1
|
Akwensi J, Kumah RT, Osei-Safo D, Amewu RK. Application of Hosomi-Sakurai allylation reaction in total synthesis of biologically active natural products. Front Chem 2025; 13:1527387. [PMID: 40224221 PMCID: PMC11986726 DOI: 10.3389/fchem.2025.1527387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/28/2025] [Indexed: 04/15/2025] Open
Abstract
The Hosomi-Sakurai allylation reaction has been widely applied in the total synthesis of biologically active natural products, especially in synthesising complex polycyclic compounds containing multi-stereogenic centres since its discovery in 1976. The Hosomi-Sakurai allylation is the allylation of ketones and aldehyde with nucleophilic allylsilanes catalyzed with Lewis acid mainly used to extend the C-C bond in a molecule and also create a new site for manipulation due to the facile transformation of the pi (π) bond at the end of its chain. This review highlights only portions of natural product synthetic works that feature the Hosomi-Sakurai allylation reaction or its modification as a key transformation in the synthetic route.
Collapse
Affiliation(s)
- Justice Akwensi
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Robert T. Kumah
- Department of Chemical and Petrochemical Engineering, School of Petroleum Studies, University of Mines and Technology, Tarkwa, Ghana
| | - Dorcas Osei-Safo
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Richard K. Amewu
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| |
Collapse
|
2
|
Li Y, Li X, Lei M, Han J, Huang Z, Zhang K, Yang Y, Yang N, Yu X, Zhou X. Metabolome and transcriptome analyses for explore heat stress responses and adaptation mechanisms in Rhododendron henanense subsp. lingbaoense. BMC PLANT BIOLOGY 2025; 25:280. [PMID: 40033196 PMCID: PMC11877896 DOI: 10.1186/s12870-025-06305-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 02/25/2025] [Indexed: 03/05/2025]
Abstract
In this study, we aimed to investigate the heat tolerance mechanism in Rhododendron henanense subsp. lingbaoense (Rhl). Rhl seedlings were treated at 40℃ (RLH), 32℃ (RLM), and 24℃ (RLC), and the changes in transcriptome and metabolome were compared. Overall, 78 differentially expressed metabolites were detected, and 8450 differentially expressed genes (DEGs) were identified. KEGG analysis revealed that the DEGs in RLH vs. RLC were mainly enriched in photosynthesis, secondary metabolic biosynthesis, and flavonoid biosynthesis. Most genes encoding glutathione-S-transferase were upregulated, whereas genes related to heat shock proteins were significantly downregulated. 31 genes related to photosynthesis were significantly upregulated (P-value < 0.001). It was speculated that these DEGs are related to the response of Rhl to high temperature stress (HTS). Overall, 9 TF families might be the key regulators of Heat stress response pathways in Rhl. Mining of DEGs revealed that the expression of some genes related to heat stress function increased highly significantly, e.g., the Rhe008987 related to Glutathione-S-transferase, Rhe016769 encoding peroxidase, and Rhe001827 encoding chalcone and stilbene synthases. Metabolome and transcriptome correlation analysis revealed that three comparison groups (RLH vs. RLC, RLH vs. RLM, and RLM vs. RLC) shared 12 metabolic pathways in which the DEMs were enriched. HTS inhibited or induced expression of genes in flavonoid biosynthesis pathway and led to decreace in kaempferol content and quercetin accumulation. HT induced expression of genes in ABC pathway, which may be one of the reasons for the significant accumulation of L-isoleucine, L-leucine, and L-proline. In this study, DEGs mining found that the expression of some genes related to heat stress function increased highly significantly. And two omics correlation analysis revealed that 12 metabolic pathways were enriched in three comparison groups. These results helped in elucidating the molecular mechanisms of response of Rhl to HTS.
Collapse
Affiliation(s)
- Yonghui Li
- School of Life Sciences, Luoyang Normal University, Luoyang, HN, 471934, China
| | - Xufeng Li
- School of Life Sciences, Luoyang Normal University, Luoyang, HN, 471934, China
| | - Mengxin Lei
- School of Life Sciences, Luoyang Normal University, Luoyang, HN, 471934, China
| | - Junwang Han
- Henan Xiaoqinling National Nature Reserve Management Bureau, Sanmenxia, HN, 472500, China
| | - Ziming Huang
- School of Life Sciences, Luoyang Normal University, Luoyang, HN, 471934, China
| | - Kai Zhang
- Henan Xiaoqinling National Nature Reserve Management Bureau, Sanmenxia, HN, 472500, China
| | - Yifan Yang
- Henan Xiaoqinling National Nature Reserve Management Bureau, Sanmenxia, HN, 472500, China
| | - Ning Yang
- School of Life Sciences, Luoyang Normal University, Luoyang, HN, 471934, China
| | - Xiangli Yu
- School of Life Sciences, Luoyang Normal University, Luoyang, HN, 471934, China
| | - Xiaojun Zhou
- School of Life Sciences, Luoyang Normal University, Luoyang, HN, 471934, China.
| |
Collapse
|
3
|
Chen L, Chen P, Jia Y. Bioinspired Total Synthesis of Natural Products. Acc Chem Res 2024; 57:3524-3540. [PMID: 39602164 DOI: 10.1021/acs.accounts.4c00654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Currently, the frontier challenges in total synthesis pertain to increasing the synthetic efficiency and enabling the divergent synthesis of a number of natural products. Bioinspired synthesis has been well recognized as an effective approach to increasing synthetic efficiency. Especially, when bioinspired synthesis was applied at late-stage skeletal diversification to generate various natural products with distinct carbon skeletons, it held special promise for achieving both goals. In our laboratory, bioinspired synthesis has served as one of two long-standing principles for facilitating the efficient synthesis of natural products. In this Account, we summarize our endeavors and journeys in the bioinspired synthesis of natural products. We categorize our work into three parts based on the imitation of biosynthetic reactions and processes. (1) To mimic the key cyclization steps. Inspired by the biosynthetic process that formed the core skeleton, we developed new synthetic methods to enable the rapid and efficient construction of the core skeletons of the targeted molecules, ultimately leading to their concise total synthesis, for example, seven-step total synthesis of lamellarins D and H featuring three bioinspired oxidative coupling reactions, seven-step total synthesis of clavicipitic acid highlighted by a C-H activation/aminocyclization cascade reaction, eight-step total synthesis of phalarine via a bioinspired oxidative coupling, seven-step total synthesis of α-cyclopiazonic acid, and ten-step total synthesis of speradine C through a bioinspired cascade cyclization reaction initiated by the benzylic carbocation of indole. (2) To mimic the revised biosynthetic pathway proposed by us. In some cases, the proposed biosynthetic processes may be flawed, as they contradict some basic principles of chemistry. Thus, an alternative biosynthetic process must be proposed and investigated. We showcase the total synthesis of euphorikanin A through a bioinspired benzilic acid-type rearrangement and bipolarolides A and B via a bioinspired Prins reaction/ether formation cascade cyclization. (3) To mimic the skeletal diversification process. Nature usually synthesizes a multitude of products from a key common intermediate in a divergent manner. Biogenic skeletal diversification to generate various natural products with distinct carbon skeletons has also drawn our attention. Compared with single-target-oriented synthesis, skeletal-diversity-oriented synthesis of natural products remains underexplored due to its high synthetic challenges. We showcased the divergent total syntheses of ten pallavicinia diterpenoids with three distinct skeletons and six grayanane diterpenoids with three distinct skeletons, which were achieved with unprecedented ease and high efficiency by imitation of the proposed biogenic skeletal diversification process. These two successful projects can serve as inspiration for the application of the bioinspired skeletal diversification strategy to other skeletally diverse natural products.
Collapse
Affiliation(s)
- Lijun Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Peng Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Yanxing Jia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, 38 Xueyuan Road, Beijing 100191, China
| |
Collapse
|
4
|
Ma T, Ma Y, Li B, Jia Y. Total Synthesis of (+)-Kalmanol. Angew Chem Int Ed Engl 2024; 63:e202407215. [PMID: 39082673 DOI: 10.1002/anie.202407215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Indexed: 10/08/2024]
Abstract
Kalmanol, the flagship member of the kalmane diterpene family, possesses a complex and highly oxidized 5/5/8/5 tetracyclic skeleton with nine contiguous stereocenters and exhibits significant analgesic effects and cardiotoxic properties. We have achieved the efficient total synthesis of (+)-kalmanol in 22 steps with 2.3 % yield. The synthesis featured a Rh-catalyzed [5+2+1] cycloaddition reaction to construct 5/5/8 tricyclic skeleton, and a meticulously designed sequence of stereoselective oxidations of the 5/5/8/5 tetracyclic skeleton.
