1
|
Frei M, Wein T, Bracher F. Lead-Structure-Based Rigidization Approach to Optimize SirReal-Type Sirt2 Inhibitors. Molecules 2025; 30:1728. [PMID: 40333696 PMCID: PMC12029821 DOI: 10.3390/molecules30081728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/01/2025] [Accepted: 04/04/2025] [Indexed: 05/09/2025] Open
Abstract
Sirtuins are involved in cellular processes in multiple ways. Therefore, the development of potent and selective Sirt2 inhibitors provides an important contribution to understanding physiological and pathophysiological mechanisms, particularly for the research and treatment of cancer and neurodegenerative diseases. Based on established SirReal-type lead inhibitors, further selective Sirt2 inhibitors were synthesized in a docking-guided rigidization approach, and the knowledge regarding requirements and properties of the Sirt2-binding pocket was expanded by means of a comprehensive SAR study. Naphthalene derivative FM69 emerged from the screening as the most potent rigidized inhibitor, which, with an IC50 value of 0.15 µM against Sirt2, represents a promising foundation for the further development of novel potent and selective Sirt2 inhibitors based on the presented rigidization strategy.
Collapse
Affiliation(s)
| | | | - Franz Bracher
- Department of Pharmacy—Center for Drug Research, Ludwig-Maximilians University, Butenandtstr. 5–13, 81377 Munich, Germany; (M.F.); (T.W.)
| |
Collapse
|
2
|
Pravin NJ, Kavalapure RS, Alegaon SG, Gharge S, Ranade SD. Indoles as promising Therapeutics: A review of recent drug discovery efforts. Bioorg Chem 2025; 154:108092. [PMID: 39740309 DOI: 10.1016/j.bioorg.2024.108092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/07/2024] [Accepted: 12/22/2024] [Indexed: 01/02/2025]
Abstract
Indole, a fundamental heterocyclic core, has emerged as a cornerstone in the medicinal chemistry due to its diverse biological activities and structural versatility. This aromatic compound, present in natural as well as synthetic compounds, offers a versatile platform for the drug discovery. By strategically incorporating functional groups or pharmacophores, researchers can tailor indole-derivatives to target a wide range of diseases. This review delves into the multifaceted applications of indole derivatives, highlighting their potential as therapeutic agents for cancer, diabetes, depression, Alzheimer's diseases, Parkinson's disease, etc. emphasizing how indole derivatives can enhance potency and selectivity. By understanding the structure-activity relationship of indole compounds, scientists can develop innovative drug candidates with improved therapeutic profiles. The review highlights the diverse nature of indole-based derivatives along with the structure-activity relationshipThe current review comprehensively covers the advancements and developments in the field over the past seven years, specifically from 2017 to 2024. This timeframe was selected to provide an up-to-date and thorough analysis of recent progress, capturing significant trends, breakthroughs, and emerging insights within the domain. By focusing on this period, the review ensures relevance and highlights the evolving landscape of research, offering a detailed synthesis of key findings and their implications for future studies.
Collapse
Affiliation(s)
- Naik Jui Pravin
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590 010, Karnataka, India
| | - Rohini S Kavalapure
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590 010, Karnataka, India.
