1
|
Andrade JCO, do Vale TM, Gomes RLM, Forezi LDSM, de Souza MCBV, Batalha PN, Boechat FDCS. Exploring 4-quinolone-3-carboxamide derivatives: A versatile framework for emerging biological applications. Bioorg Chem 2025; 157:108240. [PMID: 39923393 DOI: 10.1016/j.bioorg.2025.108240] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/11/2025] [Accepted: 02/02/2025] [Indexed: 02/11/2025]
Abstract
4-Quinolones are a pivotal class of compounds derived from the quinoline core, recognized for their broad therapeutic applications. Originating from the synthesis of chloroquine, their discovery led to nalidixic acid, the first quinolone analog to exhibit antibacterial activity, catalyzing the development of fluoroquinolones. Beyond their role as antibiotics, 4-quinolone derivatives have emerged as versatile scaffolds with demonstrated antitumor, antiviral, and antiparasitic activities, among others. Concurrently, the carboxamide functional group has gained prominence in medicinal chemistry due to its structural versatility and bioisosteric potential. Its unique properties, such as conformational stability and dual hydrogen bond capabilities, enable diverse pharmacodynamic interactions. The combination of these two structural fragments has proven to be a powerful tool for the discovery of new bioactive prototypes. This review consolidates advancements in the exploration of 4-quinolone-3-carboxamide derivatives, emphasizing their multifaceted biological activities and the innovative strategies driving their optimization. Key highlights include their potential as kinase inhibitors, antiviral agents, and anticancer therapeutics. By synthesizing insights from recent studies, this review underscores the relevance of this framework in addressing contemporary medicinal challenges.
Collapse
Affiliation(s)
- Joice C O Andrade
- Instituto de Química, Universidade Federal Fluminense, Niterói 24020-150 Brazil.
| | - Thiago M do Vale
- Instituto de Química, Universidade Federal Fluminense, Niterói 24020-150 Brazil
| | - Rodrigo L M Gomes
- Instituto de Química, Universidade Federal Fluminense, Niterói 24020-150 Brazil
| | - Luana da S M Forezi
- Instituto de Química, Universidade Federal Fluminense, Niterói 24020-150 Brazil
| | | | - Pedro N Batalha
- Instituto de Química, Universidade Federal Fluminense, Niterói 24020-150 Brazil.
| | | |
Collapse
|
2
|
Zhuo L, Guo M, Zhang S, Wu J, Wang M, Shen Y, Peng X, Wang Z, Jiang W, Huang W. Structure-activity relationship study of 1,6-naphthyridinone derivatives as selective type II AXL inhibitors with potent antitumor efficacy. Eur J Med Chem 2024; 265:116090. [PMID: 38169272 DOI: 10.1016/j.ejmech.2023.116090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
The role of AXL in various oncogenic processes has made it an attractive target for cancer therapy. Currently, kinase selectivity profiles, especially circumventing MET inhibition, remain a scientific issue of great interest in the discovery of selective type II AXL inhibitors. Starting from a dual MET/AXL-targeted lead structure from our previous work, we optimized a 1,6-naphthyridinone series using molecular modeling-assisted compound design to improve AXL potency and selectivity over MET, resulting in the potent and selective type II AXL-targeted compound 25c. This showed excellent AXL inhibitory activity (IC50 = 1.1 nM) and 343-fold selectivity over the highly homologous kinase MET in biochemical assays. Moreover, compound 25c significantly inhibited AXL-driven cell proliferation, dose-dependently suppressed 4T1 cell migration and invasion, and induced apoptosis. Compound 25c also showed noticeable antitumor efficacy in a BaF3/TEL-AXL xenograft model at well-tolerated doses. Overall, this study presented a potent and selective type II AXL-targeted lead compound for further drug discovery.
Collapse
Affiliation(s)
- Linsheng Zhuo
- Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Mengqin Guo
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Siyi Zhang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Junbo Wu
- Department of Colorectal Surgery, Hengyang Central Hospital, Hengyang, Hunan, 421001, China
| | - Mingshu Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yang Shen
- Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xue Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhen Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Weifan Jiang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Wei Huang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
3
|
Azzman N, Anwar S, Syazani Mohamed WA, Ahemad N. Quinolone Derivatives as Anticancer Agents: Importance in Medicinal Chemistry. Curr Top Med Chem 2024; 24:1134-1157. [PMID: 38591202 DOI: 10.2174/0115680266300736240403075307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024]
Abstract
Quinolone is a heterocyclic compound containing carbonyl at the C-2 or C-4 positions with nitrogen at the C-1 position. The scaffold was first identified for its antibacterial properties, and the derivatives were known to possess many pharmacological activities, including anticancer. In this review, the quinolin-2(H)-one and quinolin-4(H)-one derivatives were identified to inhibit several various proteins and enzymes involved in cancer cell growth, such as topoisomerase, microtubules, protein kinases, phosphoinositide 3-kinases (PI3K) and histone deacetylase (HDAC). Hybrids of quinolone with curcumin or chalcone, 2-phenylpyrroloquinolin-4-one and 4-quinolone derivatives have demonstrated strong potency against cancer cell lines. Additionally, quinolones have been explored as inhibitors of protein kinases, including EGFR and VEGFR. Therefore, this review aims to consolidate the medicinal chemistry of quinolone derivatives in the pipeline and discuss their similarities in terms of their pharmacokinetic profiles and potential target sites to provide an understanding of the structural requirements of anticancer quinolones.
