of the new members was evaluated in vitro against a group of cancer cell lines including HCT-116, HepG-2, and MCF-7. Compounds 14c , 14d , 14e , 14e , 15b , 18b , 18c , and 19b exhibited the highest activities with IC50 values ranging from 5.22 to 24.24 µM. Furthermore, Topo II inhibitory activities and DNA intercalating affinities of the most promising candidates were evaluated as a possible mechanism for the antiproliferative effect. The results of the Topo II inhibition and DNA binding tests were coherent with that of in vitro cytotoxicity. Additionally, the most promising compound 18c was analyzed in HepG-2 cells for its apoptotic effect and cell cycle arrest. It was found that 18c can induce apoptosis and arrest the cell cycle at the G2-M phase. Finally, molecular docking studies were carried out for the designed compounds against the crystal structure of the DNA-Topo II complex as a potential target to explore their binding modes. On the basis of these studies, it was hypothesized that the DNA binding and/or Topo II inhibition would participate in the noted cytotoxicity of the synthesized compounds.
Collapse
Affiliation(s)
- Mohamed S Alesawy
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohamed Alswah
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed Belal
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Mohammed S Taghour
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
47
|
Khatoon H, Abdulmalek E. Novel Synthetic Routes to Prepare Biologically Active Quinoxalines and Their Derivatives: A Synthetic Review for the Last Two Decades. Molecules 2021; 26:1055. [PMID: 33670436 PMCID: PMC7923122 DOI: 10.3390/molecules26041055] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/31/2022] Open
Abstract
Quinoxalines, a class of N-heterocyclic compounds, are important biological agents, and a significant amount of research activity has been directed towards this class. They have several prominent pharmacological effects like antifungal, antibacterial, antiviral, and antimicrobial. Quinoxaline derivatives have diverse therapeutic uses and have become the crucial component in drugs used to treat cancerous cells, AIDS, plant viruses, schizophrenia, certifying them a great future in medicinal chemistry. Due to the current pandemic situation caused by SARS-COVID 19, it has become essential to synthesize drugs to combat deadly pathogens (bacteria, fungi, viruses) for now and near future. Since quinoxalines is an essential moiety to treat infectious diseases, numerous synthetic routes have been developed by researchers, with a prime focus on green chemistry and cost-effective methods. This review paper highlights the various synthetic routes to prepare quinoxaline and its derivatives, covering the literature for the last two decades. A total of 31 schemes have been explained using the green chemistry approach, cost-effective methods, and quinoxaline derivatives' therapeutic uses.
Collapse
Affiliation(s)
- Hena Khatoon
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Emilia Abdulmalek
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
- Integrated Chemical BioPhysics Research, Faculty of Science, University Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
48
|
Activities of Quinoxaline, Nitroquinoxaline, and [1,2,4]Triazolo[4,3-a]quinoxaline Analogs of MMV007204 against Schistosoma mansoni. Antimicrob Agents Chemother 2021; 65:AAC.01370-20. [PMID: 33257453 DOI: 10.1128/aac.01370-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/23/2020] [Indexed: 01/10/2023] Open
Abstract
The reliance on one drug, praziquantel, to treat the parasitic disease schistosomiasis in millions of people a year shows the need to further develop a pipeline of new drugs to treat this disease. Recently, an antimalarial quinoxaline derivative (MMV007204) from the Medicines for Malaria Venture (MMV) Malaria Box demonstrated promise against Schistosoma mansoni In this study, 47 synthesized compounds containing quinoxaline moieties were first assayed against the larval stage of this parasite, newly transformed schistosomula (NTS); of these, 16 killed over 70% NTS at 10 µM. Further testing against NTS and adult S. mansoni yielded three compounds with 50% inhibitory concentrations (IC50s) of ≤0.31 µM against adult S. mansoni and selectivity indices of ≥8.9. Administration of these compounds as a single oral dose of 400 mg/kg of body weight to S. mansoni -infected mice yielded only moderate worm burden reduction (WBR) (9.3% to 46.3%). The discrepancy between these compounds' good in vitro activities and their poor in vivo activities indicates that optimization of their pharmacokinetic properties may yield compounds with greater bioavailabilities and better antischistosomiasis activities in vivo.
Collapse
|
49
|
Sakr H, Ayyad RR, El-Helby AA, Khalifa MM, Mahdy HA. Discovery of novel triazolophthalazine derivatives as DNA intercalators and topoisomerase II inhibitors. Arch Pharm (Weinheim) 2021; 354:e2000456. [PMID: 33554352 DOI: 10.1002/ardp.202000456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 01/07/2023]
Abstract
A new series of triazolophthalazine derivatives was designed and synthesized as topoisomerase II (Topo II) inhibitors and DNA intercalators. The synthesized derivatives were evaluated in vitro for their cytotoxic activities against three human cancer cell lines: HepG2, MCF-7, and HCT-116 cells. Compound IXb was the most potent counterpart with IC50 values of 5.39 ± 0.4, 3.81 ± 0.2, and 4.38 ± 0.3 µM, as it was about 1.47, 1.77, and 1.19 times more active than doxorubicin (IC50 = 7.94 ± 0.6, 6.75 ± 0.4, and 5.23 ± 0.3 µM) against HepG2, MCF-7, and HCT-116 cells, respectively. Additionally, the binding affinity of the synthesized compounds toward the DNA molecule was assessed using the DNA/methyl green assay. Compound IXb showed an excellent DNA binding affinity with an IC50 value of 27.16 ± 1.2 µM, which was better than that of the reference drug doxorubicin (IC50 = 31.02 ± 1.80 µM). Moreover, compound IXb was the most potent member among the tested compounds when investigated for their Topo II inhibitory activity. Furthermore, compound IXb induced apoptosis in HepG2 cells and arrested the cell cycle at the G2/M phase. Additionally, compound IXb showed Topo II poisoning effects at 2.5 μM and Topo II catalytic inhibitory effects at 5 and 10 μM. Finally, molecular docking studies were carried out against the DNA-Topo II complex and DNA, to investigate the binding patterns of the designed compounds.
Collapse
Affiliation(s)
- Helmy Sakr
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Rezk R Ayyad
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ali A El-Helby
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohamed M Khalifa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Hazem A Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
50
|
Tabassum R, Ashfaq M, Oku H. Development of an efficient, one-pot, multicomponent protocol for synthesis of 8-hydroxy-4-phenyl-1,2-dihydroquinoline derivatives. J Heterocycl Chem 2021; 58:534-547. [PMID: 33362294 PMCID: PMC7753469 DOI: 10.1002/jhet.4193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/09/2020] [Accepted: 11/18/2020] [Indexed: 11/11/2022]
Abstract
A one-pot quick and efficient multicomponent reaction has been developed for the synthesis of a new series of functionalized 8-hydroxy-4-phenyl-1,2-dihydroquinoline derivatives using 30 mol% ammonium acetate in ethanol as solvent. This economical protocol run smoothly to give variety of quinoline derivatives in 55% to 98% yield from inexpensive reagents and catalyst in mild reaction conditions. Various spectroscopic techniques like FTIR, 1H NMR and 13C NMR, MALDI-TOF-MS, and EI-MS were used to study and confirm their structure.
Collapse
Affiliation(s)
- Rukhsana Tabassum
- Department of ChemistryThe Islamia University of BahawalpurBahawalpurPakistan
| | - Muhammad Ashfaq
- Department of ChemistryThe Islamia University of BahawalpurBahawalpurPakistan
| | - Hiroyuki Oku
- Division of Molecular ScienceGraduate School of Science & Engineering, Gunma UniversityGunmaJapan
| |
Collapse
|