| | - Shankar G Alegaon
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590 010, Karnataka, India
| | - Shankar Gharge
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590 010, Karnataka, India
| | - Shriram D Ranade
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590 010, Karnataka, India
| |
Collapse
|
3
|
Giorgioni G, Bonifazi A, Botticelli L, Cifani C, Matteucci F, Micioni Di Bonaventura E, Micioni Di Bonaventura MV, Giannella M, Piergentili A, Piergentili A, Quaglia W, Del Bello F. Advances in drug design and therapeutic potential of selective or multitarget 5-HT1A receptor ligands. Med Res Rev 2024; 44:2640-2706. [PMID: 38808959 DOI: 10.1002/med.22049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/14/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024]
Abstract
5-HT1A receptor (5-HT1A-R) is a serotoninergic G-protein coupled receptor subtype which contributes to several physiological processes in both central nervous system and periphery. Despite being the first 5-HT-R identified, cloned and studied, it still represents a very attractive target in drug discovery and continues to be the focus of a myriad of drug discovery campaigns due to its involvement in numerous neuropsychiatric disorders. The structure-activity relationship studies (SAR) performed over the last years have been devoted to three main goals: (i) design and synthesis of 5-HT1A-R selective/preferential ligands; (ii) identification of 5-HT1A-R biased agonists, differentiating pre- versus post-synaptic agonism and signaling cellular mechanisms; (iii) development of multitarget compounds endowed with well-defined poly-pharmacological profiles targeting 5-HT1A-R along with other serotonin receptors, serotonin transporter (SERT), D2-like receptors and/or enzymes, such as acetylcholinesterase and phosphodiesterase, as a promising strategy for the management of complex psychiatric and neurodegenerative disorders. In this review, medicinal chemistry aspects of ligands acting as selective/preferential or multitarget 5-HT1A-R agonists and antagonists belonging to different chemotypes and developed in the last 7 years (2017-2023) have been discussed. The development of chemical and pharmacological 5-HT1A-R tools for molecular imaging have also been described. Finally, the pharmacological interest of 5-HT1A-R and the therapeutic potential of ligands targeting this receptor have been considered.
Collapse
Affiliation(s)
- Gianfabio Giorgioni
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Luca Botticelli
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Carlo Cifani
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Federica Matteucci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | | | | | - Mario Giannella
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | | | - Alessia Piergentili
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Wilma Quaglia
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Fabio Del Bello
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| |
Collapse
|
4
|
Halder AK, Mitra S, Cordeiro MNDS. Designing multi-target drugs for the treatment of major depressive disorder. Expert Opin Drug Discov 2023; 18:643-658. [PMID: 37183604 DOI: 10.1080/17460441.2023.2214361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
INTRODUCTION Major depressive disorders (MDD) pose major health burdens globally. Currently available medications have their limitations due to serious adverse effects, long latency periods as well as resistance. Considering the highly complicated pathological nature of this disorder, it has been suggested that multitarget drugs or multi-target-directed ligands (MTDLs) may provide long-term therapeutic solutions for the treatment of MDD. AREAS COVERED In the current review, recent lead design and lead modification strategies have been covered. Important investigations reported in the last ten years (2013-2022) for the pre-clinical development of MTDLs (through synthetic medicinal chemistry and biological evaluation) for the treatment of MDD were discussed as case studies to focus on the recent design strategies. The discussions are categorized based on the pharmacological targets. On the basis of these important case studies, the challenges involved in different design strategies were discussed in detail. EXPERT OPINION Even though large variations were observed in the selection of pharmacological targets, some potential biological targets (NMDA, melatonin receptors) are required to be explored extensively for the design of MTDLs. Similarly, apart from structure activity relationship (SAR), in silico techniques such as multitasking cheminformatic modelling, molecular dynamics simulation and virtual screening should be exploited to a greater extent.