Collapse
Affiliation(s)
- Tianhao Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China
| | - Yiming Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China
| | - Bo Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China
| | - Yanxing Jia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China
| |
Collapse
|
5
|
Lai Y, Zhong YT, Liang Y, Chen WC, Liao Q, Li M, Han P, Cai YS, Wang F. Identification of antibacterial constituents from Rhododendron simsii Planch with an activity-guided method. Front Pharmacol 2024; 15:1490335. [PMID: 39439892 PMCID: PMC11493700 DOI: 10.3389/fphar.2024.1490335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Bacterial infections and antibiotic resistance pose significant public health challenges globally. Natural products serve as valuable sources for discovering antimicrobial agents. Rhododendron simsii Planch, a folk medicine, is traditionally used to treat various inflammatory diseases. In this study, we investigated the antibacterial metabolites derived from R. simsii Planch. Rhodosimsiin A (1), bearing a 1,5-seco-1,6 and 3,6-epoxy grayanane diterpene skeleton, representing a novel 5/6/7/6/5 pentacyclic ring system, and 3β,16α-dihydroxy-6β-ethoxy-14β-acetoxy-grayan-1(5)-ene-10-one (4), which represents the first example of the degradation of C-20 and carbonylation in C-10 diterpenoid, together with two new grayanane diterpenes (2-3), three new triterpenes (13-15), and known analogs (5-12, 16-30), were isolated from the leaves of R. simsii Planch by using the bioassay-guided method. Their structures were elucidated by comprehensive spectroscopic analyses, and absolute configurations were established by single-crystal X-ray diffraction and calculated ECD spectra. Compounds 14, 15, 18, 20, 27, 28, and 30 exhibited potent antibacterial activity with an MIC50 of 1.4-24.3 μg/mL against Staphylococcus aureus. The findings of this research indicate that secondary metabolites derived from R. simsii Planch are promising natural antimicrobial candidates.
Collapse
Affiliation(s)
- Yongji Lai
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Ting Zhong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Yu Liang
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei-Chen Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Qiuyan Liao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Mu Li
- Department of Medicament, College of Medicine, Tibet University, Lhasa, China
| | - Pan Han
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - You-Sheng Cai
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Fuqian Wang
- Department of Pharmacy, Wuhan No.1 Hospital, Wuhan, China
| |
Collapse
|
6
|
Li L, Fu J, Liu N. Advances in the Structures, Pharmacological Activities, and Biosynthesis of Plant Diterpenoids. J Microbiol Biotechnol 2024; 34:1563-1579. [PMID: 39081244 PMCID: PMC11380518 DOI: 10.4014/jmb.2402.02014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 08/29/2024]
Abstract
More and more diterpenoids have attracted extensive attention due to the diverse chemical structures and excellent biological activities, and have been developed into clinical drugs or consumer products. The vast majority of diterpenoids are derived from plants. With the long-term development of plant medicinal materials, the natural resources of many plant diterpenoids are decreasing, and the biosynthetic mechanism of key active components has increasingly become a research hotspot. Using synthetic biology to engineer microorganisms into "cell factories" to produce the desired compounds is an essential means to solve these problems. In this review, we depict the plant-derived diterpenoids from chemical structure, biological activities, and biosynthetic pathways. We use representative plant diterpenes as examples to expound the research progress on their biosynthesis, and summarize the heterologous production of plant diterpenoids in microorganisms in recent years, hoping to lay the foundation for the development and application of plant diterpenoids in the future.
Collapse
Affiliation(s)
- Leilei Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Jia Fu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Nan Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| |
Collapse
|
7
|
Wang X, Guo W, Zhang B, Xu H, Yang Q, Zhao J, Feng Y, Yang J, Zhang J. Evaluation of Rhododendri Mollis Flos and its representative component as a potential analgesic. J Nat Med 2024; 78:753-767. [PMID: 38668831 DOI: 10.1007/s11418-024-01815-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/08/2024] [Indexed: 05/18/2024]
Abstract
Rhododendri Mollis Flos (R. mole Flos), the dried flowers of Rhododendron mole G. Don, have the ability to relieve pain, dispel wind and dampness, and dissolve blood stasis, but they are highly poisonous. The significance of this study is to explore the analgesic application potential of R. mole Flos and its representative component. According to the selected processing methods recorded in ancient literature, the analgesic activities of wine- and vinegar-processed R. mole Flos, as well as the raw product, were evaluated in a writhing test with acetic acid and a formalin-induced pain test. Subsequently, the HPLC-TOP-MS technique was utilized to investigate the changes in active components before and after processing once the variations in activities were confirmed. Based on the results, rhodojaponin VI (RJ-Vl) was chosen for further study. After processing, especially in vinegar, R. mole Flos did not only maintain the anti-nociception but also showed reduced toxicity, and the chemical composition corresponding to these effects also changed significantly. Further investigation of its representative components revealed that RJ-VI has considerable anti-nociceptive activity, particularly in inflammatory pain (0.3 mg/kg) and peripheral neuropathic pain (0.6 mg/kg). Its toxicity was about three times lower than that of rhodojaponin III, which is another representative component of R. mole Flos. Additionally, RJ-VI mildly inhibits several subtypes of voltage-gated sodium channels (IC50 > 200 μM) that are associated with pain or cardiotoxicity. In conclusion, the chemical substances and biological effects of R. mole Flos changed significantly before and after processing, and the representative component RJ-VI has the potential to be developed into an effective analgesic.
Collapse
Affiliation(s)
- Xin Wang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wenjing Guo
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bo Zhang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Haixia Xu
- Suzhou Kaixiang Biotechnology Co. LTD, Suzhou, 215600, China
| | - Qingyun Yang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jingyi Zhao
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yi Feng
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jian Yang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jiquan Zhang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
8
|
Haroon M, Ahmad S, Fawad Zahoor A, Javed S, Nadeem Ahmad M, Gul Khan S, Al-Mutairi AA, Irfan A, Al-Hussain SA, Zaki ME. Grignard Reaction: An ‘Old-Yet-Gold’ synthetic gadget toward the synthesis of natural Products: A review. ARAB J CHEM 2024; 17:105715. [DOI: 10.1016/j.arabjc.2024.105715] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025] Open
|
9
|
Du Q, Fan Z, Yang M. Total Synthesis of Principinol B. Angew Chem Int Ed Engl 2024; 63:e202400956. [PMID: 38388935 DOI: 10.1002/anie.202400956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
We have accomplished the first and asymmetric total synthesis of principinol B, a grayanoid possessing an oxabicyclo[3.2.1] architecture. A functionalized 5/7/6/5 tetracyclic intermediate was assembled in a convergent manner by a diastereoselective intermolecular aldol reaction and subsequent carbonyl-olefin metathesis of two enantiomerically enriched fragments. The oxabicyclo[3.2.1] architecture containing a 6,10-ether bridge was constructed by the Williamson ether synthesis.
Collapse
Affiliation(s)
- Qiang Du
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu Province, 730000, China
| | - Zhibo Fan
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu Province, 730000, China
| | - Ming Yang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu Province, 730000, China
| |
Collapse
|
10
|
Liu S, Sun L, Zhang P, Niu C. Recent Advances in Grayanane Diterpenes: Isolation, Structural Diversity, and Bioactivities from Ericaceae Family (2018-2024). Molecules 2024; 29:1649. [PMID: 38611928 PMCID: PMC11013853 DOI: 10.3390/molecules29071649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/20/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Diterpenes represent one of the most diverse and structurally complex families of natural products. Among the myriad of diterpenoids, grayanane diterpenes are particularly notable. These terpenes are characterized by their unique 5/7/6/5 tetracyclic system and are exclusive to the Ericaceae family of plants. Renowned for their complex structures and broad spectrum of bioactivities, grayanane diterpenes have become a primary focus in extensive phytochemical and pharmacological research. Recent studies, spanning from 2018 to January 2024, have reported a series of new grayanane diterpenes with unprecedented carbon skeletons. These compounds exhibit various biological properties, including analgesic, antifeedant, anti-inflammatory, and inhibition of protein tyrosine phosphatase 1B (PTP1B). This paper delves into the discovery of 193 newly identified grayanoids, representing 15 distinct carbon skeletons within the Ericaceae family. The study of grayanane diterpenes is not only a deep dive into the complexities of natural product chemistry but also an investigation into potential therapeutic applications. Their unique structures and diverse biological actions make them promising candidates for drug discovery and medicinal applications. The review encompasses their occurrence, distribution, structural features, and biological activities, providing invaluable insights for future pharmacological explorations and research.
