1
|
Nuha D, Dawbaa S, Evren AE, Çi̇yanci ZŞ, Temel HE, Çiftçi G, Yurttaş L. Development and Biological Assessment of Thiazole-Based Pyridines for Targeted Therapy in Lung Cancer. ACS OMEGA 2025; 10:17551-17564. [PMID: 40352518 PMCID: PMC12059926 DOI: 10.1021/acsomega.4c11252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/10/2025] [Accepted: 04/16/2025] [Indexed: 05/14/2025]
Abstract
The study aims to synthesize, characterize, and evaluate a series of novel compounds for their potential anticancer activity targeting the A549 lung cancer cell line. The hydrazonothiazole-based pyridine compounds (2a-2o) were characterized through melting point analysis, 1H NMR, 13C NMR, and high-resolution mass spectrometry (HRMS). Their physicochemical properties were evaluated using in silico tools, and all compounds were found to comply with Lipinski's drug-likeness rule, suggesting favorable drug-like characteristics. Biological activity studies revealed that all synthesized compounds exhibited potent cytotoxicity against the A549 cell line, with several compounds showing greater efficacy than the standard drug, cisplatin. Selectivity indices were also calculated, revealing that compounds 2b, 2c, 2f, and 2m exhibited enhanced selectivity for cancer cells relative to healthy cells. Mechanistic studies using flow cytometry demonstrated that these compounds induced apoptosis, with compound 2m demonstrating the highest apoptotic activity. Mitochondrial membrane potential assay and caspase-3 activation confirmed the involvement of mitochondrial pathways in apoptosis induction. Furthermore, MMP-9 enzyme inhibition assays identified compound 2f as the most effective inhibitor, with molecular docking and dynamics simulation studies confirming its strong binding interactions with key residues in the enzyme's active site. Overall, this study suggests that the synthesized compounds, particularly 2b, 2c, 2f, and 2m, hold promise as potential anticancer agents for further development and optimization in the treatment of lung cancer.
Collapse
Affiliation(s)
- Demokrat Nuha
- Anadolu
University, Faculty of Pharmacy,
Department of Pharmaceutical Chemistry, Eskişehir 26470, Turkey
- University
for Business and Technology, Faculty of
Pharmacy, Lagjja Kalabria, Prishtina 10000, Kosovo
| | - Sam Dawbaa
- Anadolu
University, Faculty of Pharmacy,
Department of Pharmaceutical Chemistry, Eskişehir 26470, Turkey
- Al-Hikma
University, Faculty of Medical Sciences,
Department of Pharmacy, Dhamar Yemen
- Thamar
University, Faculty of Medical Sciences,
Department of Doctor of Pharmacy (PharmD), Dhamar 87246, Yemen
| | - Asaf Evrim Evren
- Anadolu
University, Faculty of Pharmacy,
Department of Pharmaceutical Chemistry, Eskişehir 26470, Turkey
- Bilecik
Seyh Edebali University, Vocational School
of Health Services, Pharmacy Services, Bilecik 11230, Turkey
| | - Zennure Şevval Çi̇yanci
- Anadolu
University, Faculty of Pharmacy,
Department of Biochemistry, Eskişehir 26470, Turkey
| | - Halide Edip Temel
- Anadolu
University, Faculty of Pharmacy,
Department of Biochemistry, Eskişehir 26470, Turkey
| | - Gülşen
Akalin Çiftçi
- Anadolu
University, Faculty of Pharmacy,
Department of Biochemistry, Eskişehir 26470, Turkey
| | - Leyla Yurttaş
- Anadolu
University, Faculty of Pharmacy,
Department of Pharmaceutical Chemistry, Eskişehir 26470, Turkey
| |
Collapse
|
2
|
Martínez-Montiel M, Arrighi G, Begines P, González-Bakker A, Puerta A, Fernandes MX, Merino-Montiel P, Montiel-Smith S, Nocentini A, Supuran CT, Padrón JM, Fernández-Bolaños JG, López Ó. Multifaceted Sulfonamide-Derived Thiosemicarbazones: Combining Metal Chelation and Carbonic Anhydrases Inhibition in Anticancer Therapy. Int J Mol Sci 2025; 26:1225. [PMID: 39940992 PMCID: PMC11818225 DOI: 10.3390/ijms26031225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
The selective inhibition of key enzymes, such as carbonic anhydrases (CAs IX and XII), which are overexpressed in cancer tissues, has emerged as a promising strategy in cancer research. However, a multitarget approach is often preferred to achieve enhanced therapeutic outcomes. In this study, aryl sulfonamides were conjugated with a thiosemicarbazone moiety to enable dual functionality: the inhibition of CAs and the chelation of metal cations. Several structural factors were systematically modified, including the position of the sulfonamido group, the length of the linker, the nature of the aromatic residue, and the type of substituents. Tumor-associated CAs IX and XII inhibition was evaluated using the stopped-flow CO2 hydrase assay, and the inhibition constants (Ki) were determined. The most promising compounds were further analyzed through molecular docking simulations. Metal chelation capabilities were evaluated using UV-Vis spectroscopy, while antiproliferative activities were measured using the sulforhodamine B (SBR) assay. Additionally, holotomographic 3D microscopy was employed to investigate the mechanisms of cell death. Sulfonamido-derived Schiff bases were synthesized through a three-step procedure that did not require column chromatography purification: (1) isothiocyanation of amino-sulfonamides, (2) nucleophilic addition of hydrazine, and (3) acid-promoted condensation with different aldehydes (benzaldehydes or pyridine-2-carboxaldehyde). The synthesized compounds exhibited inhibition of CAs in the low nanomolar to submicromolar range, with selectivity largely influenced by structural features. Notably, the m-sulfonamide derivative 5b, bearing a pyridin-2-yl residue, demonstrated potent and selective inhibition of CA IX (Ki = 4.9 nM) and XII (Ki = 5.6 nM). Additionally, it efficiently chelated Fe2+, Fe3+, and Cu2+ and showed promising antiproliferative activity (GI50 4.5-10 µM). Mechanistic studies revealed that apoptosis was involved in its mode of action. Therefore, the synergistic integration of sulfonamides and thiosemicarbazones represents an effective strategy for the development of multimodal anticancer agents.
Collapse
Affiliation(s)
- Mónica Martínez-Montiel
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain; (M.M.-M.); (G.A.); (P.B.); (J.G.F.-B.)
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla 72570, PUE, Mexico; (P.M.-M.); (S.M.-S.)
| | - Giulia Arrighi
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain; (M.M.-M.); (G.A.); (P.B.); (J.G.F.-B.)
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, 50019 Florence, Italy; (A.N.); (C.T.S.)
| | - Paloma Begines
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain; (M.M.-M.); (G.A.); (P.B.); (J.G.F.-B.)
