1
|
Ekodo Voundi M, Hanekamp W, Lehr M. Synthesis, activity and metabolic stability of propan-2-one substituted tetrazolylalkanoic acids as dual inhibitors of cytosolic phospholipase A 2α and fatty acid amide hydrolase. RSC Med Chem 2023; 14:2079-2088. [PMID: 37859716 PMCID: PMC10583809 DOI: 10.1039/d3md00224a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/09/2023] [Indexed: 10/21/2023] Open
Abstract
The serine hydrolases cytosolic phospholipase A2α (cPLA2α) and fatty acid amide hydrolase (FAAH) are interesting targets for the development of new anti-inflammatory and analgesic drugs. Structural modifications of a potent dual inhibitor with a propan-2-one substituted tetrazolylpropionic acid moiety led to compounds with also nanomolar activity against both enzymes but better physicochemical properties. The structure-activity relationships showed that the variations had partially divergent effects on the inhibitory activity of the compounds towards cPLA2α and FAAH reflecting differences in the binding mode to the enzymes. Furthermore, the metabolic stability of the target structures was investigated in vitro.
Collapse
Affiliation(s)
- Merlin Ekodo Voundi
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster Corrensstrasse 48 48149 Münster Germany
| | - Walburga Hanekamp
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster Corrensstrasse 48 48149 Münster Germany
| | - Matthias Lehr
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster Corrensstrasse 48 48149 Münster Germany
| |
Collapse
|
2
|
Depmeier T, Lange T, Hanekamp W, Strünker T, Lehr M. HPLC fluorescence assay for measuring the activity of diacylglycerol lipases and the action of inhibitors thereof. Anal Biochem 2022; 657:114889. [PMID: 36113549 DOI: 10.1016/j.ab.2022.114889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/01/2022]
Abstract
1,2-Diacylglycerol lipases (DAGLs) are the most important enzymes for the biosynthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG), and their role in various pathophysiological conditions is currently under investigation. We synthesized a new 1,2-diacylglycerol substrate for these enzymes with a fluorogenic 4-(pyren-1-yl)butanoyl residue in sn-2 position. Using the fluorescent substrate, we measured DAGL activity in rat liver S9 fraction and brain microsomes. To this end, 2-acylglycerol release was directly determined via HPLC and fluorescence detection without further sample clean-up. The method was used to evaluate the action of several known DAGL inhibitors. These showed partly significant differences in their inhibitory effect on DAGLs in liver versus brain preparations. The method was verified by measuring the IC50 values for a subset of inhibitors by HPLC and single-quad MS detection using the deuterated natural DAGL substrate 1-stearoyl-2-arachidonoyl-sn-glycerol-d8. DAGL activity could also be measured with the new pyrene-labeled substrate by HPLC and UV instead of fluorescence detection, if larger quantities of the samples were injected into the HPLC system. Furthermore, using intact human sperm, we show that the substrate is also converted by DAGL enzymes in human cells.
Collapse
Affiliation(s)
- Tim Depmeier
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstrasse 48, 48149, Münster, Germany
| | - Thomas Lange
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstrasse 48, 48149, Münster, Germany
| | - Walburga Hanekamp
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstrasse 48, 48149, Münster, Germany
| | - Timo Strünker
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Domagkstrasse 11, 48149 Münster, Germany
| | - Matthias Lehr
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstrasse 48, 48149, Münster, Germany.