Collapse
Affiliation(s)
- Nursyuhada Azzman
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Faculty of Pharmacy, Universiti Teknologi MARA, Cawangan Pulau Pinang Kampus Bertam, 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Sirajudheen Anwar
- Department of Pharmacology, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Wan Ahmad Syazani Mohamed
- Nutrition Unit, Nutrition, Metabolism and Cardiovascular Research Centre (NMCRC), Level 3, Block C, Institute for Medical Research (IMR), National Institutes of Health (NIH) Complex, Ministry of Health Malaysia (MOH), No.1, Jalan Setia Murni U13/52, Seksyen U13, Setia Alam, 40170 Shah Alam, Selangor, Malaysia
| | - Nafees Ahemad
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
4
|
Fang F, Dai Y, Wang H, Ji Y, Liang X, Peng X, Li J, Zhao Y, Li C, Wang D, Li Y, Zhang D, Zhang D, Geng M, Liu H, Ai J, Zhou Y. Structure-based drug discovery of novel fused-pyrazolone carboxamide derivatives as potent and selective AXL inhibitors. Acta Pharm Sin B 2023; 13:4918-4933. [PMID: 38045061 PMCID: PMC10692477 DOI: 10.1016/j.apsb.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/02/2023] [Accepted: 09/25/2023] [Indexed: 12/05/2023] Open
Abstract
As a novel and promising antitumor target, AXL plays an important role in tumor growth, metastasis, immunosuppression and drug resistance of various malignancies, which has attracted extensive research interest in recent years. In this study, by employing the structure-based drug design and bioisosterism strategies, we designed and synthesized in total 54 novel AXL inhibitors featuring a fused-pyrazolone carboxamide scaffold, of which up to 20 compounds exhibited excellent AXL kinase and BaF3/TEL-AXL cell viability inhibitions. Notably, compound 59 showed a desirable AXL kinase inhibitory activity (IC50: 3.5 nmol/L) as well as good kinase selectivity, and it effectively blocked the cellular AXL signaling. In turn, compound 59 could potently inhibit BaF3/TEL-AXL cell viability (IC50: 1.5 nmol/L) and significantly suppress GAS6/AXL-mediated cancer cell invasion, migration and wound healing at the nanomolar level. More importantly, compound 59 oral administration showed good pharmacokinetic profile and in vivo antitumor efficiency, in which we observed significant AXL phosphorylation suppression, and its antitumor efficacy at 20 mg/kg (qd) was comparable to that of BGB324 at 50 mg/kg (bid), the most advanced AXL inhibitor. Taken together, this work provided a valuable lead compound as a potential AXL inhibitor for the further antitumor drug development.
Collapse
Affiliation(s)
| | - Yang Dai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hao Wang
- Drug Discovery & Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinchun Ji
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xuewu Liang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jiyuan Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yangrong Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chunpu Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Danyi Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yazhou Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Dong Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Dan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Meiyu Geng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Jing Ai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Yu Zhou
- Drug Discovery & Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| |
Collapse
|
5
|
Nan X, Wang QX, Xing SJ, Liang ZG. Design, synthesis, and biological evaluation of thiazole/thiadiazole carboxamide scaffold-based derivatives as potential c-Met kinase inhibitors for cancer treatment. J Enzyme Inhib Med Chem 2023; 38:2247183. [PMID: 37642355 PMCID: PMC10467532 DOI: 10.1080/14756366.2023.2247183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023] Open
Abstract
As part of our continuous efforts to discover novel c-Met inhibitors as antitumor agents, four series of thiazole/thiadiazole carboxamide-derived analogues were designed, synthesised, and evaluated for the in vitro activity against c-Met and four human cancer cell lines. After five cycles of optimisation on structure-activity relationship, compound 51am was found to be the most promising inhibitor in both biochemical and cellular assays. Moreover, 51am exhibited potency against several c-Met mutants. Mechanistically, 51am not only induced cell cycle arrest and apoptosis in MKN-45 cells but also inhibited c-Met phosphorylation in the cell and cell-free systems. It also exhibited a good pharmacokinetic profile in BALB/c mice. Furthermore, the binding mode of 51am with both c-Met and VEGFR-2 provided novel insights for the discovery of selective c-Met inhibitors. Taken together, these results indicate that 51am could be an antitumor candidate meriting further development.