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, 50019 Florence, Italy; (A.N.); (C.T.S.)
| | - Aday González-Bakker
- BioLab, Instituto Universitario de Bio-Orgánica “Antonio González” (IUBO-AG), Universidad de La Laguna, c/Astrofísico Francisco Sánchez 2, E-38206 La Laguna, Spain; (A.G.-B.); (A.P.); (M.X.F.); (J.M.P.)
| | - Adrián Puerta
- BioLab, Instituto Universitario de Bio-Orgánica “Antonio González” (IUBO-AG), Universidad de La Laguna, c/Astrofísico Francisco Sánchez 2, E-38206 La Laguna, Spain; (A.G.-B.); (A.P.); (M.X.F.); (J.M.P.)
| | - Miguel X. Fernandes
- BioLab, Instituto Universitario de Bio-Orgánica “Antonio González” (IUBO-AG), Universidad de La Laguna, c/Astrofísico Francisco Sánchez 2, E-38206 La Laguna, Spain; (A.G.-B.); (A.P.); (M.X.F.); (J.M.P.)
| | - Penélope Merino-Montiel
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla 72570, PUE, Mexico; (P.M.-M.); (S.M.-S.)
| | - Sara Montiel-Smith
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla 72570, PUE, Mexico; (P.M.-M.); (S.M.-S.)
| | - Alessio Nocentini
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, 50019 Florence, Italy; (A.N.); (C.T.S.)
| | - Claudiu T. Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, 50019 Florence, Italy; (A.N.); (C.T.S.)
| | - José M. Padrón
- BioLab, Instituto Universitario de Bio-Orgánica “Antonio González” (IUBO-AG), Universidad de La Laguna, c/Astrofísico Francisco Sánchez 2, E-38206 La Laguna, Spain; (A.G.-B.); (A.P.); (M.X.F.); (J.M.P.)
| | - José G. Fernández-Bolaños
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain; (M.M.-M.); (G.A.); (P.B.); (J.G.F.-B.)
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain; (M.M.-M.); (G.A.); (P.B.); (J.G.F.-B.)
| |
Collapse
|
3
|
de Araujo Fernandes AG, Lafratta AE, Luz CP, Levy D, de Paula Faria D, Buchpiguel CA, Abram U, Deflon VM, Navarro Marques FL. [ 99mTc]Technetium and Rhenium Dithiocarbazate Complexes: Chemical Synthesis and Biological Assessment. Pharmaceutics 2025; 17:100. [PMID: 39861748 PMCID: PMC11768621 DOI: 10.3390/pharmaceutics17010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/24/2024] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Dithiocarbazates (DTCs) and their metal complexes have been studied regarding their property as anticancer activities. In this work, using S-benzyl-5-hydroxy-3-methyl-5-phenyl-4,5-dihydro-1H-pirazol-1-carbodithionate (H2bdtc), we prepared [ReO(bdtc)(Hbdtc)] and [[99mTc]TcO(bdtc)(Hbdtc)] complexes for tumor uptake and animal biodistribution studies. METHODS Re complex was prepared by a reaction of H2bdtc and (NBu4)[ReOCl4], the final product was characterized by IR, 1H NMR, CHN, and MS-ESI. 99mTc complex was prepared by the reaction of H2bdtc and [[99mTc]TcO4- and analyzed by planar and HPLC radiochromatography, and the stability was evaluated against amino acids and plasma. Biodistribution was performed in C57B/6 mice with B16F10 and TM1M implanted tumor. RESULTS Re is asymmetric coordinated by two dithiocarbazate ligands, one with O,N,S chelation, and the other with N,S chelation; [[99mTc]TcO(bdtc)(Hbdtc)] was prepared with a radiochemical yield of around 93%. The radioactive complex is hydrophobic (LogP = 1.03), stable for 6 h in PBS and L-histidine solution; stable for 1 h in plasma, but unstable in the presence of L-cysteine. Ex vivo biodistribution demonstrated that the compound has a fast and persistent (until 2 h) uptake by the spleen (55.46%), and tumor B16F10 and TM1M uptake is lower than 1%. In vivo SPECT/CT imaging confirmed ex vivo biodistribution, except by heterogenous TM1M accumulation but not in the B16-F10 lineage. CONCLUSIONS H2bdtc proved to be an interesting chelator for rhenium or [99mTc]technetium. The right spleen uptake opened the opportunity to deepen the study of the molecule in this tissue and justifies future studies to identify the reason of heterogenous uptake in TM1M tumor uptake.
Collapse
Affiliation(s)
- André Gustavo de Araujo Fernandes
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, SP, Brazil;
- Departamento de Ciências Exatas, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, BA, Brazil
| | - Alyne Eloise Lafratta
- Laboratory of Nuclear Medicine (LIM-43), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-911, SP, Brazil; (A.E.L.); (C.P.L.); (D.d.P.F.); (C.A.B.)
| | - Carolina Portela Luz
- Laboratory of Nuclear Medicine (LIM-43), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-911, SP, Brazil; (A.E.L.); (C.P.L.); (D.d.P.F.); (C.A.B.)
| | - Debora Levy
- Lipids, Oxidation, and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil;
| | - Daniele de Paula Faria
- Laboratory of Nuclear Medicine (LIM-43), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-911, SP, Brazil; (A.E.L.); (C.P.L.); (D.d.P.F.); (C.A.B.)
| | - Carlos Alberto Buchpiguel
- Laboratory of Nuclear Medicine (LIM-43), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-911, SP, Brazil; (A.E.L.); (C.P.L.); (D.d.P.F.); (C.A.B.)
| | - Ulrich Abram
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstr. 34-36, D-14195 Berlin, Germany;
| | - Victor Marcelo Deflon
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, SP, Brazil;
| | - Fabio Luiz Navarro Marques
- Laboratory of Nuclear Medicine (LIM-43), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-911, SP, Brazil; (A.E.L.); (C.P.L.); (D.d.P.F.); (C.A.B.)
| |
Collapse
|
4
|
Awaji AA, Alhamdi HW, Alshehri KM, Alfaifi MY, Shati AA, Elbehairi SEI, Radwan NAF, Hafez HS, Elshaarawy RFM, Welson M. Bio-molecular Fe(III) and Zn(II) complexes stimulate the interplay between PI3K/AKT1/EGFR inhibition and induce autophagy and apoptosis in epidermal skin cell cancer. J Inorg Biochem 2025; 262:112720. [PMID: 39243420 DOI: 10.1016/j.jinorgbio.2024.112720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/20/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
This study investigated the effectiveness and safety of a hybrid thiosemicarbazone ligand (HL) and its metal complexes (MnII-L, FeIII-L, NiII-HL, and ZnII-HL) against epidermoid carcinoma (A-431). The results indicated that FeIII-L is the most effective, with a high selectivity index of 8.01 and an IC50 of 17.49 ± 2.12 μM for FeIII-L. The study also revealed that the synthesized complexes effectively inhibited gene expression of the Phosphoinositide 3-kinases (PI3K), alpha serine/threonine-protein kinase (AKT1), epidermal growth factor receptor (EGFR2) axis mechanism (P < 0.0001). Additionally, these complexes trigger a chain of events that include the inhibition of proliferating cell nuclear antigen (PCNA), transforming growth factor β1 (TGF β1), and topoisomerase II, and leading to a decrease in epidermoid cell proliferation. Furthermore, the inhibitory activity also resulted in the upregulation of caspases 3 and 9, indicating the acceleration of apoptotic markers, and the down regulation of miRNA221, suggesting a decrease in epidermoid proliferation. Molecular modeling of FeIII-L revealed that it had the best binding energy -8.02 kcal/mol and interacted with five hydrophobic π-interactions with Val270, Gln79, Leu210, and Trp80 against AKT1. Furthermore, the binding orientation of FeIII-L with Topoisomerase II was found to be the most stable, with a binding energy -8.25 kcal/mol. This stability was attributed to the presence of five hydrophobic π-interactions with His759, Guanin13, Cytosin8, and Ala465, and numerous ionic interactions, which were more favorable than those of doxorubicin and etoposide for new regimens of chemotherapeutic activities against skin cancer.