Collapse
Affiliation(s)
- Amit Kumar Halder
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- Dr. B.C. Roy College of Pharmacy & Allied Health Sciences, Durgapur 713206, India
| | - Soumya Mitra
- Dr. B.C. Roy College of Pharmacy & Allied Health Sciences, Durgapur 713206, India
| | - Maria Natalia D S Cordeiro
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
5
|
Król M, Ślifirski G, Kleps J, Podsadni P, Materek I, Kozioł AE, Herold F. The Synthesis and Absolute Configuration of Enantiomeric Pure (R)- and (S)-3-(piperidin-3-yl)-1H-Indole Derivatives. Int J Mol Sci 2022; 24:ijms24010517. [PMID: 36613958 PMCID: PMC9820373 DOI: 10.3390/ijms24010517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/29/2022] Open
Abstract
This article describes the synthesis of new chiral 3-(piperidin-3-yl)-1H-indole derivatives (R)-10a-c and (S)-11a-c from the corresponding diastereomers: (3R, 2R) and (3S, 2R)-2-[3-(1H-indol-3-yl)-1-piperidyl]-2-phenyl-acetamides (3R, 2R)-4a, (3R, 2R)-6b, (3R, 2R)-8c and (3S, 2R)-5a, (3S, 2R)-7b, (3S, 2R)-9c. Diastereomers were obtained by N-alkylation of derivatives of racemic 3-(piperidin-3-yl)-1H-indoles 1a-c using (S)-2-(4-toluenesulfonyloxy)-phenylacetic amide (S)-II. The same method was applied to obtain (3R, 2S)-methyl-2-[3-(1H-indole-3-yl)-1-piperidyl]-2-phenylacetate (3R, 2S)-2a and (3S, 2S)-methyl-2-[3-(1H-indole-3-yl)-1-piperidyl]-2-phenylacetate (3S, 2S)-3a diastereomers by treating amine 1a with (R)-2-(4-toluenesulfonyloxy)-phenylacetic acid methylester (R)-I. Systematic studies via single crystal X-ray crystallography were used to determine the molecular structure of the racemates 1a-c and the absolute configuration of the enantiomers. The solid racemates 1b and 1c were "true racemates" crystallizing in a centrosymmetric space group, while 1a formed a racemic conglomerate of homoenantiomeric crystals. The absolute configuration was determined for the enantiomeric pairs (R)-10a/(S)-11a, (R)-10b/(S)-11b, and (R)-12c/(S)-13c, as well as for (3S,2S)-3a. Spectra of 1H, 13CNMR, HPLC, and HRMS for diastereomers and enantiomers were consistent with the determined structures.
Collapse
Affiliation(s)
- Marek Król
- Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, 1, Banacha Street, 02-097 Warsaw, Poland
| | - Grzegorz Ślifirski
- Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, 1, Banacha Street, 02-097 Warsaw, Poland
- Correspondence:
| | - Jerzy Kleps
- Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, 1, Banacha Street, 02-097 Warsaw, Poland
| | - Piotr Podsadni
- Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, 1, Banacha Street, 02-097 Warsaw, Poland
| | - Ilona Materek
- Faculty of Chemistry, Maria Curie-Skłodowska University, 3, M. Curie-Skłodowskiej Sq., 20-031 Lublin, Poland
| | - Anna E. Kozioł
- Faculty of Chemistry, Maria Curie-Skłodowska University, 3, M. Curie-Skłodowskiej Sq., 20-031 Lublin, Poland
| | - Franciszek Herold
- Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, 1, Banacha Street, 02-097 Warsaw, Poland
| |
Collapse
|
6
|
An insight on medicinal attributes of pyrimidine scaffold: An updated review. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Ulenberg S, Ciura K, Georgiev P, Pastewska M, Ślifirski G, Król M, Herold F, Bączek T. Use of biomimetic chromatography and in vitro assay to develop predictive GA-MLR model for use in drug-property prediction among anti-depressant drug candidates. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Rodríguez-Lavado J, Alarcón-Espósito J, Mallea M, Lorente A. A new paradigm shift in antidepressant therapy? From dual-action to multitarget-directed ligands. Curr Med Chem 2022; 29:4896-4922. [PMID: 35301942 DOI: 10.2174/0929867329666220317121551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/10/2022] [Accepted: 01/15/2022] [Indexed: 11/22/2022]
Abstract
Major Depressive Disorder is a chronic, recurring, and potentially fatal disease affecting up to 20% of the global population. Since the monoamine hypothesis was proposed more than 60 years ago, only a few relevant advances have been achieved, with very little disease course changing, from a pharmacological perspective. Moreover, since negative efficacy studies with novel molecules are frequent, many pharmaceutical companies have put new studies on hold. Fortunately, relevant clinical studies are currently being performed, and extensive striving is being developed by universities, research centers, and other public and private institutions. Depression is no longer considered a simple disease but a multifactorial one. New research fields are emerging in what could be a paradigm shift: the multitarget approach beyond monoamines. In this review, we summarize the present and the past of antidepressant drug discovery, with the aim to shed some light on the current state of the art in clinical and preclinical advances to face this increasingly devastating disease.