Collapse
Affiliation(s)
- Xiang Nan
- Department of Stomatology, Shenzhen Second People’s Hospital, Shenzhen, China
- School of Biomedical Engineering, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen University Medical School, Shenzhen, China
| | - Qiu-Xu Wang
- Department of Stomatology, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Shao-Jun Xing
- School of Biomedical Engineering, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen University Medical School, Shenzhen, China
| | - Zhi-Gang Liang
- Department of Stomatology, Shenzhen Second People’s Hospital, Shenzhen, China
| |
Collapse
|
6
|
Singh Y, Bhatia N, Biharee A, Kulkarni S, Thareja S, Monga V. Developing our knowledge of the quinolone scaffold and its value to anticancer drug design. Expert Opin Drug Discov 2023; 18:1151-1167. [PMID: 37592843 DOI: 10.1080/17460441.2023.2246366] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023]
Abstract
INTRODUCTION The quinolone scaffold is a bicyclic benzene-pyridinic ring scaffold with nitrogen at the first position and a carbonyl group at the second or fourth position. It is endowed with a diverse spectrum of pharmacological activities, including antitumor activity, and has progressed into various development phases of clinical trials for their target-specific anticancer activity. AREAS COVERED The present review covers both classes of quinolones, i.e. quinolin-2(H)-one and quinolin-4(H)-one as anticancer agents, along with their possible mode of binding. Furthermore, their structure-activity relationships, molecular mechanisms, and pharmacokinetic properties are also covered to provide insight into their structural requirements for their rational design as anticancer agents. EXPERT OPINION Synthetic feasibility and ease of derivatization at multiple positions, has allowed medicinal chemists to explore quinolones and their chemical diversity to discover newer anticancer agents. The presence of both hydrogen bond donor (-NH) and acceptor (-C=O) functionality in the basic scaffold at two different positions, has broadened the research scope. In particular, substitution at the -NH functionality of the quinolone motif has provided ample space for suitable functionalization and appropriate substitution at the quinolone's third, sixth, and seventh carbons, resulting in selective anticancer agents binding specifically with various drug targets.
Collapse
Affiliation(s)
- Yogesh Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Neha Bhatia
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Avadh Biharee
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Swanand Kulkarni
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| |
Collapse
|
7
|
Gao Y, Li Y, Cao H, Jia H, Wang D, Ren C, Wang Z, Yang C, Liu J. Hypertoxic self-assembled peptide with dual functions of glutathione depletion and biosynthesis inhibition for selective tumor ferroptosis and pyroptosis. J Nanobiotechnology 2022; 20:390. [PMID: 36045424 PMCID: PMC9429723 DOI: 10.1186/s12951-022-01604-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 08/17/2022] [Indexed: 11/12/2022] Open
Abstract
Abundant glutathione (GSH) is a biological characteristic of lots of tumor cells. A growing number of studies are utilizing GSH depletion as an effective adjuvant therapy for tumor. However, due to the compensatory effect of intracellular GSH biosynthesis, GSH is hard to be completely exhausted and the strategy of GSH depletion remains challenging. Herein, we report an l-buthionine-sulfoximine (BSO)-based hypertoxic self-assembled peptide derivative (NSBSO) with dual functions of GSH depletion and biosynthesis inhibition for selective tumor ferroptosis and pyroptosis. The NSBSO consists of a hydrophobic self-assembled peptide motif and a hydrophilic peptide derivative containing BSO that inhibits the synthesis of GSH. NSBSO was cleaved by GSH and thus experienced a morphological transformation from nanoparticles to nanofibers. NSBSO showed GSH-dependent cytotoxicity and depletion of intracellular GSH. In 4T1 cells with medium GSH level, it depleted intracellular GSH and inactivated GSH peroxidase 4 (GPX4) and thus induced efficient ferroptosis. While in B16 cells with high GSH level, it exhausted GSH and triggered indirect increase of intracellular ROS and activation of Caspase 3 and gasdermin E, resulting in severe pyroptosis. These findings demonstrate that GSH depletion- and biosynthesis inhibition-induced ferroptosis and pyroptosis strategy would provide insights in designing GSH-exhausted medicines.
Collapse
Affiliation(s)
- Yang Gao
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Yun Li
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Hongmei Cao
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Haixue Jia
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Dianyu Wang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Chunhua Ren
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Zhongyan Wang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Cuihong Yang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
| | - Jianfeng Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
| |
Collapse
|
8
|
Wojtkowiak K, Jezierska A, Panek JJ. Revealing Intra- and Intermolecular Interactions Determining Physico-Chemical Features of Selected Quinolone Carboxylic Acid Derivatives. Molecules 2022; 27:2299. [PMID: 35408698 PMCID: PMC9000753 DOI: 10.3390/molecules27072299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
The intra- and intermolecular interactions of selected quinolone carboxylic acid derivatives were studied in monomers, dimers and crystals. The investigated compounds are well-recognized as medicines or as bases for further studies in drug design. We employed density functional theory (DFT) in its classical formulation to develop gas-phase and solvent reaction field (PCM) models describing geometric, energetic and electronic structure parameters for monomers and dimers. The electronic structure was investigated based on the atoms in molecules (AIM) and natural bond orbital (NBO) theories. Special attention was devoted to the intramolecular hydrogen bonds (HB) present in the investigated compounds. The characterization of energy components was performed using symmetry-adapted perturbation theory (SAPT). Finally, the time-evolution methods of Car-Parrinello molecular dynamics (CPMD) and path integral molecular dynamics (PIMD) were employed to describe the hydrogen bond dynamics as well as the spectroscopic signatures. The vibrational features of the O-H stretching were studied using Fourier transformation of the autocorrelation function of atomic velocity. The inclusion of quantum nuclear effects provided an accurate depiction of the bridged proton delocalization. The CPMD and PIMD simulations were carried out in the gas and crystalline phases. It was found that the polar environment enhances the strength of the intramolecular hydrogen bonds. The SAPT analysis revealed that the dispersive forces are decisive factors in the intermolecular interactions. In the electronic ground state, the proton-transfer phenomena are not favourable. The CPMD results showed generally that the bridged proton is localized at the donor side, with possible proton-sharing events in the solid-phase simulation of stronger hydrogen bridges. However, the PIMD enabled the quantitative estimation of the quantum effects inclusion-the proton position was moved towards the bridge midpoint, but no qualitative changes were detected. It was found that the interatomic distance between the donor and acceptor atoms was shortened and that the bridged proton was strongly delocalized.