Collapse
Affiliation(s)
- Aeshah A Awaji
- Department of Biology, Faculty of Science, University College of Taymaa, University of Tabuk, Tabuk 71491, Saudi Arabia.
| | - Heba W Alhamdi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | | | - Mohammad Y Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia; Tissue Culture and Cancer Biology Research Laboratory, King Khalid University, Abha 9004, Saudi Arabia.
| | - Ali A Shati
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia; Tissue Culture and Cancer Biology Research Laboratory, King Khalid University, Abha 9004, Saudi Arabia.
| | - Serag Eldin I Elbehairi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia; Tissue Culture and Cancer Biology Research Laboratory, King Khalid University, Abha 9004, Saudi Arabia; Cell Culture Lab, Egyptian Organization for Biological Products and Vaccines (VACSERA Holding Company), 51 Wezaret El-Zeraa St., Agouza, Giza, Egypt.
| | - Nancy A-F Radwan
- Zoology Department, Faculty of Science, Arish University, 45511 El Arish, Egypt.
| | - Hani S Hafez
- Zoology Department, Faculty of Science, Suez University 43533, Suez, Egypt.
| | - Reda F M Elshaarawy
- Department of Chemistry, Faculty of Science, Suez University, 43533 Suez, Egypt; Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany.
| | - Mary Welson
- Zoology Department, Faculty of Science, Suez University 43533, Suez, Egypt
| |
Collapse
|
5
|
Musa M, Bello M, Agwamba EC. Synthesis, Molecular Docking, and Anticancer Screening of Ester-Based Thiazole Derivatives. Chem Biodivers 2024; 21:e202401159. [PMID: 39292150 DOI: 10.1002/cbdv.202401159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/29/2024] [Indexed: 09/19/2024]
Abstract
This study investigates the potential of five compounds as novel anticancer agents. We examined their efficacy, mechanisms of action, and impact on various cancer cell lines, through a comprehensive set of experiments. Notably, compound 3e demonstrated superior activity compared to the positive control cisplatin, with a GI50 value of 6.3±0.7 μM against the breast cancer cell line (MCF-7). Compound 3b also displayed remarkable growth inhibition, yielding GI50 values of 8.7±0.2 μM (MCF-7) and 8.9±0.5 μM against the colon cancer cell line (HCT-116). Cell count experiments further confirmed the potent inhibitory effects of compounds 3e, 3b, and 3c on MCF-7 and HCT-116 cell growth. Compound 3e demonstrated a reduction of 55-60 % at GI50 and complete inhibition (100 %) at 2x GI50. Compound 3b exhibited 50-55 % reduction (GI50) and 90-95 % inhibition (2x GI50) in HCT-116 cells. Compound 3c displayed 75-80 % inhibition (2x GI50) and 35-40 % inhibition (GI50) in HCT-116 cells. In-depth mechanistic investigations unveiled valuable insights into the mode of action of compound 3e. The cell-cycle assay demonstrated G2/M phase arrest, DNA damage, and caspase-mediated apoptosis in both MCF-7 and HCT-116 cells. Caspase activation indicated a significant increase in apoptosis following exposure to compound 3e. Furthermore, compound 3e induced reactive oxygen species (ROS) production, influencing HCT-116 and MCF-7 cells differently. Elevated ROS production in HCT-116 cells and distinct effects in MCF-7 cells contribute to a deeper understanding of the cytotoxic mechanisms of compound 3e. Overall, these findings highlight the potential of the investigated compounds, particularly compound 3e, as effective inducers of apoptosis in cancer cells. Mechanistic insights into cell cycle arrest, caspase-mediated apoptosis, and ROS modulation provide a comprehensive understanding of their cytotoxic effects. This study offers significant contribution to the development of promising anticancer agents and their therapeutic applications.
Collapse
Affiliation(s)
- Mustapha Musa
- GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Triumph Road, Nottingham, NG7 2TU, UK
- Department of Chemistry, Shehu Shagari College of Education, Sokoto, Sokoto State, Nigeria
| | - Muhammadu Bello
- Department of Chemistry, Shehu Shagari College of Education, Sokoto, Sokoto State, Nigeria
| | - Ernest C Agwamba
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Chemistry, Covenant University, Ota, Nigeria
| |
Collapse
|
6
|
Zavaroni A, Riva E, Borghesani V, Donati G, Santoro F, D’Amore VM, Tegoni M, Pelosi G, Buschini A, Rogolino D, Carcelli M. Synthesis and Preliminary Studies for In Vitro Biological Activity of Two New Water-Soluble Bis(thio)carbohydrazones and Their Copper(II) and Zinc(II) Complexes. Int J Mol Sci 2024; 25:10831. [PMID: 39409159 PMCID: PMC11476552 DOI: 10.3390/ijms251910831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Research in the field of metallodrugs is continually increasing. However, it is often limited by the poor solubility in water of the metal complexes. To try to overcome this problem, the two new ligands bis-(sodium 3-methoxy-5-sulfonate-salicylaldehyde)thiocarbohydrazone (bis-TCH, Na2H4L1) and bis-(sodium 3-methoxy-5-sulfonate-salicylaldehyde)carbohydrazone (bis-CH, Na2H4L2) were synthesized and characterized, both achieving high solubility in water. The speciation of the ligands and their coordinating behaviour towards the biologically relevant Cu(II) and Zn(II) ions were studied spectroscopically and potentiometrically, determining the pKas of the ligands and the formation constants of the complex species. The monometallic and bimetallic Cu(II) and Zn(II) complexes were isolated, and the single-crystal X-ray structure of [Cu2(NaHL1)(H2O)7].3.5H2O was discussed. Finally, preliminary studies of the in vitro cytotoxic properties of the new compounds were started on normal (Hs27) and cancer (U937) cell lines. bis-TCH was able to induce a growth inhibition effect between 40% and 45% in both cell lines; bis-CH did not produce a reduction in cell viability in Hs27 cells but revealed mild antiproliferative activity after 72 h of treatment in U937 cancer cells (GI50 = 46.5 ± 4.94 μg/mL). Coordination of the Cu(II) ions increased the toxicity of the compounds, while, in contrast, Zn(II) complexes were not cytotoxic.