Collapse
Affiliation(s)
- Sheng Liu
- School of Pharmacy, Yantai University, Yantai 264005, China;
| | - Lili Sun
- College of Pharmacy, University of Utah, Salt Lake City, UT 84108, USA; (L.S.); (P.Z.)
| | - Peng Zhang
- College of Pharmacy, University of Utah, Salt Lake City, UT 84108, USA; (L.S.); (P.Z.)
| | - Changshan Niu
- College of Pharmacy, University of Utah, Salt Lake City, UT 84108, USA; (L.S.); (P.Z.)
| |
Collapse
|
11
|
Zheng G, Huang L, Feng Y, Zhang H, Gao B, Ma X, Sun Y, Abudurexiti A, Yao G. Discovery of highly functionalized grayanane diterpenoids from the flowers of Rhododendron molle as potent analgesics. Bioorg Chem 2024; 142:106928. [PMID: 37922768 DOI: 10.1016/j.bioorg.2023.106928] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023]
Abstract
A systematical investigation on the chemical constituents of the flowers of Rhododendron molle (Ericaceae) led to the isolation and characterization of thirty-eight highly functionalized grayanane diterpenoids (1-38), including twelve novel analogues molleblossomins A-L (1-12). Their structures were elucidated by comprehensive methods, including 1D and 2D NMR analysis, calculated ECD, 13C NMR calculations with DP4+ probability analysis, and single crystal X-ray diffraction. Molleblossomins A (1), B (2), and E (5) are the first representatives of 2β,3β:9β,10β-diepoxygrayanane, 2,3-epoxygrayan-9(11)-ene, and 5,9-epoxygrayan-1(10),2(3)-diene diterpenoids, respectively. Molleblossomins G (7) and H (8) represent the first examples of 1,3-dioxolane-grayanane conjugates furnished with the acetaldehyde and 4-hydroxylbenzylidene acetal moieties, respectively. All grayanane diterpenoids 1-38 were screened for their analgesic activities in the acetic acid-induced writhing model, and all of them exhibited significant analgesic activities. Diterpenoids 6, 13, 14, 17, 20, and 25 showed more potent analgesic effects than morphine at a lower dose of 0.2 mg/kg, with the inhibition rates of 51.4%, 68.2%, 94.1%, 66.9%, 97.7%, and 60.0%, respectively. More importantly, even at the lowest dose of 0.04 mg/kg, rhodomollein X (14), rhodojaponin VI (20), and rhodojaponin VII (22) still significantly reduced the number of writhes in the acetic acid-induced pain model with the percentages of 61.7%, 85.8%, and 64.6%, respectively. The structure-activity relationship was summarized and might provide some hints to design novel analgesics based on the functionalized grayanane diterpenoids.
Collapse
Affiliation(s)
- Guijuan Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Lang Huang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yuanyuan Feng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Hanqi Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Biao Gao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xiaomin Ma
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yenan Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Adila Abudurexiti
- Laboratory of Xinjiang Native Medicinal and Edible Plant Resource Chemistry, College of Chemistry and Environmental Science, Kashi University, Kashi 844006, People's Republic of China
| | - Guangmin Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Laboratory of Xinjiang Native Medicinal and Edible Plant Resource Chemistry, College of Chemistry and Environmental Science, Kashi University, Kashi 844006, People's Republic of China.
| |
Collapse
|
12
|
Zheng G, Huang L, Feng Y, Zhang H, Ma X, Gao B, Sun Y, Abudurexiti A, Yao G. Structurally diverse analgesic diterpenoids from the flowers of Rhododendron molle. Fitoterapia 2024; 172:105770. [PMID: 38056699 DOI: 10.1016/j.fitote.2023.105770] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Thirteen diterpenoids (1-13), classified into four structurally diverse carbon skeletons, including 1,5-seco-kalmane (1 and 6), grayanane (2-11), kalmane (12), and rhodomollane (13), were isolated from the flowers extract of Rhododendron molle. Among them, rhodomollinols A - E (1-5) were five new diterpenoids and their structures were elucidated by extensive spectroscopic methods including HRESIMS, UV, IR, 1D and 2D NMR, as well as quantum ECD calculations. Rhodomollinol A (1) is the first representative of a 6-deoxy-1,5-seco-kalmane diterpenoid. The abnormal NMR phenomenon of the presence of only 9 carbon resonances instead of 20 carbons in the 13C NMR spectrum of 1 was observed and elucidated by the quantum NMR calculations. All diterpenoids 1-13 showed significant analgesic activities in an acetic acid-induced writhing model. It's the first time to report the analgesic activity of a rhodomollane-type diterpenoid. At a dose of 1.0 mg/kg, diterpenoids 1-3, 6, 8, 9, and 12 reduced the writhe numbers with inhibition rates over 50%, and 9 exhibited stronger analgesic activity with a writhe inhibition rate of 89.7% than that of the positive control morphine. Importantly, even at the lowest dose of 0.04 mg/kg, rhodomollinols A (1) and B (2), rhodomollein X (7), and 2-O-methylrhodojaponin VI (9) still showed more potent analgesic effects than morphine with the writhe inhibition rates of 51.8%, 48.0%, 61.7%, and 60.0%, respectively. A preliminary structure-activity relationship might provide some clues to design potential analgesics on the basis of structurally diverse Ericaceae diterpenoids.
Collapse
Affiliation(s)
- Guijuan Zheng
- Laboratory of Xinjiang Native Medicinal and Edible Plant Resource Chemistry, College of Chemistry and Environmental Science, Kashi University, Kashi 844006, People's Republic of China; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Lang Huang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yuanyuan Feng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Hanqi Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xiaomin Ma
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Biao Gao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yenan Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Adila Abudurexiti
- Laboratory of Xinjiang Native Medicinal and Edible Plant Resource Chemistry, College of Chemistry and Environmental Science, Kashi University, Kashi 844006, People's Republic of China.
| | - Guangmin Yao
- Laboratory of Xinjiang Native Medicinal and Edible Plant Resource Chemistry, College of Chemistry and Environmental Science, Kashi University, Kashi 844006, People's Republic of China; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
| |
Collapse
|
13
|
Liu XJ, Su HG, Peng XR, Bi HC, Qiu MH. An updated review of the genus Rhododendron since 2010: Traditional uses, phytochemistry, and pharmacology. PHYTOCHEMISTRY 2024; 217:113899. [PMID: 37866447 DOI: 10.1016/j.phytochem.2023.113899] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/15/2023] [Accepted: 10/15/2023] [Indexed: 10/24/2023]
Abstract
Rhododendron, the largest genus of Ericaceae, consists of approximately 1000 species that are widely distributed in Europe, Asia, and North America but mainly exist in Asia. Rhododendron plants have not only good ornamental and economic value but also significant medicinal potential. In China, many Rhododendron plants are used as traditional Chinese medicine or ethnic medicine for the treatment of respiratory diseases, pain, bleeding and inflammation. Rhododendron is known for its abundant metabolites, especially diterpenoids. In the past 13 years, a total of 610 chemical constituents were reported from Rhododendron plants, including 222 diterpenoids, 122 triterpenoids, 103 meroterpenoids, 71 flavonoids and 92 other constituents (lignans, phenylpropanoids, phenolic acids, monoterpenoids, sesquiterpenoids, coumarins, steroids, fatty acids). Moreover, the bioactivities of various extracts and isolates, both in vitro and in vivo, were also investigated. Our review summarized the research progress of Rhododendron regarding traditional uses, phytochemistry and pharmacology in the past 13 years (2010 to December 2022), which will provide new insight for prompting further research on Rhododendron application and drug development.
Collapse
Affiliation(s)
- Xing-Jian Liu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Hai-Guo Su
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xing-Rong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China
| | - Hui-Chang Bi
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China.
| |
Collapse
|
14
|
Abstract
The first and asymmetric total syntheses of rhodomollins A and B, two rhodomollane type grayanoids featuring a d-homograyanane carbon skeleton and an oxa-bicyclo[3.2.1] core, were accomplished via a convergent strategy. A Stille coupling and a lithium-halogen exchange/intramolecular nucleophilic addition to the aldehyde sequence were employed to assemble two enantioenriched fragments. The oxa-bicyclo[3.2.1] core was achieved through an intramolecular SN2 substitution of cyclic sulfate of 1,2-diols (Williamson ether synthesis). The A ring oxidation states were adjusted by a Payne/Meinwald rearrangement sequence and subsequent redox transformations.