Collapse
Affiliation(s)
- Julio Rodríguez-Lavado
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Química y Ciencias Farmacéuticas, Universidad de Chile, Casilla 233, Santiago, Chile
| | - Jazmín Alarcón-Espósito
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Química y Ciencias Farmacéuticas, Universidad de Chile, Casilla 233, Santiago, Chile
| | - Michael Mallea
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Química y Ciencias Farmacéuticas, Universidad de Chile, Casilla 233, Santiago, Chile
| | - Alejandro Lorente
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Química y Ciencias Farmacéuticas, Universidad de Chile, Casilla 233, Santiago, Chile
| |
Collapse
|
9
|
Krasavin M, Grintsevich S, Sapegin A, Duszyńska B, Bojarski AJ. An Attempt to Achieve Hydrated Imidazoline Ring Expansion (HIRE) of Diarene-Fused [1,4]Diazepinones Delivers Selective Dopamine D2 Receptor Ligands. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1649-5317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AbstractAttempts to extend the hydrated imidazoline ring expansion (HIRE) strategy to a series of diarene-fused [1,4]diazepinones (earlier applied successfully to bis-pyrido substrate nevirapine) did not result in ring expansion but, rather, led to 2-aminoethyl side chain expulsion. This seeming setback (setting the limitations to the HIRE methodology substrate scope) led to the discovery of selective dopamine D2 ligands with elements of structure–activity relationships.
Collapse
Affiliation(s)
- Mikhail Krasavin
- Saint Petersburg State University
- Immanuel Kant Baltic Federal University
| | | | | | - Beata Duszyńska
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences
| | - Andrzej J. Bojarski
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences
| |
Collapse
|
10
|
Amani P, Habibpour R, Karami L, Hofmann A. Docking Screens of Noncovalent Interaction Motifs of the Human Subtype-D2 Receptor-75 Schizophrenia Antipsychotic Complexes with Physicochemical Appraisal of Antipsychotics. ACS Chem Neurosci 2021; 12:2218-2232. [PMID: 34061513 DOI: 10.1021/acschemneuro.1c00229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Chemoinformatics appraisal and molecular docking were employed to investigate 225 complexes of 75 schizophrenia antipsychotics with the dopamine receptor subtypes D2R, D3R, and D4R. Considering the effective noncovalent interactions in the subtype-D2 receptor selectivity of antipsychotics, this study evaluated the possible physicochemical properties of ligands underlying the design of safer and more effective antipsychotics. The pan-assay interference compounds (PAINs) include about 25% of typical antipsychotics and 5% of atypicals. Popular antipsychotics like haloperidol, clozapine, risperidone, and aripiprazole are not PAINs. They have stronger interactions with D2R and D4R, but their interactions with D3R are slightly weaker, which is similar to the behavior of dopamine. In contrast to typical antipsychotics, atypical antipsychotics exhibit more noncovalent interactions with D4R than with D2R. These results suggest that selectivity to D2R and D4R comes from the synergy between hydrophobic and hydrogen-bonding interactions through their concomitant occurrence in the form of a hydrogen-bonding site adorned with hydrophobic contacts in antipsychotic-receptor complexes. All the antipsychotics had more synergic interactions with D2R and D4R in comparison with D3R. The atypical antipsychotics made a good distinction between the subtype D2 receptors with high selectivity to D4R. Among the popular antipsychotics, haloperidol, clozapine, and risperidone have hydrophobic-hydrogen-bonding synergy with D4R, while aripiprazole profits with D2R. The most important residue participating in the synergic interactions was threonine for D2R and cysteine for D4R. This work could be useful in informing and guiding future drug discovery and development studies aimed at receptor-specific antipsychotics.