Collapse
Affiliation(s)
- Alessio Zavaroni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy; (A.Z.); (E.R.); (V.B.); (M.T.); (G.P.); (A.B.); (D.R.)
| | - Elena Riva
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy; (A.Z.); (E.R.); (V.B.); (M.T.); (G.P.); (A.B.); (D.R.)
| | - Valentina Borghesani
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy; (A.Z.); (E.R.); (V.B.); (M.T.); (G.P.); (A.B.); (D.R.)
| | - Greta Donati
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, 49, 80131 Napoli, Italy; (G.D.); (F.S.); (V.M.D.)
| | - Federica Santoro
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, 49, 80131 Napoli, Italy; (G.D.); (F.S.); (V.M.D.)
| | - Vincenzo Maria D’Amore
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, 49, 80131 Napoli, Italy; (G.D.); (F.S.); (V.M.D.)
| | - Matteo Tegoni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy; (A.Z.); (E.R.); (V.B.); (M.T.); (G.P.); (A.B.); (D.R.)
| | - Giorgio Pelosi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy; (A.Z.); (E.R.); (V.B.); (M.T.); (G.P.); (A.B.); (D.R.)
- Centre for Molecular and Translational Oncology, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Annamaria Buschini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy; (A.Z.); (E.R.); (V.B.); (M.T.); (G.P.); (A.B.); (D.R.)
- Centre for Molecular and Translational Oncology, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Dominga Rogolino
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy; (A.Z.); (E.R.); (V.B.); (M.T.); (G.P.); (A.B.); (D.R.)
| | - Mauro Carcelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy; (A.Z.); (E.R.); (V.B.); (M.T.); (G.P.); (A.B.); (D.R.)
| |
Collapse
|
7
|
Chagaleti BK, B SK, G V A, Rajagopal R, Alfarhan A, Arockiaraj J, Muthu Kumaradoss K, Karthick Raja Namasivayam S. Targeting cyclin-dependent kinase 2 CDK2: Insights from molecular docking and dynamics simulation - A systematic computational approach to discover novel cancer therapeutics. Comput Biol Chem 2024; 112:108134. [PMID: 38964206 DOI: 10.1016/j.compbiolchem.2024.108134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024]
Abstract
Global public health is confronted with significant challenges due to the prevalence of cancer and the emergence of treatment resistance. This work focuses on the identification of cyclin-dependent kinase 2 (CDK2) through a systematic computational approach to discover novel cancer therapeutics. A ligand-based pharmacophore model was initially developed using a training set of seven potent CDK2 inhibitors. The obtained most robust model was characterized by three features: one donor (|Don|) and two acceptors (|Acc|). Screening this model against the ZINC database resulted in identifying 108 hits, which underwent further molecular docking studies. The docking results indicated binding affinity, with energy values ranging from -6.59 kcal mol⁻¹ to -7.40 kcal mol⁻¹ compared to the standard Roscovitine. The top 10 compounds (Z1-Z10) selected from the docking data were further screened for ADMET profiling, ensuring their compliance with pharmacokinetic and toxicological criteria. The top 3 compounds (Z1-Z3) chosen from the docking were subjected to Density Functional Theory (DFT) studies. They revealed significant variations in electronic properties, providing insights into the reactivity, stability, and polarity of these compounds. Molecular dynamics simulations confirmed the stability of the ligand-protein complexes, with acceptable RMSD and RMSF values. Specifically, compound Z1 demonstrated stability, around 2.4 Å, and maintained throughout the 100 ns simulation period with minimal conformational changes, stable RMSD, and consistent protein-ligand interactions.
Collapse
Affiliation(s)
- Bharath Kumar Chagaleti
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu 603203, India
| | - Shantha Kumar B
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu 603203, India
| | - Anjana G V
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu 603203, India
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box No. 2455, Riyadh 11451, Saudi Arabia
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box No. 2455, Riyadh 11451, Saudi Arabia
| | - Jesu Arockiaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu 603203, India.
| | - Kathiravan Muthu Kumaradoss
- Dr. APJ Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu 603203, India.
| | - S Karthick Raja Namasivayam
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu 602105, India.
| |
Collapse
|
8
|
Aggarwal R, Kumar P, Kumar S, Sadana R, Lwanga R, Campbell J, Chaubal V. Design, Synthesis, and In Vitro Cytotoxic Studies of Some Novel Arylidene-Hydrazinyl-Thiazoles as Anticancer and Apoptosis-Inducing Agents. ACS OMEGA 2024; 9:38832-38845. [PMID: 39310139 PMCID: PMC11411527 DOI: 10.1021/acsomega.4c04924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/03/2024] [Accepted: 08/02/2024] [Indexed: 09/25/2024]
Abstract
Cancer, defined by uncontrolled cell growth, poses a significant global health challenge, necessitating the development of new anticancer drugs crucial to address drug resistance, side effects, and the need for combination therapies. The study presents the design, synthesis, and anticancer screening of a series of novel functionalized arylidene-hydrazinyl-thiazoles against various human cancer cell lines. The environmentally benign synthetic protocol involves the visible-light prompted, NBS-mediated domino reaction of thiosemicarbazide, heteroaryl aldehydes, and unsymmetrical 1,3-diketones. The regioselective organic transformation delivered the single regioisomeric product, characterized unambiguously through detailed 2D NMR spectral studies. In vitro cytotoxic studies revealed that the synthesized derivatives exhibited excellent cytotoxic potential against BxPC-3, MOLT-4, and MCF-7 cancer cell lines. Notably, compounds 4m, 4n, and 4r showed significant cytotoxicity, reducing cell survival to 23.85-26.45% for BxPC-3, 30.08-33.30% for MOLT-4, and 44.40-47.63% for MCF-7 at a concentration of 10 μM. These compounds profoundly induced apoptosis, evidenced by increased caspase-3/7 activity, loss of mitochondrial membrane potential, and modulation of Bcl2 and Bax gene expression. Additionally, these compounds caused robust cell cycle arrest at the G2/M phase by inhibiting tubulin polymerization, indicating their multifaceted impact on cancer cells.