Collapse
Affiliation(s)
- Weizhao Zhao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu Province 730000, China
| | - Duo Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu Province 730000, China
| | - Yuran Wang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu Province 730000, China
| | - Ming Yang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu Province 730000, China
| |
Collapse
|
15
|
Halder SK, Sultana I, Shuvo MN, Shil A, Himel MK, Hasan MA, Shawan MMAK. In Silico Identification and Analysis of Potentially Bioactive Antiviral Phytochemicals against SARS-CoV-2: A Molecular Docking and Dynamics Simulation Approach. BIOMED RESEARCH INTERNATIONAL 2023; 2023:5469258. [PMID: 37214084 PMCID: PMC10195178 DOI: 10.1155/2023/5469258] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/07/2023] [Accepted: 04/05/2023] [Indexed: 05/24/2023]
Abstract
SARS-CoV-2, a deadly coronavirus sparked COVID-19 pandemic around the globe. With an increased mutation rate, this infectious agent is highly transmissible inducing an escalated rate of infections and death everywhere. Hence, the discovery of a viable antiviral therapy option is urgent. Computational approaches have offered a revolutionary framework to identify novel antimicrobial treatment regimens and allow a quicker, cost-effective, and productive conversion into the health center by evaluating preliminary and safety investigations. The primary purpose of this research was to find plausible plant-derived antiviral small molecules to halt the viral entrance into individuals by clogging the adherence of Spike protein with human ACE2 receptor and to suppress their genome replication by obstructing the activity of Nsp3 (Nonstructural protein 3) and 3CLpro (main protease). An in-house library of 1163 phytochemicals were selected from the NPASS and PubChem databases for downstream analysis. Preliminary analysis with SwissADME and pkCSM revealed 149 finest small molecules from the large dataset. Virtual screening using the molecular docking scoring and the MM-GBSA data analysis revealed that three candidate ligands CHEMBL503 (Lovastatin), CHEMBL490355 (Sulfuretin), and CHEMBL4216332 (Grayanoside A) successfully formed docked complex within the active site of human ACE2 receptor, Nsp3, and 3CLpro, respectively. Dual method molecular dynamics (MD) simulation and post-MD MM-GBSA further confirmed efficient binding and stable interaction between the ligands and target proteins. Furthermore, biological activity spectra and molecular target analysis revealed that all three preselected phytochemicals were biologically active and safe for human use. Throughout the adopted methodology, all three therapeutic candidates significantly outperformed the control drugs (Molnupiravir and Paxlovid). Finally, our research implies that these SARS-CoV-2 protein antagonists might be viable therapeutic options. At the same time, enough wet lab evaluations would be needed to ensure the therapeutic potency of the recommended drug candidates for SARS-CoV-2.
Collapse
Affiliation(s)
- Sajal Kumar Halder
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Ive Sultana
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | | | - Aparna Shil
- Department of Botany, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | | | - Md. Ashraful Hasan
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | | |
Collapse
|
16
|
Kong L, Yu H, Deng M, Wu F, Chen SC, Luo T. Enantioselective Total Syntheses of Grayanane Diterpenoids and (+)-Kalmanol: Evolution of the Bridgehead Carbocation-Based Cyclization and Late-Stage Functional Group Manipulation Strategies. J Org Chem 2023; 88:6017-6038. [PMID: 37094797 DOI: 10.1021/acs.joc.3c00365] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Grayanane diterpenoids contain over 300 highly oxidized and structurally complex members, many of which possess important biological activities. Full details are provided for the development of the concise, enantioselective and divergent total syntheses of grayanane diterpenoids and (+)-kalmanol. The unique 7-endo-trig cyclization based on a bridgehead carbocation was designed and implemented to construct the 5/7/6/5 tetracyclic skeleton, demonstrating the practical value of the bridgehead carbocation-based cyclization strategy. Extensive studies of late-stage functional group manipulation were performed to forge the C1 stereogenic center, during which a photoexcited intramolecular hydrogen atom transfer reaction was discovered and the mechanism was further studied through density functional theory (DFT) calculations. The biomimetic 1,2-rearrangement from the grayanoid skeleton provided a 5/8/5/5 tetracyclic framework and resulted in the first total synthesis of (+)-kalmanol.
Collapse
Affiliation(s)
- Lingran Kong
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hang Yu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Mengping Deng
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Fanrui Wu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Si-Cong Chen
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tuoping Luo
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| |
Collapse
|
17
|
Liang Q, Hu JX, Zhang XM, Xu WH. Traditional uses, phytochemistry, pharmacology, toxicology, and quality control of Rhododendron dauricum L. leaves: A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116085. [PMID: 36584919 DOI: 10.1016/j.jep.2022.116085] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/08/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhododendron dauricum L. is a traditional herb mainly distributed in the northeast China, Mongolia, Korea Peninsula, and Russia Far East. The dried leaves of Rhododendron dauricum L. (LRD), generally known "Man Shan Hong" have been traditionally applied as folk medicines to treat fever, copious phlegm, asthma, acute and chronic bronchitis, sore throat, dysentery, diabetes mellitus, cancer, and hypertension. To date, no comprehensive review on R. dauricum leaves has been published. AIM OF THE STUDY Recent progresses in traditional use, phytochemistry, pharmacology, toxicology, and quality control of R. dauricum leaves are systematically presented and critically evaluated in order to provide scientifical basis for its reasonable utilization and further study. MATERIALS AND METHODS All information about R. dauricum leaves were retrieved from internet scientific databases including Sci-Finder, Web of Science, PubMed, CNKI, Google Scholar, Elsevier, Wiley, ACS publications, SpringerLink, and the Chinese Pharmacopoeia between 1970 and 2022. Plant names were validated by "The Plant List" (http://www.theplantlist.org/). RESULTS So far, 114 structurally diverse compounds have been isolated and identified from LRD, mainly including flavonoids, diterpenoids, triterpenoids, meroterpenoids, phenols, and 54 volatile components were identified from the essential oils of LRD. Among these, flavonoids are considered as characteristic components and major bioactive phytochemicals. The crude extracts and compounds from LRD have been reported to possess broad pharmacological effects including antitussive and expectorant, anti-inflammatory, anti-HIV, antibacterial, and cytotoxic effects, etc. CONCLUSIONS: As a traditional herb medicine, LRD have been used popularly. On the one hand, traditional uses of LRD provide valuable directions for current research; on the other hand, modern phytochemical and pharmacological studies verify the traditional uses to make its reasonable utilization. However, several defects such as active components determination, in vivo and clinical pharmacological evaluation, toxicology assessment, and quality control of LRD need further study.
Collapse
Affiliation(s)
- Qian Liang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, School of Forestry, Southwest Forestry University, Kunming, 650224, PR China
| | - Jia-Xin Hu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, School of Forestry, Southwest Forestry University, Kunming, 650224, PR China
| | - Xin-Min Zhang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, 650224, PR China
| | - Wen-Hui Xu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, School of Forestry, Southwest Forestry University, Kunming, 650224, PR China; Shaoxing Academy of Biomedicine of Zhejiang Sci-Tech University, Shaoxing, 312000, PR China.
| |
Collapse
|
18
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Dusemund B, Hart A, Mulder P, Viviani B, Anastassiadou M, Cascio C, Riolo F, Wallace H. Risks for human health related to the presence of grayanotoxins in certain honey. EFSA J 2023; 21:e07866. [PMID: 36875862 PMCID: PMC9978999 DOI: 10.2903/j.efsa.2023.7866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
The European Commission asked EFSA for a scientific opinion on the risks for human health of the presence of grayanotoxins (GTXs) in 'certain honey' from Ericaceae plants. The risk assessment included all structurally related grayananes occurring with GTXs in 'certain' honey. Oral exposure is associated with acute intoxication in humans. Acute symptoms affect the muscles, nervous and cardiovascular systems. These may lead to complete atrioventricular block, convulsions, mental confusion, agitation, syncope and respiratory depression. For acute effects, the CONTAM Panel derived a reference point (RP) of 15.3 μg/kg body weight for the sum of GTX I and III based on a BMDL10 for reduced heart rate in rats. A similar relative potency was considered for GTX I. Without chronic toxicity studies, an RP for long-term effects could not be derived. There is evidence for genotoxicity in mice exposed to GTX III or honey containing GTX I and III, showing increased levels of chromosomal damage. The mechanism of genotoxicity is unknown. Without representative occurrence data for the sum of GTX I and III and consumption data from Ericaceae honey, acute dietary exposure was estimated based on selected concentrations for GTX I and III reflecting concentrations measured in 'certain' honeys. Applying a margin of exposure (MOE) approach, the estimated MOEs raised health concerns for acute toxicity. The Panel calculated the highest concentrations for GTX I and III below which no acute effects would be expected following 'certain honey' consumption. The Panel is 75% or more certain that the calculated highest concentration of 0.05 mg for the sum of GTX I and III per kg honey is protective for all age groups regarding acute intoxications. This value does not consider other grayananes in 'certain honey' and does not cover the identified genotoxicity.