Collapse
Affiliation(s)
| | - Aneta Jezierska
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland;
| | - Jarosław J. Panek
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland;
| |
Collapse
|
9
|
Bhojwani HR, Joshi UJ. Homology Modelling, Docking-based Virtual Screening, ADME Properties, and Molecular Dynamics Simulation for Identification of Probable Type II Inhibitors of AXL Kinase. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180818666211004102043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
AXL kinase is an important member of the TAM family for kinases which is
involved in most cancers. Considering its role in different cancers due to its pro-tumorigenic effects and its
involvement in the resistance, it has gained importance recently. Majority of research carried out is on Type I
inhibitors and limited studies have been carried out for Type II inhibitors. Taking this into consideration, we
have attempted to build Homology models to identify the Type II inhibitors for the AXL kinase.
Methods:
Homology Models for DFG-out C-helix-in/out state were developed using SWISS Model,
PRIMO, and Prime. These models were validated by different methods and further evaluated for stability
by molecular dynamics simulation using Desmond software. Selected models PED1-EB and PEDI1-EB
were used for the docking-based virtual screening of four compound libraries using Glide software. The
hits identified were subjected to interaction analysis and shortlisted compounds were subjected to Prime
MM-GBSA studies for energy calculation. These compounds were also docked in the DFG-in state to
check for binding and elimination of any compounds that may not be Type II inhibitors. The Prime energies
were calculated for these complexes as well and some compounds were eliminated. ADMET studies
were carried out using Qikprop. Some selected compounds were subjected to molecular dynamics simulation
using Desmond for evaluating the stability of the complexes.
Results:
Out of 78 models inclusive of both DFG-out C-helix-in and DFG-out C-helix-out, 5 models were
identified after different types of evaluation as well as validation studies. 1 model representing each type
(PED1-EB and PEDI1-EB) was selected for the screening studies. The screening studies resulted in the
identification of 29 compounds from the screen on PED1-EB and 10 compounds from the screen on
PEDI1-EB. Hydrogen bonding interactions with Pro621, Met623, and Asp690 were observed for these
compounds primarily. In some compounds, hydrogen bonding with Leu542, Glu544, Lys567, and
Asn677 as well as pi-pi stacking interactions with either Phe622 or Phe691 were also seen. 4 compounds
identified from PED1-EB screen were subjected to molecular dynamics simulation and their interactions
were found to be consistent during the simulation. 2 compounds identified from PEDI1-EB screen were
also subjected to the simulation studies, however, their interactions with Asp690 were not observed for a
significant time and in both cases differed from the docked pose.
Conclusion:
Multiple models of DFG-out conformations of AXL kinase were built, validated and used
for virtual screening. Different compounds were identified in the virtual screening, which may possibly
act as Type II inhibitors for AXL kinase. Some more experimental studies can be done to validate these
findings in future. This study will play a guiding role in the further development of the newer Type II
inhibitors of the AXL kinase for the probable treatment of cancer.
Collapse
Affiliation(s)
- Heena R. Bhojwani
- Department of Pharmaceutical Chemistry, Principal K.M. Kundnani College of Pharmacy, Colaba, Cuffe Parade,
Mumbai 400005, India
| | - Urmila J. Joshi
- Department of Pharmaceutical Chemistry, Principal K.M. Kundnani College of Pharmacy, Colaba, Cuffe Parade,
Mumbai 400005, India
| |
Collapse
|
10
|
Zhang Z, Liu Y, Wang S, Zhang C, Lin J. Efficient Synthesis of 7
H
‐Chromeno[3,2‐c]quinolin‐5‐ium Salts and Quinolin‐4‐ones through Acid‐Promoted Cascade Reaction of 3‐Formylchromones and Anilines. ChemistrySelect 2022. [DOI: 10.1002/slct.202104611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhong‐Wei Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education Yunnan Provincial Center for Research & Development of Natural Products School of Chemical Science and Technology Yunnan University Kunming 650091 P. R. China
| | - Yue‐Ying Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education Yunnan Provincial Center for Research & Development of Natural Products School of Chemical Science and Technology Yunnan University Kunming 650091 P. R. China
| | - Si‐Yu Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education Yunnan Provincial Center for Research & Development of Natural Products School of Chemical Science and Technology Yunnan University Kunming 650091 P. R. China
| | - Cong‐Hai Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education Yunnan Provincial Center for Research & Development of Natural Products School of Chemical Science and Technology Yunnan University Kunming 650091 P. R. China
| | - Jun Lin
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education Yunnan Provincial Center for Research & Development of Natural Products School of Chemical Science and Technology Yunnan University Kunming 650091 P. R. China
| |
Collapse
|
11
|
Fragment-based lead discovery of indazole-based compounds as AXL kinase inhibitors. Bioorg Med Chem 2021; 49:116437. [PMID: 34600239 DOI: 10.1016/j.bmc.2021.116437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/16/2021] [Accepted: 09/19/2021] [Indexed: 11/22/2022]
Abstract
AXL is a member of the TAM (TYRO3, AXL, MER) subfamily of receptor tyrosine kinases. It is upregulated in a variety of cancers and its overexpression is associated with poor disease prognosis and acquired drug resistance. Utilizing a fragment-based lead discovery approach, a new indazole-based AXL inhibitor was obtained. The indazole fragment hit 11, identified through a high concentration biochemical screen, was expeditiously improved to fragment 24 by screening our in-house expanded library of fragments (ELF) collection. Subsequent fragment optimization guided by docking studies provided potent inhibitor 54 with moderate exposure levels in mice. X-ray crystal structure of analog 50 complexed with the I650M mutated kinase domain of Mer revealed the key binding interactions for the scaffold. The good potency coupled with reasonable kinase selectivity, moderate in vivo exposure levels, and availability of structural information for the series makes it a suitable starting point for further optimization efforts.