Collapse
Affiliation(s)
- Ranjana Aggarwal
- Department
of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119, India
- Council
of Scientific and Industrial Research-National Institute of Science
Communication and Policy Research, New Delhi 110012, India
| | - Prince Kumar
- Department
of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Suresh Kumar
- Department
of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Rachna Sadana
- Department
of Natural Sciences, University of Houston, Downtown, Houston, Texas 77002, United States
| | - Robert Lwanga
- Department
of Natural Sciences, University of Houston, Downtown, Houston, Texas 77002, United States
| | - Jude Campbell
- Department
of Natural Sciences, University of Houston, Downtown, Houston, Texas 77002, United States
| | - Vaishali Chaubal
- Department
of Natural Sciences, University of Houston, Downtown, Houston, Texas 77002, United States
| |
Collapse
|
9
|
Li W, Li T, Pan Y, Li S, Xu G, Zhang Z, Liang H, Yang F. Designing a Mitochondria-Targeted Theranostic Cyclometalated Iridium(III) Complex: Overcoming Cisplatin Resistance and Inhibiting Tumor Metastasis through Necroptosis and Immune Response. J Med Chem 2024; 67:3843-3859. [PMID: 38442035 DOI: 10.1021/acs.jmedchem.3c02227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
To develop a potential theranostic metal agent to reverse the resistance of cancer cells to cisplatin and effectively inhibit tumor growth and metastasis, we proposed to design a cyclometalated iridium (Ir) complex based on the properties of the tumor environment (TME). To the end, we designed and synthesized a series of Ir(III) 2-hydroxy-1-naphthaldehyde thiosemicarbazone complexes by modifying the hydrogen atom(s) of the N-3 position of 2-hydroxy-1-naphthaldehyde thiosemicarbazone compounds and the structure of cyclometalated Ir(III) dimers and then investigated their structure-activity and structure-fluorescence relationships to obtain an Ir(III) complex (Ir5) with remarkable fluorescence and cytotoxicity to cancer cells. Ir5 not only possesses mitochondria-targeted properties but also overcomes cisplatin resistance and effectively inhibits tumor growth and metastasis in vivo. Besides, we confirmed the anticancer mechanisms of Ir5 acting on different components in the TME: directly killing liver cancer cells by inducing necroptosis and activating the necroptosis-related immune response.
Collapse
Affiliation(s)
- Wenjuan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Ting Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Ying Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Shanhe Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Gang Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Zhenlei Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| |
Collapse
|
10
|
Tian W, Zhong W, Yang Z, Chen L, Lin S, Li Y, Wang Y, Yang P, Long X. Synthesis, characterization and discovery of multiple anticancer mechanisms of dibutyltin complexes based on salen-like ligands. J Inorg Biochem 2024; 251:112434. [PMID: 38029537 DOI: 10.1016/j.jinorgbio.2023.112434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/15/2023] [Accepted: 11/19/2023] [Indexed: 12/01/2023]
Abstract
A series of novel dibutyltin complexes based on salen-like ligands (S01-S03) were synthesized and characterized using ultraviolet-visible spectra,infrared spectra, 1H, 13C, and 119Sn nuclear magnetic resonance, high-resolution mass spectrometry, X-ray crystallography, and thermogravimetric analysis. Complex S03 had excellent anticancer activity in vitro (IC50 = 1.5 ± 0.2 μM in CAL-27 cell lines), which highly activated ROS expression levels and induced apoptosis and cell cycle arrest at the G2/M phase. Interestingly, complex S03 induced cancer cell death through multiple mechanisms (mitochondrial pathway, ER-stress pathway, and DNA damage pathway). This study reveals new mechanisms of organotin complexes and provides new insights into the development of organotin metal complexes as anticancer drugs in the future, and compounds with multiple anticancer mechanisms may be a new strategy for delaying or overcoming drug resistance to chemotherapy and target therapy.
Collapse
Affiliation(s)
- Wei Tian
- Guangxi International Zhuang Medicine Hospital, Nanning 530201, China; Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530201, China; Guangxi Institute of Ethnic Medicine, Nanning 530201, China.
| | - Wen Zhong
- Guangxi International Zhuang Medicine Hospital, Nanning 530201, China; Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530201, China; Guangxi Institute of Ethnic Medicine, Nanning 530201, China
| | - Zengyan Yang
- Guangxi International Zhuang Medicine Hospital, Nanning 530201, China; Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530201, China; Guangxi Institute of Ethnic Medicine, Nanning 530201, China
| | - Ling Chen
- Guangxi International Zhuang Medicine Hospital, Nanning 530201, China; Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530201, China; Guangxi Institute of Ethnic Medicine, Nanning 530201, China
| | - Shijie Lin
- Guangxi International Zhuang Medicine Hospital, Nanning 530201, China; Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530201, China; Guangxi Institute of Ethnic Medicine, Nanning 530201, China
| | - Yanping Li
- Guangxi International Zhuang Medicine Hospital, Nanning 530201, China; Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530201, China; Guangxi Institute of Ethnic Medicine, Nanning 530201, China
| | - Yuxing Wang
- Guangxi International Zhuang Medicine Hospital, Nanning 530201, China; Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530201, China; Guangxi Institute of Ethnic Medicine, Nanning 530201, China
| | - Peilin Yang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Xing Long
- Guangxi International Zhuang Medicine Hospital, Nanning 530201, China; Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530201, China; Guangxi Institute of Ethnic Medicine, Nanning 530201, China
| |
Collapse
|
11
|
Xiang S, Lu X. Selective type II TRK inhibitors overcome xDFG mutation mediated acquired resistance to the second-generation inhibitors selitrectinib and repotrectinib. Acta Pharm Sin B 2024; 14:517-532. [PMID: 38322338 PMCID: PMC10840435 DOI: 10.1016/j.apsb.2023.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/15/2023] [Accepted: 10/24/2023] [Indexed: 02/08/2024] Open
Abstract
Neurotrophic receptor kinase (NTRK) fusions are actionable oncogenic drivers of multiple pediatric and adult solid tumors, and tropomyosin receptor kinase (TRK) has been considered as an attractive therapeutic target for "pan-cancer" harboring these fusions. Currently, two generations TRK inhibitors have been developed. The representative second-generation inhibitors selitrectinib and repotrectinib were designed to overcome clinic acquired resistance of the first-generation inhibitors larotrectinib or entrectinib resulted from solvent-front and gatekeeper on-target mutations. However, xDFG (TRKAG667C/A/S, homologous TRKCG696C/A/S) and some double mutations still confer resistance to selitrectinib and repotrectinib, and overcoming these resistances represents a major unmet clinical need. In this review, we summarize the acquired resistance mechanism of the first- and second-generation TRK inhibitors, and firstly put forward the emerging selective type II TRK inhibitors to overcome xDFG mutations mediated resistance. Additionally, we concluded our perspectives on new challenges and future directions in this field.
Collapse
Affiliation(s)
- Shuang Xiang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
12
|
Xu S, Luo W, Zhu M, Zhao L, Gao L, Liang H, Zhang Z, Yang F. Human Serum Albumin-Platinum(II) Agent Nanoparticles Inhibit Tumor Growth Through Multimodal Action Against the Tumor Microenvironment. Mol Pharm 2024; 21:346-357. [PMID: 38015620 DOI: 10.1021/acs.molpharmaceut.3c00881] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
To overcome the limitations of traditional platinum (Pt)-based drugs and further improve the targeting ability and therapeutic efficacy in vivo, we proposed to design a human serum albumin (HSA)-Pt agent complex nanoparticle (NP) for cancer treatment by multimodal action against the tumor microenvironment. We not only synthesized a series of Pt(II) di-2-pyridone thiosemicarbazone compounds and obtained a Pt(II) agent [Pt(Dp44mT)Cl] with significant anticancer activity but also successfully constructed a novel HSA-Pt(Dp44mT) complex nanoparticle delivery system. The structure of the HSA-Pt(Dp44mT) complex revealed that Pt(Dp44mT)Cl binds to the IIA subdomain of HSA and coordinates with His-242. The HSA-His242-Pt-Dp44mT NPs had an obvious effect on the inhibition of tumor growth, which was superior to that of Dp44mT and Pt(Dp44mT)Cl, and they had almost no toxicity. In addition, the HSA-His242-Pt-Dp44mT NPs were found to kill cancer cells by inducing apoptosis, autophagy, and inhibiting angiogenesis.