Collapse
|
19
|
Zhao XH, Meng LL, Liu XT, Shu PF, Yuan C, An XT, Jia TX, Yang QQ, Zhen X, Fan CA. Asymmetric Divergent Synthesis of ent-Kaurane-, ent-Atisane-, ent-Beyerane-, ent-Trachylobane-, and ent-Gibberellane-type Diterpenoids. J Am Chem Soc 2023; 145:311-321. [PMID: 36538760 DOI: 10.1021/jacs.2c09985] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A unified strategy toward asymmetric divergent syntheses of nine C8-ethano-bridged diterpenoids A1-A9 (candol A, powerol, sicanadiol, epi-candol A, atisirene, ent-atisan-16α-ol, 4-decarboxy-4-methyl-GA12, trachinol, and ent-beyerane) has been developed based on late-stage transformations of common synthons having ent-kaurane and ent-trachylobane cores. The expeditious assembly of crucial advanced ent-kaurane- and ent-trachylobane-type building blocks is strategically explored through a regioselective and diastereoselective Fe-mediated hydrogen atom transfer (HAT) 6-exo-trig cyclization of the alkene/enone and 3-exo-trig cyclization of the alkene/ketone, showing the multi-reactivity of densely functionalized polycyclic substrates with πC═C and πC═O systems in HAT-initiated reactions. Following the rapid construction of five major structural skeletons (ent-kaurane-, ent-atisane-, ent-beyerane-, ent-trachylobane-, and ent-gibberellane-type), nine C8-ethano-bridged diterpenoids A1-A9 could be accessed in the longest linear 8 to 11 steps starting from readily available chiral γ-cyclogeraniol 1 and known chiral γ-substituted cyclohexenone 2, in which enantioselective total syntheses of candol A (A1, 8 steps), powerol (A2, 9 steps), sicanadiol (A3, 10 steps), epi-candol A (A4, 8 steps), ent-atisan-16α-ol (A6, 11 steps), and trachinol (A8, 10 steps) are achieved for the first time.
Collapse
Affiliation(s)
- Xian-He Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Le-Le Meng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Tao Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Peng-Fei Shu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Cheng Yuan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xian-Tao An
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Tian-Xi Jia
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Qi-Qiong Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiang Zhen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Chun-An Fan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
20
|
Fay N, Blieck R, Kouklovsky C, de la Torre A. Total synthesis of grayanane natural products. Beilstein J Org Chem 2022; 18:1707-1719. [PMID: 36570567 PMCID: PMC9764858 DOI: 10.3762/bjoc.18.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/16/2022] [Indexed: 12/14/2022] Open
Abstract
Grayananes are a broad family of diterpenoids found in Ericaceae plants, comprising more than 160 natural products. Most of them exhibit interesting biological activities, often representative of Ericaceae use in traditional medicine. Over the last 50 years, various strategies were described for the total synthesis of these diterpenoids. In this review, we survey the literature for synthetic approaches to access grayanane natural products. We will focus mainly on completed total syntheses, but will also mention unfinished synthetic efforts. This work aims at providing a critical perspective on grayanane synthesis, highlighting the advantages and downsides of each strategy, as well as the challenges remaining to be tackled.
Collapse
Affiliation(s)
- Nicolas Fay
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), Université Paris-Saclay, CNRS, 15, rue Georges Clémenceau, 91405 Orsay Cedex, France
| | - Rémi Blieck
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), Université Paris-Saclay, CNRS, 15, rue Georges Clémenceau, 91405 Orsay Cedex, France
| | - Cyrille Kouklovsky
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), Université Paris-Saclay, CNRS, 15, rue Georges Clémenceau, 91405 Orsay Cedex, France
| | - Aurélien de la Torre
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), Université Paris-Saclay, CNRS, 15, rue Georges Clémenceau, 91405 Orsay Cedex, France
| |
Collapse
|
21
|
Yang J, Zhao J, Zhang J. The efficacy and toxicity of grayanoids as analgesics: A systematic review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115581. [PMID: 35948141 DOI: 10.1016/j.jep.2022.115581] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/08/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Grayanoids are natural diterpenoids that are mostly found in the Ericaceae family, such as Rhododendron molle (Blume) G. Don (Relevant herb: nao yang hua), Rhododendron micranthum Turcz (also known as: zhao shan bai), which have traditionally been used to treat abdominal pain, cephalgia, and rheumatoid arthritis. AIMS OF THE REVIEW The review investigated advancements in notable anti-nociception, toxicity, and probable mechanisms of grayanoids. Meanwhile some binding sites of these compounds on voltage-gated sodium channels (VSGCs) were also analyzed and evaluated. MATERIALS AND METHODS The substantial grayanoids literature published before 2022, in SCI Finder, PubMed, Science Direct, Springer, Scopus, Wiley Online Library, J-Stage, and other literature databases had been exhaustively consulted and thoroughly screened. RESULTS More than 50 compounds in grayanoids exhibited exceptionally significant anti-nociception (intraperitoneal injection, less than 1 mg/kg), and the alteration of several substituents that were closely associated to the change in activity were investigated. Multiple possible mechanisms of analgesic action and toxicity had been proposed, with VSGCs playing a key part in both. As a result, the binding locations of these compounds on VGSCs (mostly grayanotoxin I and III) had been summarized. CONCLUSIONS The considerable anti-nociception, toxicity, and probable mechanisms of grayanoids, as well as the investigation of the binding sites on VSGCs, were discussed in this review. Furthermore, the homology of toxicity and anti-nociception of these substances was considered, as well as the possibility of grayanoids being developed as analgesics.
Collapse
Affiliation(s)
- Jian Yang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jingyi Zhao
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jiquan Zhang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
22
|
Ma T, Cheng H, Pitchakuntla M, Ma W, Jia Y. Total Synthesis of (−)-Principinol C. J Am Chem Soc 2022; 144:20196-20200. [DOI: 10.1021/jacs.2c08694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tianhao Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Hao Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Mallesham Pitchakuntla
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Weihao Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Yanxing Jia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, 38 Xueyuan Road, Beijing 100191, China
| |
Collapse
|
23
|
Feng YX, Lu XX, Du YS, Zhang JW, Almaz B, Zeng D, Du SS. Synergized potential, insecticidal and repellent activity of essential oils from two Rhododendron species against three stored product insects. JOURNAL OF ESSENTIAL OIL RESEARCH 2022. [DOI: 10.1080/10412905.2022.2118879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Yi-Xi Feng
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Xin-Xin Lu
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Yue-Shen Du
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Jia-Wei Zhang
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Borjigidai Almaz
- Laboratory of Ethnomedicine, School of Pharmacy, Minzu University of China, Beijing, China
| | - Ding Zeng
- Department of Burns and Plastic Surgery, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Shu-Shan Du
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| |
Collapse
|
24
|
Yang J, Yang Q, Zhao J, Sun S, Liu M, Wang Y, Feng Y, Zhang J. Evaluation of Rhodojaponin III from Rhododendron molle G. Don on oral antinociceptive activity, mechanism of action, and subacute toxicity in rodents. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115347. [PMID: 35533915 DOI: 10.1016/j.jep.2022.115347] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In Chinese traditional medicine, Rhododendron molle G. Don is a recognized herb to ease pain. Rhodojaponin III (RJ-III) has been identified as the main pharmacological activity and toxic component of the herb; however, oral antinociception and mechanism of RJ-III have not yet been investigated. AIM OF THE STUDY The significance of this study is to evaluate the effects of RJ-III on nociceptive and neuropathic pain, and to preliminarily explore the underlying mechanisms and subacute toxicity. MATERIALS AND METHODS The antinociception of RJ-III was evaluated by hot plate, tail-immersion, acetic acid writhing, formalin test and chronic constriction injury (CCI) model in rodents. An experimental validation was conducted using whole-cell patch clamp technique based on the most likely mechanisms of action after screening and prediction by molecular docking study. In addition, the oral subacute toxicity of RJ-III was assessed. RESULTS Behavioral experiments showed that RJ-III (0.20 mg/kg) reduced the latency of the nociceptive response in the hot plate and tail-immersion tests. Acetic acid and formalin-induced pain were significantly inhibited by RJ-III (0.10 and 0.05 mg/kg, respectively). Furthermore, 0.30 mg/kg of RJ-III improved hyperalgesia in the CCI-induced rats. Based on molecular docking results, electrophysiological experiments were used to demonstrate mild inhibition of voltage-gated sodium channel-related subtypes. Additionally, oral subacute toxicity that may cause leukopenia and abnormal liver function requires further attention in subsequent studies. CONCLUSION RJ-III mildly blocks voltage-gated sodium channel to inhibit nociceptive pain and peripheral neuralgia, but 0.375 mg/kg and above may cause side effect after long-term oral administration.