| |
Collapse
|
3
|
Maleki MF, Nadri H, Kianfar M, Edraki N, Eisvand F, Ghodsi R, Mohajeri SA, Hadizadeh F. Design and synthesis of new carbamates as inhibitors for fatty acid amide hydrolase and cholinesterases: Molecular dynamic, in vitro and in vivo studies. Bioorg Chem 2021; 109:104684. [PMID: 33607363 DOI: 10.1016/j.bioorg.2021.104684] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/12/2021] [Accepted: 01/22/2021] [Indexed: 12/22/2022]
Abstract
As anandamide (N-arachidonoylethanolamine, AEA) shows neuroprotective effects, the inhibition of its degradative enzyme, fatty acid amide hydrolase (FAAH) has been considered as a hopeful avenue for the treatment of neurodegenerative diseases, like Alzheimer's disease (AD). Memory loss, cognitive impairment and diminution of the cholinergic tone, due to the dying cholinergic neurons in the basal forebrain, are common hallmarks in patients with AD. By taking advantage of cholinesterase inhibitors (ChEIs), the degradation of acetylcholine (ACh) is decreased leading to enhanced cholinergic neurotransmission in the aforementioned region and ultimately improves the clinical condition of AD patients. In this work, new carbamates were designed as inhibitors of FAAH and cholinestrases (ChEs) (acetylcholinestrase (AChE), butyrylcholinestrase (BuChE)) inspired by the structure of the native substrates, structure of active sites and the SARs of the well-known inhibitors of these enzymes. All the designed compounds were synthesized using different reactions. All the target compounds were tested for their inhibitory activity against FAAH and ChEs by employing the Cayman assay kit and Elman method respectively. Generally, compounds possessing aminomethyl phenyl linker was more potent compared to their corresponding compounds possessing piperazinyl ethyl linker. The inhibitory potential of the compounds 3a-q extended from 0.83 ± 0.03 μM (3i) to ˃100 μM (3a) for FAAH, 0.39 ± 0.02 μM (3i) to 24% inhibition in 113 ± 4.8 μM (3b) for AChE, and 1.8 ± 3.2 μM (3i) to 23.2 ± 0.2 μM (3b) for BuChE. Compound 3i a heptyl carbamate analog possessing 2-oxo-1,2-dihydroquinolin ring and aminomethyl phenyl linker showed the most inhibitory activity against three enzymes. Also, compound 3i was investigated for memory improvement using the Morris water maze test in which the compound showed better memory improvement at 10 mg/kg compared to reference drug rivastigmine at 2.5 mg/kg. Molecular docking and molecular dynamic studies of compound 3i into the enzymes displayed the possible interactions of key residues of the active sites with compound 3i. Finally, kinetic study indicated that 3i inhibits AChE through the mixed- mode mechanism and non-competitive inhibition mechanism was revealed for BuChE.
Collapse
Affiliation(s)
- Mahdi Faal Maleki
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Nadri
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mostafa Kianfar
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farhad Eisvand
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Razieh Ghodsi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ahmad Mohajeri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Shang Y, Hao Q, Jiang K, He M, Wang J. Discovery of heterocyclic carbohydrazide derivatives as novel selective fatty acid amide hydrolase inhibitors: design, synthesis and anti-neuroinflammatory evaluation. Bioorg Med Chem Lett 2020; 30:127118. [PMID: 32216992 DOI: 10.1016/j.bmcl.2020.127118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/28/2020] [Accepted: 03/17/2020] [Indexed: 01/23/2023]
Abstract
Fatty acid amide hydrolase (FAAH) is a promising target for the development of drugs to treat pain, inflammation, and other central nervous system disorders. Herein, a series of novel heterocyclic carbohydrazide derivatives were firstly designed by the classic scaffold-hopping strategy. Then, multi-steps synthesis and human FAAH enzyme inhibiting activity assays were conducted. Among them, compound 26 showedstrong inhibition against human FAAH with IC50 of 2.8 μM. Corresponding docking studies revealed that the acyl hydrazide group of compound 26 well-occupied the acyl-chain binding pocket. It also exhibited high selectivity towards FAAH when comparing with CES2 and MAGL. Additionally, compound 26 effectively suppressed the LPS-induced neuroinflammation of microglial cells (BV2) via the reduction of interleukin-1β and tumor necrosis factor-α. Our results provided significative lead compounds for the further discovery of novel selective and safe FAAH inhibitors with potent anti-neuroinflammation activity.
Collapse
Affiliation(s)
- Yanguo Shang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Qingjing Hao
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Kaixuan Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Mengting He
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jinxin Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
5
|
Zhang D, Gong L, Ding S, Tian Y, Jia C, Liu D, Han M, Cheng X, Sun D, Cai P, Tian Y, Yuan L, Tu W, Chen J, Wu A, Hu QN. FRCD: A comprehensive food risk component database with molecular scaffold, chemical diversity, toxicity, and biodegradability analysis. Food Chem 2020; 318:126470. [PMID: 32120139 DOI: 10.1016/j.foodchem.2020.126470] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 12/26/2022]
Abstract
The presence of natural toxins, pesticide residues, and illegal additives in food products has been associated with a range of potential health hazards. However, no systematic database exists that comprehensively includes and integrates all research information on these compounds, and valuable information remains scattered across numerous databases and extensive literature reports. Thus, using natural language processing technology, we curated 12,018 food risk components from 152,737 literature reports, 12 authoritative databases, and numerous related regulatory documents. Data on molecular structures, physicochemical properties, chemical taxonomy, absorption, distribution, metabolism, excretion, toxicity properties, and physiological targets within the human body were integrated to afford the comprehensive food risk component database (FRCD, http://www.rxnfinder.org/frcd/). We also analyzed the molecular scaffold and chemical diversity, in addition to evaluating the toxicity and biodegradability of the food risk components. The FRCD could be considered a highly promising tool for future food safety studies.