Collapse
Affiliation(s)
- Parisa Amani
- Department of Chemical Technology, Iranian Research Organization for Science and Technology, Tehran 3313193685, Iran
| | - Razieh Habibpour
- Department of Chemical Technology, Iranian Research Organization for Science and Technology, Tehran 3313193685, Iran
| | - Leila Karami
- Department of Cell and Molecular Biology, Kharazmi University, Tehran 1571914911, Iran
| | - Andreas Hofmann
- Griffith Institute for Drug Discovery, Griffith University, Nathan 4111, Australia
- Department of Veterinary Biosciences, The University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
11
|
Synthesis of Novel Pyrido[1,2- c]pyrimidine Derivatives with 6-Fluoro-3-(4-piperidynyl)-1,2-benzisoxazole Moiety as Potential SSRI and 5-HT 1A Receptor Ligands. Int J Mol Sci 2021; 22:ijms22052329. [PMID: 33652672 PMCID: PMC7956643 DOI: 10.3390/ijms22052329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 11/17/2022] Open
Abstract
Two series of novel 4-aryl-2H-pyrido[1,2-c]pyrimidine (6a–i) and 4-aryl-5,6,7,8-tetrahydropyrido[1,2-c]pyrimidine (7a–i) derivatives were synthesized. The chemical structures of the new compounds were confirmed by 1H and 13C NMR spectroscopy and ESI-HRMS spectrometry. The affinities of all compounds for the 5-HT1A receptor and serotonin transporter protein (SERT) were determined by in vitro radioligand binding assays. The test compounds demonstrated very high binding affinities for the 5-HT1A receptor of all derivatives in the series (6a–i and 7a–i) and generally low binding affinities for the SERT protein, with the exception of compounds 6a and 7g. Extended affinity tests for the receptors D2, 5-HT2A, 5-HT6 and 5-HT7 were conducted with regard to selected compounds (6a, 7g, 6d and 7i). All four compounds demonstrated very high affinities for the D2 and 5-HT2A receptors. Compounds 6a and 7g also had high affinities for 5-HT7, while 6d and 7i held moderate affinities for this receptor. Compounds 6a and 7g were also tested in vivo to identify their functional activity profiles with regard to the 5-HT1A receptor, with 6a demonstrating the activity profile of a presynaptic agonist. Metabolic stability tests were also conducted for 6a and 6d.
Collapse
|
12
|
Ulenberg S, Belka M, Georgiev P, Ślifirski G, Król M, Herold F, Bączek T. The influence of phase II enzymes on in vitro half-life of pirydo[1,2-c]pirymidine derivatives as structural analogues of arylpiperazine. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Ulenberg S, Bączek T. Metabolic stability studies of lead compounds supported by separation techniques and chemometrics analysis. J Sep Sci 2020; 44:373-386. [PMID: 33006800 DOI: 10.1002/jssc.202000831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022]
Abstract
With metabolism being one of the main routes of drug elimination from the body (accounting for removal of around 75% of known drugs), it is crucial to understand and study metabolic stability of drug candidates. Metabolically unstable compounds are uncomfortable to administer (requiring repetitive dosage during therapy), while overly stable drugs increase risk of adverse drug reactions. Additionally, biotransformation reactions can lead to formation of toxic or pharmacologically active metabolites (either less-active than parent drug, or even with different action). There were numerous approaches in estimating metabolic stability, including in vitro, in vivo, in silico, and high-throughput screening to name a few. This review aims at describing separation techniques used in in vitro metabolic stability estimation, as well as chemometric techniques allowing for creation of predictive models which enable high-throughput screening approach for estimation of metabolic stability. With a very low rate of drug approval, it is important to understand in silico methods that aim at supporting classical in vitro approach. Predictive models that allow assessment of certain biological properties of drug candidates allow for cutting not only cost, but also time required to synthesize compounds predicted to be unstable or inactive by in silico models.