Collapse
|
12
|
Zhuo LS, Wu FX, Wang MS, Xu HC, Yang FP, Tian YG, Zhao XE, Ming ZH, Zhu XL, Hao GF, Huang W. Structure-activity relationship study of novel quinazoline-based 1,6-naphthyridinones as MET inhibitors with potent antitumor efficacy. Eur J Med Chem 2020; 208:112785. [PMID: 32898795 DOI: 10.1016/j.ejmech.2020.112785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/03/2020] [Accepted: 08/19/2020] [Indexed: 01/25/2023]
Abstract
As a privileged scaffold, the quinazoline ring is widely used in the development of EGFR inhibitors, while few quinazoline-based MET inhibitors are reported. In our ongoing efforts to develop new MET-targeted anticancer drug candidates, a series of quinazoline-based 1,6-naphthyridinone derivatives were designed, synthesized, and evaluated for their biological activities. The preliminary SARs studies indicate that the quinazoline scaffold was also acceptable for the block A of class II MET inhibitors. The further pharmacokinetic studies led to the identification of the most promising compound 22a with favorable in vitro potency (MET, IC50 = 9.0 nM), human microsomal metabolic stability (t1/2 = 621.2 min) and oral bioavailability (F = 42%). Moreover, 22a displayed good in vivo antitumor efficacy (IR of 81% in 75 mg/kg) in MET-positive human glioblastoma U-87 MG xenograft model. These positive results indicated that 22a is a potential new MET-targeted antitumor drug lead, which is worthy of further development.
Collapse
Affiliation(s)
- Lin-Sheng Zhuo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Feng-Xu Wu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Ming-Shu Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Hong-Chuang Xu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Fan-Peng Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Yan-Guang Tian
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Xing-E Zhao
- Jiangsu Key Laboratory of Molecular Targeted Antitumor Drug Research, Jiangsu Simcere Pharmaceutical Co. Ltd, Nanjing, 210042, PR China
| | - Zhi-Hui Ming
- Jiangsu Key Laboratory of Molecular Targeted Antitumor Drug Research, Jiangsu Simcere Pharmaceutical Co. Ltd, Nanjing, 210042, PR China
| | - Xiao-Lei Zhu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Ge-Fei Hao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China.
| | - Wei Huang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China.
| |
Collapse
|
13
|
Wang YH, Chen YH, Shen WH. Amikacin Suppresses Human Breast Cancer Cell MDA-MB-231 Migration and Invasion. TOXICS 2020; 8:toxics8040108. [PMID: 33233497 PMCID: PMC7712503 DOI: 10.3390/toxics8040108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023]
Abstract
(1) Background: Amikacin is an aminoglycoside antibiotic used for treating gram-negative bacterial infections in cancer patients. In this study, our aims are to investigate the migratory inhibition effects of amikacin in human MDA-MB-231 cells. (2) Methods: We used a wound-healing assay, trans-well analysis, Western blotting, immunostaining and siRNA knockdown approaches to investigate how amikacin influenced MDA-MB-231 cell migration and invasion. (3) Results: Wound healing showed that the MDA-MB-231 cell migration rates decreased to 44.4% in the presence of amikacin. Trans-well analysis showed that amikacin treatment led to invasion inhibition. Western blotting demonstrated that amikacin induced thioredoxin-interacting protein (TXNIP) up-regulation. TXNIP was knocked down using siRNA in MDA-MB-231 cell. Using immunostaining analysis, we found that inhibition of TXNIP expression led to MDA-MB-231 pseudopodia extension; however, amikacin treatment attenuated the cell extension formation. (4) Conclusions: We observed inhibition of migration and invasion in MDA-MB-231 cells treated with amikacin. This suggests inhibition might be mediated by up-regulation of TXNIP.