Collapse
Affiliation(s)
- Dachuan Zhang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200333, PR China.
| | - Linlin Gong
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200333, PR China.
| | - Shaozhen Ding
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200333, PR China.
| | - Ye Tian
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, PR China.
| | - Cancan Jia
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200333, PR China.
| | - Dongliang Liu
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200333, PR China.
| | - Mengying Han
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200333, PR China.
| | - Xingxiang Cheng
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200333, PR China.
| | - Dandan Sun
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200333, PR China.
| | - Pengli Cai
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200333, PR China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China.
| | - Yu Tian
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430023, PR China.
| | - Le Yuan
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE412 96 Gothenburg, Sweden.
| | - Weizhong Tu
- Wuhan LifeSynther Science and Technology Co. Limited, Wuhan 430070, PR China
| | - Junni Chen
- Wuhan LifeSynther Science and Technology Co. Limited, Wuhan 430070, PR China
| | - Aibo Wu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, PR China.
| | - Qian-Nan Hu
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200333, PR China.
| |
Collapse
|
6
|
Tripathi RKP. A perspective review on fatty acid amide hydrolase (FAAH) inhibitors as potential therapeutic agents. Eur J Med Chem 2019; 188:111953. [PMID: 31945644 DOI: 10.1016/j.ejmech.2019.111953] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023]
Abstract
Fatty acid amide hydrolase (FAAH) is an important enzyme creditworthy of hydrolyzing endocannabinoids and related-amidated signalling lipids, discovery of which has pioneered novel arena of pharmacological canvasses to unwrap its curative potency in various diseased circumstances. It presents contemporary basis for understanding molecules regulating and mediating inflammatory reactions, pain, anxiety, depression, and neurodegeneration. FAAH inhibitors form vital approach for discovery of therapeutic agents that are concerned with local elevation of endocannabinoids under certain stimuli, debarring adverse/unwanted secondary effects from global activation of cannabinoid receptors by exogenous cannabimimetics. During past decades, several molecules with excellent potency developed through tailor-made approaches entered into clinical trials, but none could reach market. Hence, hunt for novel, non-toxic and selective FAAH inhibitors are on horizon. This review summarizes present perception on FAAH in conjunction with its structure, mechanism of catalysis and biological functions. It also foregrounds recent development of molecules belonging to diverse chemical classes as potential FAAH inhibitors bobbing up from in-depth chemical, mechanistic and computational studies published since 2015-November 2019, focusing on their potency. This review will assist readers to obtain rationale on FAAH as potential target for addressing various disease conditions, acquiring significant knowledge on recently established inhibitor scaffolds and their development potentials. New technologies including MD-MM simulations and 3D-QSAR studies allow mechanistic characterization of enzyme. Assessment of in-vitro and in-vivo efficacy of existing FAAH inhibitors will facilitate researchers to design novel ligands utilizing modern drug design methods. The discussions will also impose precaution in decision making process, quashing possibility of late stage failure.
Collapse
Affiliation(s)
- Rati Kailash Prasad Tripathi
- Department of Pharmaceutical Science, Sushruta School of Medical and Paramedical Sciences, Assam University (A Central University), Silchar, Assam, 788011, India; Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
7
|
Bhuniya D, Kharul RK, Hajare A, Shaikh N, Bhosale S, Balwe S, Begum F, De S, Athavankar S, Joshi D, Madgula V, Joshi K, Raje AA, Meru AV, Magdum A, Mookhtiar KA, Barbhaiya R. Discovery and evaluation of novel FAAH inhibitors in neuropathic pain model. Bioorg Med Chem Lett 2019; 29:238-243. [DOI: 10.1016/j.bmcl.2018.11.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 10/27/2022]
|