Collapse
Affiliation(s)
- Shihang Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Weicong Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Minghui Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Lei Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Lijuan Gao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Zhenlei Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| |
Collapse
|
13
|
Rodríguez-Arce E, Gavrilov E, Alvite X, Nayeem N, León IE, Neary MC, Otero L, Gambino D, Olea Azar C, Contel M. 5-Nitrofuryl-Containing Thiosemicarbazone Gold(I) Compounds: Synthesis, Stability Studies, and Anticancer Activity. Chempluschem 2023; 88:e202300115. [PMID: 37191319 PMCID: PMC10651801 DOI: 10.1002/cplu.202300115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/21/2023] [Indexed: 05/17/2023]
Abstract
This work describes the synthesis of four gold(I) [AuClL] compounds containing chloro and biologically active protonated thiosemicarbazones based on 5-nitrofuryl (L=HSTC). The stability of the compounds in dichloromethane, DMSO, and DMSO/culture media solutions was investigated by spectroscopy, cyclic voltammetry, and conductimetry, indicating the formation overtime of cationic monometallic [Au(HTSC)(DMSO)]± or [Au(HTSC)2 ]± , and/or dimeric species. Neutral [{Au(TSC)}2 ] species were obtained from one of the compounds in dichlomethane/n-hexane solution and characterized by X-ray crystallography revealing a Au-Au bond, and deprotonated thiosemicarbazone (TSC). The cytotoxicity of the gold compounds and thiosemicarbazone ligands was evaluated against selected cancer cell lines and compared to that of Auranofin. Studies of the most stable, cytotoxic, and selective compound on a renal cancer cell line (Caki-1) demonstrated its relevant antimigratory and anti-angiogenic properties, and preferential accumulation in the cell nuclei. Its mode of action seems to involve interaction with DNA, and subsequent cell death via apoptosis.
Collapse
Affiliation(s)
- Esteban Rodríguez-Arce
- Departamento de Química Inorgánica y Analítica, Universidad de Chile, Casilla 233, Santiago, Chile
- Department of Chemistry and Brooklyn College Cancer Center, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA
- Área Química Inorgánica, Facultad de Química, Universidad de la República, Gral. Flores 2124, 11800, Montevideo, Uruguay
| | - Eric Gavrilov
- Department of Chemistry and Brooklyn College Cancer Center, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA
| | - Ximena Alvite
- Área Química Inorgánica, Facultad de Química, Universidad de la República, Gral. Flores 2124, 11800, Montevideo, Uruguay
| | - Nazia Nayeem
- Department of Chemistry and Brooklyn College Cancer Center, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA
- Biology, Biochemistry, and Chemistry PhD Programs, The Graduate Center, The City University of New York, New York, NY, 10016, USA
| | - Ignacio E León
- Department of Chemistry and Brooklyn College Cancer Center, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA
- CEQUINOR (CCT-CONICET La Plata, Asociado a CIC), Departamento de Química, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata, 1900, Argentina
| | - Michelle C Neary
- Chemistry Department, Hunter College, The City University of New York, New York, NY, 10065, USA
| | - Lucía Otero
- Área Química Inorgánica, Facultad de Química, Universidad de la República, Gral. Flores 2124, 11800, Montevideo, Uruguay
| | - Dinorah Gambino
- Área Química Inorgánica, Facultad de Química, Universidad de la República, Gral. Flores 2124, 11800, Montevideo, Uruguay
| | - Claudio Olea Azar
- Departamento de Química Inorgánica y Analítica, Universidad de Chile, Casilla 233, Santiago, Chile
| | - María Contel
- Department of Chemistry and Brooklyn College Cancer Center, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA
- Biology, Biochemistry, and Chemistry PhD Programs, The Graduate Center, The City University of New York, New York, NY, 10016, USA
| |
Collapse
|
14
|
de Melo APL, Flores AFC, Bresolin L, Tirloni B, de Oliveira AB. 2-{1-[(6 R, S)-3,5,5,6,8,8-Hexamethyl-5,6,7,8-tetra-hydro-naphthalen-2-yl]ethyl-idene}- N-methyl-hydrazinecarbo-thioamide. IUCRDATA 2023; 8:x231020. [PMID: 38313070 PMCID: PMC10833131 DOI: 10.1107/s2414314623010209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 02/06/2024] Open
Abstract
The reaction between a racemic mixture of (R,S)-fixolide and 4-methyl-thio-semicarbazide in ethanol with a 1:1 stoichiometric ratio and catalysed with HCl, yielded the title compound, C20H31N3S [common name: (R,S)-fixolide 4-methyl-thio-semicarbazone]. There is one crystallographically independent mol-ecule in the asymmetric unit, which is disordered over the aliphatic ring [site-occupancy ratio = 0.667 (13):0.333 (13)]. The disorder includes the chiral C atom, the neighbouring methyl-ene group and the methyl H atoms of the methyl group bonded to the chiral C atom. The maximum deviations from the mean plane through the disordered aliphatic ring amount to 0.328 (6) and -0.334 (6) Å [r.m.s.d. = 0.2061 Å], and -0.3677 (12) and 0.3380 (12) Å [r.m.s.d. = 0.2198 Å] for the two different sites. Both fragments show a half-chair conformation. Additionally, the N-N-C(=S)-N entity is approximately planar, with the maximum deviation from the mean plane through the selected atoms being 0.0135 (18) Å [r.m.s.d. = 0.0100 Å]. The mol-ecule is not planar due to the dihedral angle between the thio-semicarbazone entity and the aromatic ring, which amounts to 51.8 (1)°, and due to the sp 3-hybridized carbon atoms of the fixolide fragment. In the crystal, the mol-ecules are connected by H⋯S inter-actions with graph-set motif C(4), forming a mono-periodic hydrogen-bonded ribbon along [100]. The Hirshfeld surface analysis suggests that the major contributions for the crystal cohesion are [(R,S)-isomers considered separately] H⋯H (75.7%), H⋯S/S⋯H (11.6%), H⋯C/C⋯H (8.3% and H⋯N/N⋯H (4.4% for both of them).