Collapse
Affiliation(s)
- Jian Yang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Qingyun Yang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jingyi Zhao
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Shuigen Sun
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Minchen Liu
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yuan Wang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yi Feng
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jiquan Zhang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
25
|
Abstract
Mollanol A is the first isolated member of the mollane-type grayanoids which possesses an unprecedented C-nor-D-homograyanane carbon skeleton and an 5,8-epoxide. Due to its transcriptional activation effects on the Xbp1 upstream promoters in different cell types, it has a potential therapeutic effect on inflammatory bowel disease. Here we report the first total synthesis of mollanol A, which constitutes a 15-step synthesis from commercially available materials via a convergent strategy. The synthesis involves an InCl3-catalyzed Conia-ene cyclization reaction to construct the bicyclo[3.2.1]octane moiety and a vinylogous aldol reaction/intramolecular oxa-Michael addition sequence to rapidly assemble the oxa-bicyclo[3.2.1] core.
Collapse
Affiliation(s)
- Yuran Wang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu Province 730000, China
| | - Rong Zhao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu Province 730000, China
| | - Ming Yang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu Province 730000, China
| |
Collapse
|
26
|
Huang L, Zheng G, Feng Y, Jin P, Gao B, Zhang H, Ma X, Zhou J, Yao G. Highly Oxygenated Dimeric Grayanane Diterpenoids as Analgesics:
TRPV1
and
TRPA1
Dual Antagonists from
Rhododendron molle. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Lang Huang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| | - Guijuan Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| | - Yuanyuan Feng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| | - Pengfei Jin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| | - Biao Gao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| | - Hanqi Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| | - Xiaomin Ma
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| | - Junfei Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| | - Guangmin Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
- Laboratory of Xinjiang Native Medicinal and Edible Plant Resource Chemistry, College of Chemistry and Environmental Science Kashi University Kashgar 844007 China
| |
Collapse
|
27
|
Sharma NK, Bhattarai M, Shah S, Gyawali P, Baral K, Banstola H. Lyonia ovalifolia (Angeri) poisoning: A case report. Clin Case Rep 2022; 10:e6128. [PMID: 35898751 PMCID: PMC9309675 DOI: 10.1002/ccr3.6128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/25/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022] Open
Abstract
Lyonia ovalifolia (angeri) is a deciduous tree whose shoot and leaves are toxic. Its chemical constituents include grayanane diterpenoids, lyoniol A, and other toxic compounds. Young children might consume it intentionally or unintentionally, with subsequent adverse health outcomes and even mortality depending on the amount ingested. We present a case of an adolescent girl who developed poisoning on ingestion of angeri leaves.
Collapse
Affiliation(s)
| | | | - Sangam Shah
- Institute of MedicineTribhuvan UniversityMaharajgunjNepal
| | - Pawan Gyawali
- Institute of MedicineTribhuvan UniversityMaharajgunjNepal
| | - Kushal Baral
- Institute of MedicineTribhuvan UniversityMaharajgunjNepal
| | | |
Collapse
|
28
|
Xiao SM, Liu YB, Qu J, Ma SG, Li Y, Yu SS. Analgesic grayanoids from Craibiodendron henryi. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Heravi MM, Nazari A. Samarium(ii) iodide-mediated reactions applied to natural product total synthesis. RSC Adv 2022; 12:9944-9994. [PMID: 35424959 PMCID: PMC8965710 DOI: 10.1039/d1ra08163b] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/12/2022] [Indexed: 12/22/2022] Open
Abstract
Natural product synthesis remains a field in which new synthetic methods and reagents are continually being evaluated. Due to the demanding structures and complex functionality of many natural products, only powerful and selective methods and reagents will be highlighted in this proceeding. Since its introduction by Henri Kagan, samarium(ii) iodide (SmI2, Kagan's reagent) has found increasing use in chemical synthesis. Over the years, many reviews have been published on the application of SmI2 in numerous reductive coupling procedures as well as in natural product total synthesis. This review highlights recent advances in SmI2-mediated synthetic strategies, as applied in the total synthesis of natural products since 2004.
Collapse
Affiliation(s)
- Majid M Heravi
- Department of Chemistry, School of Science, Alzahra University PO Box 1993891176 Vanak Tehran Iran +98 21 88041344 +98 21 88044051
| | - Azadeh Nazari
- Department of Chemistry, School of Science, Alzahra University PO Box 1993891176 Vanak Tehran Iran +98 21 88041344 +98 21 88044051
| |
Collapse
|
30
|
Kong L, Yu H, Deng M, Wu F, Jiang Z, Luo T. Enantioselective Total Syntheses of Grayanane Diterpenoids: (-)-Grayanotoxin III, (+)-Principinol E, and (-)-Rhodomollein XX. J Am Chem Soc 2022; 144:5268-5273. [PMID: 35297610 DOI: 10.1021/jacs.2c01692] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Enantioselective total syntheses of (-)-grayanotoxin III, (+)-principinol E, and (-)-rhodomollein XX were accomplished based on a convergent strategy. The left- and right-wing fragments were assembled via the diastereoselective Mukaiyama aldol reaction catalyzed by a chiral hydrogen bond donor. The unique 7-endo-trig cyclization based on a bridgehead carbocation forged the 5/7/6/5 tetracyclic skeleton that underwent redox manipulations and 1,2-migration to access different grayanane diterpenoids.
Collapse
Affiliation(s)
- Lingran Kong
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hang Yu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Mengping Deng
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Fanrui Wu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhe Jiang
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tuoping Luo
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.,Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| |
Collapse
|
31
|
Zhuo J, Zhu C, Wu J, Li Z, Li C. Reductive Radical Annulation Strategy toward Bicyclo[3.2.1]octanes: Synthesis of ent-Kaurane and Beyerane Diterpenoids. J Am Chem Soc 2021; 144:99-105. [PMID: 34958563 DOI: 10.1021/jacs.1c11623] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Here we report a general [3 + 2] radical annulation that allows the facile construction of bicyclo[3.2.1]octane motifs in ent-kaurane- and beyerane-type diterpenoids. This radical annulation is difficult to control but was realized by harnessing an unprecedented and counterintuitive effect of TEMPO. Eleven natural products with a wide array of oxidation states are easily prepared, demonstrating the powerful utility of this straightforward synthetic strategy.
Collapse
Affiliation(s)
- Junming Zhuo
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.,National Institute of Biological Sciences, Beijing 102206, China
| | - Chunlin Zhu
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.,National Institute of Biological Sciences, Beijing 102206, China
| | - Jinbao Wu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zijian Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Chao Li
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.,National Institute of Biological Sciences, Beijing 102206, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
32
|
Liu Z, Hu J, Ding H. Electrochemical ODI-[5+2] Cascade for the Syntheses of Diversely Functionalized Bicyclo[3.2.1]octane Frameworks. Org Lett 2021; 23:6745-6749. [PMID: 34402626 DOI: 10.1021/acs.orglett.1c02321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A metal- and hypervalent iodine reagent-free electrochemical oxidative dearomatization-induced [5+2] cycloaddition/pinacol rearrangement cascade reaction was described. The electrosynthetic method showed strong tolerance for vinylphenols, ethynylphenols, and allenylphenols, which thus enabled the rapid assembly of diversely functionalized bicyclo[3.2.1]octanes in 41-95% yields and up to >20:1 dr. This protocol could be scaled up to gram amounts and should find wide application in complex natural product synthesis.