Collapse
Affiliation(s)
- Yun-Hsin Wang
- Division of Basic Research, Koo Foundation Sun Yat-Sen Cancer Center, Taipei 112, Taiwan;
- Department of Chemistry, Tamkang University, Tamsui, New Taipei City 251, Taiwan;
- Correspondence: ; Tel.: +886-2-28970011 (ext. 1468)
| | - Yau-Hung Chen
- Department of Chemistry, Tamkang University, Tamsui, New Taipei City 251, Taiwan;
| | - Wen-Hao Shen
- Division of Basic Research, Koo Foundation Sun Yat-Sen Cancer Center, Taipei 112, Taiwan;
| |
Collapse
|
14
|
Di Stasi R, De Rosa L, D'Andrea LD. Therapeutic aspects of the Axl/Gas6 molecular system. Drug Discov Today 2020; 25:2130-2148. [PMID: 33002607 DOI: 10.1016/j.drudis.2020.09.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/14/2020] [Accepted: 09/21/2020] [Indexed: 12/17/2022]
Abstract
Axl receptor tyrosine kinase (RTK) and its ligand, growth arrest-specific protein 6 (Gas6), are involved in several biological functions and participate in the development and progression of a range of malignancies and autoimmune disorders. In this review, we present this molecular system from a drug discovery perspective, highlighting its therapeutic implications and challenges that need to be addressed. We provide an update on Axl/Gas6 axis biology, exploring its role in fields ranging from angiogenesis, cancer development and metastasis, immune response and inflammation to viral infection. Finally, we summarize the molecules that have been developed to date to target the Axl/Gas6 molecular system for therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Rossella Di Stasi
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Lucia De Rosa
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Luca D D'Andrea
- Istituto di Biostrutture e Bioimmagini, CNR, Via Nizza 52, 10126 Torino, Italy.
| |
Collapse
|
15
|
Li Q, Wang X, Jiang N, Xie X, Liu N, Liu J, Shen J, Peng T. Exosome-transmitted linc00852 associated with receptor tyrosine kinase AXL dysregulates the proliferation and invasion of osteosarcoma. Cancer Med 2020; 9:6354-6366. [PMID: 32673448 PMCID: PMC7476833 DOI: 10.1002/cam4.3303] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/23/2020] [Accepted: 06/27/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Receptor tyrosine kinase AXL has been found to be highly expressed in osteosarcoma and positively associated with poor prognosis. There are tumor groups with high or low AXL expression, which had different capabilities of invading vessels and forming distal metastases. Exosome-transmitted lncRNA may be transferred intercellularly to promote tumor cells' proliferation and invasion. METHODS Exosomes were detected by electron microscopy, particle size analysis, and western blotting. High-throughput sequencing helped to find the highest differentially expressed lncRNA in AXL-associated exosomes. Clone formation, wound healing, transwell assay, and xenograft model in nude mice were performed to evaluate cells' proliferation, migration, and invasion in vitro and in vivo. Lentiviral transfection was used to up- or down-regulate the lncRNA levels in cell lines. Luciferase reporter assay and RNA FISH etchelped to indicate the molecular mechanisms. The results in the cell lines were proved in the osteosarcoma tissues with clinical analysis. RESULTS The exosomes derived from donor cells with high AXL expression could promote the proliferation and invasion and upregulate AXL expression of the receiver cells with low AXL. Linc00852 was the highest differentially expressed lncRNA in AXL-associated exosomes and was also regulated by AXL expression. Although the mechanisms of linc00852 in nucleus were unrevealed, it could upregulate AXL expression partly by competitively binding to miR-7-5p. The AXL-exosome-linc00852-AXL positive feedback loop might exist between the donor cells and the receiver cells. Clinically, linc00852 was significantly highly expressed in osteosarcoma tissues and positively associated with tumor volumes and metastases, which was also obviously related with AXL mRNA expression. CONCLUSION AXL-associated exosomal linc00852 up-regulated the proliferation, migration, and invasion of osteosarcoma cells, which would be considered as a new tumor biomarker and a special therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Qiming Li
- Department of Pathology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Xuedi Wang
- Department of Pathology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Nian Jiang
- Department of Pathology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Xianbiao Xie
- Department of Musculoskeletal Oncology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Ni Liu
- Department of Pathology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - JunFeng Liu
- Department of Pathology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Jingnan Shen
- Department of Musculoskeletal Oncology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Tingsheng Peng
- Department of Pathology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
16
|
Design, synthesis and biological evaluation of novel N-sulfonylamidine-based derivatives as c-Met inhibitors via Cu-catalyzed three-component reaction. Eur J Med Chem 2020; 200:112470. [PMID: 32505087 DOI: 10.1016/j.ejmech.2020.112470] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/09/2020] [Accepted: 05/13/2020] [Indexed: 12/28/2022]
Abstract
In our continuing efforts to develop novel c-Met inhibitors as potential anticancer candidates, a series of new N-sulfonylamidine derivatives were designed, synthesized via Cu-catalyzed multicomponent reaction (MCR) as the key step, and evaluated for their in vitro biological activities against c-Met kinase and four cancer cell lines (A549, HT-29, MKN-45 and MDA-MB-231). Most of the target compounds showed moderate to significant potency at both the enzyme-based and cell-based assay and possessed selectivity for A549 and HT-29 cancer cell lines. The preliminary SAR studies demonstrated that compound 26af (c-Met IC50 = 2.89 nM) was the most promising compound compared with the positive foretinib, which exhibited the remarkable antiproliferative activities, with IC50 values ranging from 0.28 to 0.72 μM. Mechanistic studies of 26af showed the anticancer activity was closely related to the blocking phosphorylation of c-Met, leading to cell cycle arresting at G2/M phase and apoptosis of A549 cells by a concentration-dependent manner. The promising compound 26af was further identified as a relatively selective inhibitor of c-Met kinase, which also possessed an acceptable safety profile and favorable pharmacokinetic properties in BALB/c mouse. The favorable drug-likeness of 26af suggested that N-sulfonylamidines may be used as a promising scaffold for antitumor drug development. Additionally, the docking study and molecular dynamics simulations of 26af revealed a common mode of interaction with the binding site of c-Met. These positive results indicated that compound 26af is a potential anti-cancer candidate for clinical trials, and deserves further development as a selective c-Met inhibitor.