Collapse
Affiliation(s)
- Ana Paula Lopes de Melo
- Escola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália km 08, Campus Carreiros, 96203-900 Rio Grande-RS, Brazil
| | - Alex Fabiani Claro Flores
- Escola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália km 08, Campus Carreiros, 96203-900 Rio Grande-RS, Brazil
| | - Leandro Bresolin
- Escola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália km 08, Campus Carreiros, 96203-900 Rio Grande-RS, Brazil
| | - Bárbara Tirloni
- Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima 1000, Campus Universitário, 97105-900 Santa Maria-RS, Brazil
| | - Adriano Bof de Oliveira
- Departamento de Química, Universidade Federal de Sergipe, Av. Marcelo Deda Chagas s/n, Campus Universitário, 49107-230 São Cristóvão-SE, Brazil
| |
Collapse
|
15
|
de Oliveira AB, Bresolin L, Gervini VC, Beck J, Daniels J. A second crystalline modification of 2-{3-methyl-2-[(2 Z)-pent-2-en-1-yl]cyclo-pent-2-en-1-yl-idene}hydrazinecarbo-thio-amide. IUCRDATA 2023; 8:x231018. [PMID: 38313067 PMCID: PMC10833130 DOI: 10.1107/s2414314623010180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 02/06/2024] Open
Abstract
A second crystalline modification of the title compound, C12H19N3S [common name: cis-jasmone thio-semicarbazone] was crystallized from tetra-hydro-furane at room temperature. There is one crystallographic independent mol-ecule in the asymmetric unit, showing disorder in the cis-jasmone chain [site-occupancy ratio = 0.590 (14):0.410 (14)]. The thio-semicarbazone entity is approximately planar, with the maximum deviation from the mean plane through the N/N/C/S/N atoms being 0.0463 (14) Å [r.m.s.d. = 0.0324 Å], while for the five-membered ring of the jasmone fragment, the maximum deviation from the mean plane through the carbon atoms amounts to 0.0465 (15) Å [r.m.s.d. = 0.0338 Å]. The mol-ecule is not planar due to the dihedral angle between these two fragments, which is 8.93 (1)°, and due to the sp 3-hybridized carbon atoms in the jasmone fragment chain. In the crystal, the mol-ecules are connected by N-H⋯S and C-H⋯S inter-actions, with graph-set motifs R 2 2(8) and R 2 1(7), building mono-periodic hydrogen-bonded ribbons along [010]. A Hirshfeld surface analysis indicates that the major contributions for the crystal cohesion are H⋯H (67.8%), H⋯S/S⋯H (15.0%), H⋯C/C⋯H (8.5%) and H⋯N/N⋯H (5.6%) [only non-disordered atoms and those with the highest s.o.f. were considered]. This work reports the second crystalline modification of the cis-jasmone thio-semicarbazone structure, the first one being published recently [Orsoni et al. (2020 ▸). Int. J. Mol. Sci. 21, 8681-8697] with the crystals obtained in ethanol at 273 K.
Collapse
Affiliation(s)
- Adriano Bof de Oliveira
- Departamento de Química, Universidade Federal de Sergipe, Av. Marcelo Deda Chagas s/n, Campus Universitário, 49107-230 São Cristóvão-SE, Brazil
| | - Leandro Bresolin
- Escola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália km 08, Campus Carreiros, 96203-900 Rio Grande-RS, Brazil
| | - Vanessa Carratu Gervini
- Escola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália km 08, Campus Carreiros, 96203-900 Rio Grande-RS, Brazil
| | - Johannes Beck
- Institut für Anorganische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany
| | - Jörg Daniels
- Institut für Anorganische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany
| |
Collapse
|
16
|
Wang G, Chen B, Su Y, Qu N, Zhou D, Zhou W. CEP55 as a Promising Immune Intervention Marker to Regulate Tumor Progression: A Pan-Cancer Analysis with Experimental Verification. Cells 2023; 12:2457. [PMID: 37887301 PMCID: PMC10605621 DOI: 10.3390/cells12202457] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
CEP55, a member of the centrosomal protein family, affects cell mitosis and promotes the progression of several malignancies. However, the relationship between CEP55 expression levels and prognosis, as well as their role in cancer progression and immune infiltration in different cancer types, remains unclear. We used a combined form of several databases to validate the expression of CEP55 in pan-cancer and its association with immune infiltration, and we further screened its targeted inhibitors with CEP55. Our results showed the expression of CEP55 was significantly higher in most tumors than in the corresponding normal tissues, and it correlated with the pathological grade and age of the patients and affected the prognosis. In breast cancer cells, CEP55 knockdown significantly decreased cell survival, proliferation, and migration, while overexpression of CEP55 significantly promoted breast cancer cell proliferation and migration. Moreover, CEP55 expression was positively correlated with immune cell infiltration, immune checkpoints, and immune-related genes in the tumor microenvironment. CD-437 was screened as a potential CEP55-targeted small-molecule compound inhibitor. In conclusion, our study highlights the prognostic value of CEP55 in cancer and further provides a potential target selection for CEP55 as a potential target for intervention in tumor immune infiltration and related immune genes.
Collapse
Affiliation(s)
- Gang Wang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Bo Chen
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Yue Su
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Na Qu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Duanfang Zhou
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Weiying Zhou
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
17
|
Finiuk N, Kaleniuk E, Holota S, Stoika R, Lesyk R, Szychowski KA. Pyrrolidinedione-thiazolidinone hybrid molecules with potent cytotoxic effect in squamous cell carcinoma SCC-15 cells. Bioorg Med Chem 2023; 92:117442. [PMID: 37579525 DOI: 10.1016/j.bmc.2023.117442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023]
Abstract
The hybrid heterocyclic molecules are perspective materials in the development of anticancer drugs. Here, the pyrrolidinedione-thiazolidinone hybrid molecules were designed as potent anticancer agents. This study aimed to investigate the cytotoxic effect of three derivatives 1-(4-hydroxyphenyl)-, 1-(4-chlorophenyl)- and 1-(4-bromophenyl)-3-[5-[2-chloro-3-(4-nitrophenyl)prop-2-enylidene]-4-oxo-2-thioxothiazolidine-3-yl]pyrrolidine-2,5-diones (Les-6287, Les-6294, and Les-6328, respectively), their effect on the production of the reactive oxygen species (ROS), apoptosis induction, and expression of genes - PPARγ, AHR, and NRFL2 - whose products are important in metabolism in human tongue squamous cell carcinoma cells of SCC-15 line. The results of resazurin reduction and lactate dehydrogenase (LDH) release assays proved the toxicity of the tested derivatives for the SCC-15 cells. Les-6287, Les-6294, and Les-6328 inhibited the viability of SCC-15 cells with the half-maximal effective concentration (EC50) in the range of 10.18-32.75 µM at 24 and 48 h treatment. These derivatives reduced the metabolism of SCC-15 cells with the half-maximal inhibitory concentration (IC50) of 6.72-39.85 µM at 24 and 48 h treatment. Les-6287, Les-6294, and Les-6328 reduced the metabolism of normal human keratinocytes of HaCaT line murine fibroblasts of Balb/c 3T3 line to a lesser extent. The compounds used in a range from 50 to 100 µM concentrations decreased ROS production in the SCC-15 cells. The derivatives Les-6287 and Les-6328 decreased the level of expression of mRNA of PPARγ, AHR, and NRFL2 genes in these cells at PPARγ siRNA knockdown and without it. Thus, the anticancer effect of studied hybrid pyrrolidinedione-thiazolidinones in the SCC-15 carcinoma cells is accompanied by a reduction of their metabolic activity and ROS level, and increase in caspase 3 activity. However, these changes are not the result of direct interaction of Les-6287, Les-6294, and Les-6328 with the PPARγ molecule.