Collapse
Affiliation(s)
- Zhaobo Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jialei Hu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Hanfeng Ding
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
33
|
Zhao X, Cacherat B, Hu Q, Ma D. Recent advances in the synthesis of ent-kaurane diterpenoids. Nat Prod Rep 2021; 39:119-138. [PMID: 34263890 DOI: 10.1039/d1np00028d] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: 2015 to 2020The ent-kaurane diterpenoids are integral parts of tetracyclic natural products that are widely distributed in terrestrial plants. These compounds have been found to possess interesting bioactivities, ranging from antitumor, antifungal and antibacterial to anti-inflammatory activities. Structurally, the different tetracyclic moieties of ent-kauranes can be seen as the results of intramolecular cyclizations, oxidations, C-C bond cleavages, degradation, or rearrangements, starting from their parent skeleton. During the past decade, great efforts have been made to develop novel strategies for synthesizing these natural products. The purpose of this review is to describe the recent advances in the total synthesis of ent-kaurane diterpenoids covering the period from 2015 to date.
Collapse
Affiliation(s)
- Xiangbo Zhao
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Bastien Cacherat
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Qifei Hu
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Dawei Ma
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| |
Collapse
|
34
|
Jin P, Yuan X, Ma X, Zheng G, Wang R, Sun N, Yao G. Epoxymicranthols A—N, 5,
9‐Epoxygrayanane
Diterpenoids as Potent Analgesics from
Rhododendron micranthum. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Pengfei Jin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology Wuhan Hubei 430030 China
| | - Xinghua Yuan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology Wuhan Hubei 430030 China
| | - Xiaomin Ma
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology Wuhan Hubei 430030 China
| | - Guijuan Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology Wuhan Hubei 430030 China
| | - Ru Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology Wuhan Hubei 430030 China
| | - Na Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology Wuhan Hubei 430030 China
| | - Guangmin Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology Wuhan Hubei 430030 China
| |
Collapse
|
35
|
Zeng K, Ban S, Cao Z, Cao P, Luo X, Wang R, Zhao Z, Xu J. Phytochemical and chemotaxonomic study on the leaves of Rhododendron amesiae. BIOCHEM SYST ECOL 2021. [DOI: 10.1016/j.bse.2021.104232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Wu T, Tang W. Construction of Bridged Polycyclic Skeletons via Transition-Metal Catalyzed Carbon-Carbon Bond-Forming Reactions. Chemistry 2021; 27:3944-3956. [PMID: 32918298 DOI: 10.1002/chem.202003863] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/10/2020] [Indexed: 12/15/2022]
Abstract
Transition-metal catalysis has become one of most important methods for constructing molecules with diverse architectures. Bridged polycyclic skeletons are often considered one of most challenging structures in organic synthesis. This Minireview summarizes the recent progress on synthesis of bridged polycyclic skeletons by transition-metal-catalyzed carbon-carbon bond-forming reaction. Four main ring-forming strategies including connection via olefin or carbonyl functionality, enolate intermediacy, C-H functionality, and aryl functionality are detailed and some effective methods are discussed with particular emphasis on reaction design and mechanism.
Collapse
Affiliation(s)
- Ting Wu
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Wenjun Tang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China.,School of Chemistry and Materials Science Hangzhou Institute for, Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China
| |
Collapse
|
37
|
Gao K, Hu J, Ding H. Tetracyclic Diterpenoid Synthesis Facilitated by ODI-Cascade Approaches to Bicyclo[3.2.1]octane Skeletons. Acc Chem Res 2021; 54:875-889. [PMID: 33508196 DOI: 10.1021/acs.accounts.0c00798] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tetracyclic diterpenoids (C20) mainly refer to the plant terpenoids bearing biogenetically related carbon skeletons derived from copalyl diphosphates (ent-CPP and syn-CPP). This large family contains over 1600 known members that can be categorized into 11 major structural types. Among them, more than three-quarters share a bridged bicyclo[3.2.1]octane subunit, which is also an important branching point in biosynthesis en route to the other types of bicyclic scaffolds, such as bicyclo[2.2.2]-, bicyclo[3.3.0]-, and tricyclo[3.2.1.0]octanes. Combined with the significance of its stereochemical importance in biological activity, the assembly of the bicyclo[3.2.1]octane skeletons is critical to the success of the whole synthesis blueprint toward tetracyclic diterpenoids. Although a number of inspiring methodologies have been disclosed, general approaches by the incorporation of innovative cascade reactions permitting access to diverse structural types of tetracyclic diterpenoids remain limited and in urgent demand.Because of the long-standing interest in the synthesis of bridged diterpenoids, we have recently developed two complementary types of oxidative dearomatization induced (ODI) cascade approaches to the rapid and efficient construction of bicyclo[3.2.1]octane skeletons. In this Account, we summarize our original synthesis design, methodology development, and the application of these two strategies in tetracyclic diterpenoid synthesis during the past few years in our laboratory.First, we detail our preliminary investigation of the ODI-[5 + 2] cycloaddition/pinacol rearrangement cascade reaction, which showed a wide scope of vinylphenol substrates and led to cyclopentane and cyclohexane-fused bicyclo[3.2.1]octanes in good yields with excellent dr values. Next, we describe the utilization of this ODI-[5 + 2] cascade reaction which resulted in the asymmetric total syntheses of four highly oxygenated ent-kauranoids. The strategy concerning accurate stereochemical control in the ODI-[5 + 2] cycloaddition was then successfully transplanted to the total syntheses of three stemaranoids, thus providing a straightforward and diastereoselective route to C9-ethano-bridged tetracyclic diterpenoids. To access more complex diterpenoid rhodomollanol A, we exploited two additional biomimetic rearrangements, namely, the retro-Dieckmann fragmentation/vinylogous Dieckmann cyclization cascade and the photo-Nazarov cyclization/intramolecular cycloetherification cascade. Taken together with the ODI-[5 + 2] cascade, the asymmetric total synthesis of the target molecule was realized, which shed light on the biogenetic pathway of the unprecedented rhodomollane-type carbon framework. Finally, we describe an ODI-Diels-Alder/Beckwith-Dowd cascade approach as a valuable supplement to the ODI-[5 + 2] cascade for the fabrication of cycloheptane-fused bicyclo[3.2.1]octane skeletons. Its versatility was also demonstrated by the total syntheses of two challenging grayanane diterpenoids. In view of the high functional-group compatibility and scalability, we anticipate that the two novel cascade approaches will find further use in the field of complex natural product synthesis.
Collapse
Affiliation(s)
- Kai Gao
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou 318000, China
| | - Jialei Hu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Hanfeng Ding
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou 318000, China
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
38
|
Tomanik M, Hsu IT, Herzon SB. Fragment Coupling Reactions in Total Synthesis That Form Carbon-Carbon Bonds via Carbanionic or Free Radical Intermediates. Angew Chem Int Ed Engl 2021; 60:1116-1150. [PMID: 31869476 DOI: 10.1002/anie.201913645] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Indexed: 12/21/2022]
Abstract
Fragment coupling reactions that form carbon-carbon bonds are valuable transformations in synthetic design. Advances in metal-catalyzed cross-coupling reactions in the early 2000s brought a high level of predictability and reliability to carbon-carbon bond constructions involving the union of unsaturated fragments. By comparison, recent years have witnessed an increase in fragment couplings proceeding via carbanionic and open-shell (free radical) intermediates. The latter has been driven by advances in methods to generate and utilize carbon-centered radicals under mild conditions. In this Review, we survey a selection of recent syntheses that have implemented carbanion- or radical-based fragment couplings to form carbon-carbon bonds. We aim to highlight the strategic value of these disconnections in their respective settings and to identify extensible lessons from each example that might be instructive to students.
Collapse
Affiliation(s)
- Martin Tomanik
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT, USA
| | - Ian Tingyung Hsu
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT, USA
| | - Seth B Herzon
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT, USA.,Department of Pharmacology, Yale University, 333 Cedar St, New Haven, CT, USA
| |
Collapse
|
39
|
Tomanik M, Hsu IT, Herzon SB. Fragmentverknüpfungen in der Totalsynthese – Bildung von C‐C‐Bindungen über intermediäre Carbanionen oder freie Radikale. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.201913645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Martin Tomanik
- Department of Chemistry Yale University 225 Prospect St New Haven CT USA
| | - Ian Tingyung Hsu
- Department of Chemistry Yale University 225 Prospect St New Haven CT USA
| | - Seth B. Herzon
- Department of Chemistry Yale University 225 Prospect St New Haven CT USA
- Department of Pharmacology Yale University 333 Cedar St New Haven CT USA
| |
Collapse
|
40
|
Chai B, Li Y, Yu SS. Three new antinociceptive diterpenoids from the roots of Rhododendron micranthum. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2020; 22:895-904. [PMID: 32536209 DOI: 10.1080/10286020.2020.1777545] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
Two new grayanane-type (1 and 2) and one new kalmane-type diterpenoids (3), together with 16 known compounds, were isolated from the roots of Rhododendron micranthum. The structures of new compounds were fully determined on the basis of spectroscopic analysis, including HRESIMS, 1 D and 2 D NMR data. An acetic acid-induced writhing test in mice was proceeded to evaluate the antinociceptive activities of compounds 1-3, 5-6, 9-14 and 16. Compared to vehicle-injected mice, compounds 1, 6, 14 and 16 showed significant antinociceptive effects with writhe inhibition rates of 45.8%-64.2% at a dose of 0.1 mg/kg, and compounds 10, 12 and 13 showed significant antinociceptive effects with writhe inhibition rates of 33.9%-64.8% at a dose of 5 mg/kg. Compound 2 showed potent antinociceptive effects with writhe inhibition rates of 86.1% and 54.7% at doses of 8 mg/kg and 0.8 mg/kg, respectively. [Formula: see text].