Collapse
|
17
|
AXL as a Target in Breast Cancer Therapy. JOURNAL OF ONCOLOGY 2020; 2020:5291952. [PMID: 32148495 PMCID: PMC7042526 DOI: 10.1155/2020/5291952] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/18/2020] [Indexed: 12/21/2022]
Abstract
AXL is a receptor tyrosine kinase (RTK) that has been implicated in diverse tumor-promoting processes such as proliferation, migration, invasion, survival, and apoptosis. AXL therefore plays a role in cancer progression, and AXL has been implicated in a wide variety of malignancies from solid tumors to hematopoietic cancers where it is often associated with poor prognosis. In cancer, AXL has been shown to promote epithelial to mesenchymal transition (EMT), metastasis formation, drug resistance, and a role for AXL in modulation of the tumor microenvironment and immune response has been identified. In light of these activities multiple AXL inhibitors have been developed, and several of these have entered clinical trials in the U.S. In breast cancer, high levels of AXL expression have been observed. The role of AXL in cancer with a focus on therapeutic implications for breast cancer is discussed.
Collapse
|
18
|
Xu C, Han Y, Xu S, Wang R, Yue M, Tian Y, Li X, Zhao Y, Gong P. Design, synthesis and biological evaluation of new Axl kinase inhibitors containing 1,3,4-oxadiazole acetamide moiety as novel linker. Eur J Med Chem 2020; 186:111867. [PMID: 31757525 DOI: 10.1016/j.ejmech.2019.111867] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/31/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022]
Abstract
Using the principle of bioisosteric replacement, we present a structure-based design approach to obtain new Axl kinase inhibitors with significant activity at the kinase and cellular levels. Through a stepwise structure-activity relationships exploration, a series of 6,7-disubstituted quinoline derivatives, which contain 1,3,4-oxadiazol acetamide moiety as novel Linker, were ultimately synthesized with Axl as the primary target. Most of them exhibited moderate to excellent activity, with IC50 values ranging from 0.032 to 1.54 μM against the tested cell lines. Among them, the most promising compound 47e, as an Axl kinase inhibitor (IC50 = 10 nM), shows remarkable cytotoxicity against A549, HT-29, PC-3, MCF-7, H1975 and MDA-MB-231 cell lines. More importantly, 47e also shows a significant inhibitory effect on EGFR-TKI resistant NSCLC cell lines H1975/gefitinib. Meanwhile, this study provides a novel type of linker for Axl kinase inhibitors, namely 1,3,4-oxadiazol acetamide moiety, which is out of the scope of the "5- atoms role ".
Collapse
Affiliation(s)
- Congjun Xu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, PR China; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China.
| | - Yufei Han
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, PR China
| | - Sicong Xu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, PR China
| | - Ruxin Wang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, PR China
| | - Ming Yue
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, PR China
| | - Yu Tian
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, PR China
| | - Xiaofan Li
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, PR China
| | - Yanfang Zhao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, PR China.
| | - Ping Gong
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, PR China.
| |
Collapse
|
19
|
Cruz-López O, Temps C, Longo B, Myers SH, Franco-Montalban F, Unciti-Broceta A. Synthesis and Characterization of a Click-Assembled 18-Atom Macrocycle That Displays Selective AXL Kinase Inhibitory Activity. ACS OMEGA 2019; 4:21620-21626. [PMID: 31867559 PMCID: PMC6921642 DOI: 10.1021/acsomega.9b03525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
A novel macrocyclic construct consisting of a pyrazolopyrimidine scaffold concatenated to a benzene ring through two triazoles has been developed to investigate uncharted chemical space with bioactive potential. The 18-atom macrocycle was assembled via a double copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction between 1,3-bis(azidomethyl)benzene and a bis-propargylated pyrazolo[3,4-d]pyrimidine core. The resulting macrocycle was functionalized further into a multicyclic analog that displays selective inhibitory activity against the receptor tyrosine kinase AXL.
Collapse
Affiliation(s)
- Olga Cruz-López
- Cancer
Research UK Edinburgh Centre, Institute of Genetics and Molecular
Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K.