Collapse
Affiliation(s)
- Szymon Ulenberg
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
14
|
Synthesis and biological evaluation of new multi-target 3-(1H-indol-3-yl)pyrrolidine-2,5-dione derivatives with potential antidepressant effect. Eur J Med Chem 2019; 183:111736. [DOI: 10.1016/j.ejmech.2019.111736] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/31/2022]
|
15
|
Ślifirski G, Król M, Kleps J, Podsadni P, Belka M, Bączek T, Siwek A, Stachowicz K, Szewczyk B, Nowak G, Bojarski A, Kozioł AE, Turło J, Herold F. Synthesis of new 5,6,7,8-tetrahydropyrido[1,2-c]pyrimidine derivatives with rigidized tryptamine moiety as potential SSRI and 5-HT 1A receptor ligands. Eur J Med Chem 2019; 180:383-397. [PMID: 31325785 DOI: 10.1016/j.ejmech.2019.07.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 01/16/2023]
Abstract
Extended studies in the 4-aryl-pyrido[1,2-c]pyrimidine group resulted in 27 new compounds (10.1-10.27), 5,6,7,8-tetrahydropyrido[1,2-c]pyrimidine derivatives. In vitro tests (RBA) were carried out for 10.1-10.27 compounds in order to determine their affinity to 5-HT1A receptor and SERT protein. 10.1-10.3, 10.6, 10.7, 10.16 and 10.27 compounds had high binding ability to both molecular targets (5-HT1A Ki = 8-87 nM; SERT Ki = 8-52 nM). For these compounds (10.1-10.3, 10.6, 10.7, 10.16, 10.27) further in vitro, in vivo and metabolic stability tests were performed. In vitro studies in the extended receptor profile (D2, 5-HT2A, 5-HT6 and 5-HT7) showed their selectivity towards 5-HT1A receptor and SERT protein. In vivo tests revealed that compounds 10.7 and 10.16 had the properties of presynaptic antagonists of the 5-HT1A receptor. The redesign of the 2H-pyrido[1,2-c]pyrimidine residue present in the terminal part towards 5,6,7,8-tetrahydropyrido[1,2-c]pyrimidine resulted in the improved metabolic stability and enhanced affinity to both molecular targets (5-HT1A-R and SERT) compared to the precursors.
Collapse
Affiliation(s)
- Grzegorz Ślifirski
- Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, 1, Banacha Street, 02-097, Warszawa, Poland
| | - Marek Król
- Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, 1, Banacha Street, 02-097, Warszawa, Poland.
| | - Jerzy Kleps
- Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, 1, Banacha Street, 02-097, Warszawa, Poland
| | - Piotr Podsadni
- Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, 1, Banacha Street, 02-097, Warszawa, Poland
| | - Mariusz Belka
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, 107, J. Hallera Street, 80-416, Gdańsk, Poland
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, 107, J. Hallera Street, 80-416, Gdańsk, Poland
| | - Agata Siwek
- Institute of Pharmacology, Polish Academy of Sciences, 12, Smętna Street, 31-343, Kraków, Poland
| | - Katarzyna Stachowicz
- Institute of Pharmacology, Polish Academy of Sciences, 12, Smętna Street, 31-343, Kraków, Poland
| | - Bernadeta Szewczyk
- Institute of Pharmacology, Polish Academy of Sciences, 12, Smętna Street, 31-343, Kraków, Poland
| | - Gabriel Nowak
- Institute of Pharmacology, Polish Academy of Sciences, 12, Smętna Street, 31-343, Kraków, Poland; Chair of Pharmacobiology, Jagiellonian University Medical College, 9, Medyczna Street, 30-688, Kraków, Poland
| | - Andrzej Bojarski
- Institute of Pharmacology, Polish Academy of Sciences, 12, Smętna Street, 31-343, Kraków, Poland
| | - Anna E Kozioł
- Faculty of Chemistry, Maria Curie-Skłodowska University, 3, M. Curie-Skłodowskiej Sq., 20-031, Lublin, Poland
| | - Jadwiga Turło
- Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, 1, Banacha Street, 02-097, Warszawa, Poland
| | - Franciszek Herold
- Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, 1, Banacha Street, 02-097, Warszawa, Poland
| |
Collapse
|