Collapse
Affiliation(s)
- Bing Chai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union, Medical College, Beijing 100050, China
| | - Yong Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union, Medical College, Beijing 100050, China
| | - Shi-Shan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union, Medical College, Beijing 100050, China
| |
Collapse
|
41
|
Guo J, Li B, Ma W, Pitchakuntla M, Jia Y. Total Synthesis of (−)‐Glaucocalyxin A. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005932] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Jiuzhou Guo
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Bo Li
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Weihao Ma
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Mallesham Pitchakuntla
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Yanxing Jia
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| |
Collapse
|
42
|
Guo J, Li B, Ma W, Pitchakuntla M, Jia Y. Total Synthesis of (−)‐Glaucocalyxin A. Angew Chem Int Ed Engl 2020; 59:15195-15198. [DOI: 10.1002/anie.202005932] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/17/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Jiuzhou Guo
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Bo Li
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Weihao Ma
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Mallesham Pitchakuntla
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Yanxing Jia
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| |
Collapse
|
43
|
Miao J, Zheng YX, Wang L, Lu SC, Zhang SP, Gong YL, Xu S. Toward the total synthesis of grayanane diterpene mollanol A by a Prins [3 + 2] strategy. Org Biomol Chem 2020; 18:1877-1880. [PMID: 32100814 DOI: 10.1039/d0ob00160k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Toward the total synthesis of a novel grayanoid, mollanol A, we developed a concise convergent strategy based on a formal [3 + 2] cyclization initiated by the Prins reaction. In this key intermolecular reaction between an unprotected hydroxyaldehyde and activating-group-free olefins, two chiral carbons and one densely substituted tetrahydrofuran ring were constructed stereoselectively.
Collapse
Affiliation(s)
- Jianzhuang Miao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2A NanWei Road, Xicheng District, Beijing 100050, China.
| | - Yi-Xuan Zheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2A NanWei Road, Xicheng District, Beijing 100050, China.
| | - Linna Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2A NanWei Road, Xicheng District, Beijing 100050, China. and School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Shi-Chao Lu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2A NanWei Road, Xicheng District, Beijing 100050, China.
| | - Shi-Peng Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2A NanWei Road, Xicheng District, Beijing 100050, China.
| | - Ya-Ling Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2A NanWei Road, Xicheng District, Beijing 100050, China.
| | - Shu Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2A NanWei Road, Xicheng District, Beijing 100050, China.
| |
Collapse
|
44
|
Zheng G, Jin P, Huang L, Sun N, Zhang H, Zhang H, Yue M, Meng L, Yao G. Grayanane diterpenoid glucosides as potent analgesics from Pieris japonica. PHYTOCHEMISTRY 2020; 171:112234. [PMID: 31901735 DOI: 10.1016/j.phytochem.2019.112234] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/14/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
A total of fifteen grayanane diterpenoid glucosides including eight undescribed ones, pierisjaponosides A-H, were isolated from the leaves of Pieris japonica (Thunb.) D. Don ex G. Don (Ericaceae). Their structures were established by extensive spectros copic techniques including HRESIMS and NMR, as well as chemical methods. The absolute configurations of pierisjaponosides A, B, and D were finally established by single-crystal X-ray diffraction with Cu Kα radiation. This is the first time to report the crystal structure of a 5,9-epoxygrayanane diterpenoid glucoside. Pierisjaponoside E represents the first example of a 9β-hydroxygrayan-1(10)-ene diterpenoid. All the isolated grayanane diterpenoid glucosides were evaluated for their analgesic activities in the acetic acid-induced writhing models in mice, and showed significant analgesic effects. Pierisjaponosides A and C-H, micranthanoside A, pieroside A, and craiobiosides A and B displayed significant analgesic effects with the writhe inhibition rates over 50% at a dose of 5.0 mg/kg. Pierisjaponoside E exhibited significant analgesic activities with the percentage inhibitions of 81.7%, 70.4%, and 52.1% at the doses of 5.0, 1.0, and 0.2 mg/kg, respectively. The preliminary structure-activity relationships of grayanane diterpenoid glucosides as potent analgesics were discussed, giving some clues to design novel analgesics.
Collapse
Affiliation(s)
- Guijuan Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Pengfei Jin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Lang Huang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Na Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Hanqi Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Hao Zhang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, PR China
| | - Mingbo Yue
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, PR China
| | - Lingkui Meng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Guangmin Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| |
Collapse
|
45
|
Niu C, Liu S, Li Y, Liu Y, Ma S, Liu F, Li L, Qu J, Yu S. Diterpenoids with diverse carbon skeletons from the roots of Pieris formosa and their analgesic and antifeedant activities. Bioorg Chem 2020; 95:103502. [DOI: 10.1016/j.bioorg.2019.103502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/12/2019] [Accepted: 12/08/2019] [Indexed: 01/12/2023]
|
46
|
Sun N, Feng Y, Zhang Q, Liu J, Zhou H, Zhang H, Zheng G, Zhou J, Yao G. Analgesic diterpenoids with diverse carbon skeletons from the leaves of Rhododendron auriculatum. PHYTOCHEMISTRY 2019; 168:112113. [PMID: 31494343 DOI: 10.1016/j.phytochem.2019.112113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
Sixteen diterpenoids including nine undescribed ones, named rhodoauriculatols A-I, were isolated from the leaves of Rhododendron auriculatum Hemsl. Sixteen diterpenoids belong to seven diverse carbon skeletons, which were classified into 1,10-seco-grayanane, 1,10:2,3-diseco-grayanane, A-homo-B-nor-ent-kaurane, ent-kaurane, 4,5-seco-ent-kaurane, leucothane, and grayanane, respectively. Their structures were determined by the detailed HRESIMS, 1D and 2D NMR, UV, and IR data analysis, and their absolute configurations were established by single crystal X-ray diffraction analysis, electronic circular dichroism (ECD) data analysis, ECD calculation, as well as chemical methods. Rhodoauriculatols A-C possess a rare 1,10-seco-grayanane diterpene skeleton. Rhodoauriculatol D is the second example of the 1,10:2,3-diseco-grayanane diterpenoids, and rhodoauriculatol E is the fourth example of the A-homo-B-nor-ent-kaurane diterpenoids. Rhodomicranone E was reported as a natural product for the first time. All the isolated sixteen diterpenoids showed analgesic activities in the acetic acid-induced writhing test. Rhodoauriculatols B, E-G, rhodomicranone E, pierisformoside F, and micranthanoside A showed significant analgesic activities with the inhibition rates over 40%, and their preliminary structures-activity relationships were studied.
Collapse
Affiliation(s)
- Na Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Yuanyuan Feng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Qihua Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Junjun Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Haofeng Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Hanqi Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Guijuan Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Junfei Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Guangmin Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| |
Collapse
|
47
|
Turlik A, Chen Y, Scruse AC, Newhouse TR. Convergent Total Synthesis of Principinol D, a Rearranged Kaurane Diterpenoid. J Am Chem Soc 2019; 141:8088-8092. [PMID: 31042866 PMCID: PMC7192013 DOI: 10.1021/jacs.9b03751] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The total synthesis of principinol D, a rearranged kaurane diterpenoid, is reported. This grayanane natural product is constructed via a convergent fragment coupling approach, wherein the central seven-membered ring is synthesized at a late stage. The bicyclo[3.2.1]octane fragment is accessed by a Ni-catalyzed α-vinylation reaction. Strategic reductions include a diastereoselective SmI2-mediated ketone reduction with PhSH and a new protocol for selective ester reduction in the presence of ketones. The convergent strategy reported herein may be an entry point to the larger class of kaurane diterpenoids.
Collapse
Affiliation(s)
- Aneta Turlik
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Yifeng Chen
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Anthony C. Scruse
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Timothy R. Newhouse
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|