- Department
of Medicinal & Organic Chemistry, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Carolin Temps
- Cancer
Research UK Edinburgh Centre, Institute of Genetics and Molecular
Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K.
| | - Beatrice Longo
- Cancer
Research UK Edinburgh Centre, Institute of Genetics and Molecular
Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K.
| | - Samuel H. Myers
- Cancer
Research UK Edinburgh Centre, Institute of Genetics and Molecular
Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K.
| | - Francisco Franco-Montalban
- Department
of Medicinal & Organic Chemistry, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Asier Unciti-Broceta
- Cancer
Research UK Edinburgh Centre, Institute of Genetics and Molecular
Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K.
| |
Collapse
|
20
|
AXL receptor tyrosine kinase as a promising anti-cancer approach: functions, molecular mechanisms and clinical applications. Mol Cancer 2019; 18:153. [PMID: 31684958 PMCID: PMC6827209 DOI: 10.1186/s12943-019-1090-3] [Citation(s) in RCA: 336] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/18/2019] [Indexed: 02/08/2023] Open
Abstract
Molecular targeted therapy for cancer has been a research hotspot for decades. AXL is a member of the TAM family with the high-affinity ligand growth arrest-specific protein 6 (GAS6). The Gas6/AXL signalling pathway is associated with tumour cell growth, metastasis, invasion, epithelial-mesenchymal transition (EMT), angiogenesis, drug resistance, immune regulation and stem cell maintenance. Different therapeutic agents targeting AXL have been developed, typically including small molecule inhibitors, monoclonal antibodies (mAbs), nucleotide aptamers, soluble receptors, and several natural compounds. In this review, we first provide a comprehensive discussion of the structure, function, regulation, and signalling pathways of AXL. Then, we highlight recent strategies for targeting AXL in the treatment of cancer.AXL-targeted drugs, either as single agents or in combination with conventional chemotherapy or other small molecule inhibitors, are likely to improve the survival of many patients. However, future investigations into AXL molecular signalling networks and robust predictive biomarkers are warranted to select patients who could receive clinical benefit and to avoid potential toxicities.
Collapse
|
21
|
Recent advances in the synthetic and medicinal perspective of quinolones: A review. Bioorg Chem 2019; 92:103291. [PMID: 31561107 DOI: 10.1016/j.bioorg.2019.103291] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 12/16/2022]
Abstract
In the modern scenario, the quinolone scaffold has emerged as a very potent motif considering its clinical significance. Quinolones possess wide range of pharmacological activities such as anticancer, antibacterial, antifungal, antiprotozoal, antiviral, anti-inflammatory, carbonic anhydrase inhibitory and diuretic activity etc. The versatile synthetic approaches have been successfully applied and several of the resulted synthesized compounds exhibit fascinating biological activities in numerous fields. This has prompted to discover quinolone-based analogues among the researchers due to its great diversity in biological activities. In the past few years, various new, efficient and convenient synthetic approaches (including green chemistry and microwave-assisted synthesis) have been designed and developed to synthesize diverse quinolone-based scaffolds which represent a growing area of interest in academic and industry as well as to explore their biological activities. In this review, an attempt has been made by the authors to summarize (1) One of the most comprehensive listings of quinolone-based drugs or agents in the market or under various stages of clinical development; (2) Recent advances in the synthetic strategies for quinolone derivatives as well as their biological implications including insight of mechanistic studies. (3) Further, the biological data is correlated with structure-activity relationship studies to provide an insight into the rational design of more active agents.
Collapse
|
22
|
Sun ZG, Liu JH, Zhang JM, Qian Y. Research Progress of Axl Inhibitors. Curr Top Med Chem 2019; 19:1338-1349. [PMID: 31218961 DOI: 10.2174/1568026619666190620155613] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/24/2019] [Accepted: 04/30/2019] [Indexed: 02/07/2023]
Abstract
Axl, a Receptor Tyrosine Kinase (RTK) belonging to the TAM (Axl, Mer, Tyro3) family, participates in many signal transduction cascades after mostly being stimulated by Growth arrestspecific 6(Gas6). Axl is widely expressed in many organs, such as macrophages, endothelial cells, heart, liver and skeletal muscle. Over-expression and activation of Axl are associated with promoting chemotherapy resistance, cell proliferation, invasion and metastasis in many human cancers, such as breast, lung, and pancreatic cancers. Therefore, the research and development of Axl inhibitors is of great significance to strengthen the means of cancer treatment, especially to solve the problem of drug resistance. Axl inhibitors have attracted more and more researchers' attention in recent years. This review discusses the research progress of Axl inhibitors in recent years.
Collapse
Affiliation(s)
- Zhi-Gang Sun
- Central Laboratory, Linyi Central Hospital, No.17 Jiankang Road, Linyi 276400, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No.163 Xianlin Road, Nanjing 210023, China
| | - Jian-Hua Liu
- Central Laboratory, Linyi Central Hospital, No.17 Jiankang Road, Linyi 276400, China
| | - Jin-Mai Zhang
- Room 205, BIO-X white house, Shanghai Jiao Tong University, No.1954 Huashan Road, Shanghai 200030, China
| | - Yong Qian
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No.163 Xianlin Road, Nanjing 210023, China
| |
Collapse
|