Collapse
Affiliation(s)
- Nataliya Finiuk
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov 14/16, 79005 Lviv, Ukraine.
| | - Edyta Kaleniuk
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
| | - Serhii Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov 14/16, 79005 Lviv, Ukraine
| | - Roman Lesyk
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Konrad A Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
| |
Collapse
|
18
|
Sharma A, Sharma D, Saini N, Sharma SV, Thakur VK, Goyal RK, Sharma PC. Recent advances in synthetic strategies and SAR of thiazolidin-4-one containing molecules in cancer therapeutics. Cancer Metastasis Rev 2023; 42:847-889. [PMID: 37204562 PMCID: PMC10584807 DOI: 10.1007/s10555-023-10106-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/06/2023] [Indexed: 05/20/2023]
Abstract
Cancer is one of the life-threatening diseases accountable for millions of demises globally. The inadequate effectiveness of the existing chemotherapy and its harmful effects has resulted in the necessity of developing innovative anticancer agents. Thiazolidin-4-one scaffold is among the most important chemical skeletons that illustrate anticancer activity. Thiazolidin-4-one derivatives have been the subject of extensive research and current scientific literature reveals that these compounds have shown significant anticancer activities. This manuscript is an earnest attempt to review novel thiazolidin-4-one derivatives demonstrating considerable potential as anticancer agents along with a brief discussion of medicinal chemistry-related aspects of these compounds and structural activity relationship studies in order to develop possible multi-target enzyme inhibitors. Most recently, various synthetic strategies have been developed by researchers to get various thiazolidin-4-one derivatives. In this review, the authors highlight the various synthetic, green, and nanomaterial-based synthesis routes of thiazolidin-4-ones as well as their role in anticancer activity by inhibition of various enzymes and cell lines. The detailed description of the existing modern standards in the field presented in this article may be interesting and beneficial to the scientists for further exploration of these heterocyclic compounds as possible anticancer agents.
Collapse
Affiliation(s)
- Archana Sharma
- DIPSAR, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Diksha Sharma
- Swami Devi Dayal College of Pharmacy, Barwala, 134118, India
| | - Neha Saini
- Swami Devi Dayal College of Pharmacy, Barwala, 134118, India
| | - Sunil V Sharma
- School of Chemistry, North Haugh, University of St Andrews, St Andrews, Fife, 16 9ST, KYScotland, UK
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), King's Buildings, West Mains Road, Edinburgh, EH9 3JG, UK.
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun, 248007, Uttarakhand, India.
| | - Ramesh K Goyal
- SPS, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | | |
Collapse
|
19
|
Li W, Li S, Zhang Z, Xu G, Man X, Yang F, Liang H. Developing a Multitargeted Anticancer Palladium(II) Agent Based on the His-242 Residue in the IIA Subdomain of Human Serum Albumin. J Med Chem 2023. [PMID: 37321208 DOI: 10.1021/acs.jmedchem.3c00248] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
To obtain next-generation metal drugs that can overcome the deficiencies of platinum (Pt) drugs and treat cancer more effectively, we proposed to develop a multitargeted palladium (Pd) agent to the tumor microenvironment (TME) based on the specific residue(s) of human serum albumin (HSA). To this end, we optimized a series of Pd(II) 2-benzoylpyridine thiosemicarbazone compounds to obtain a Pd agent (5b) with significant cytotoxicity. The HSA-5b complex structure revealed that 5b bound to the hydrophobic cavity in the HSA IIA subdomain and then His-242 replaced a leaving group (Cl) of 5b, coordinating with the Pd center. The in vivo results showed that the 5b/HSA-5b complex had significant capacity of inhibiting tumor growth, and HSA optimized the therapeutic behavior of 5b. In addition, we confirmed that the 5b/HSA-5b complex inhibited tumor growth through multiple actions on different components of TME: killing cancer cells, inhibiting tumor angiogenesis, and activating T cells.
Collapse
Affiliation(s)
- Wenjuan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - Shanhe Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - Zhenlei Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - Gang Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - Xueyu Man
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, Guangxi, China
| |
Collapse
|
20
|
Antiproliferative Activity and DNA Interaction Studies of a Series of N4,N4-Dimethylated Thiosemicarbazone Derivatives. Molecules 2023; 28:molecules28062778. [PMID: 36985750 PMCID: PMC10058200 DOI: 10.3390/molecules28062778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
The exploitation of bioactive natural sources to obtain new anticancer agents with novel modes of action may represent an innovative and successful strategy in the field of medicinal chemistry. Many natural products and their chemical analogues have been proposed as starting molecules to synthesise compounds with increased biological potential. In this work, the design, synthesis, and characterisation of a new series of N4,N4-dimethylated thiosemicarbazone Cu(II), Ni(II), and Pt(II) complexes are reported and investigated for their in vitro toxicological profile against a leukaemia cell line (U937). The antiproliferative activity was studied by MTS assay to determine the GI50 value for each compound after 24 h of treatment, while the genotoxic potential was investigated to determine if the complexes could cause DNA damage. In addition, the interaction between the synthesised molecules and DNA was explored by means of spectroscopic techniques, showing that for Pt and Ni derivatives a single mode of action can be postulated, while the Cu analogue behaves differently.
Collapse
|
21
|
Cebotari D, Calancea S, Marrot J, Guillot R, Falaise C, Guérineau V, Touboul D, Haouas M, Gulea A, Floquet S. Tuning the nuclearity of [Mo 2O 2S 2] 2+-based assemblies by playing with the degree of flexibility of bis-thiosemicarbazone ligands. Dalton Trans 2023; 52:3059-3071. [PMID: 36779751 DOI: 10.1039/d2dt03760b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
[MoV2O2S2]2+-based thiosemicarbazone complexes appear as very promising molecules for biological applications due to the intrinsic properties of their components. This paper deals with the synthesis and characterization of six coordination complexes obtained by the reaction of [MoV2O2S2]2+ clusters with bis-thiosemicarbazone ligands that contain flexible or rigid spacers between the two thiosemicarbazone units. Interestingly, structural characterization by single-crystal X-ray diffraction, MALDI-TOF MS technique and NMR spectroscopy revealed that the nuclearity of the complex is controlled by the nature of the spacer between the thiosemicarbazone units. Binuclear complexes, namely [MoV2O2S2(L1-3)], are isolated with flexible spacers while tetranuclear complexes [(MoV2O2S2)2(L4-6)2] are formed when the bis-thiosemicarbazone ligands are built on rigid spacers.
Collapse
Affiliation(s)
- Diana Cebotari
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, 45 Av. des Etats-Unis, 78035 Versailles, France. .,State University of Moldova, MD-2009 Chisinau, Republic of Moldova
| | - Sergiu Calancea
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, 45 Av. des Etats-Unis, 78035 Versailles, France.
| | - Jerôme Marrot
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, 45 Av. des Etats-Unis, 78035 Versailles, France.
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, ICMMO, CNRS UMR 8182, Université Paris Saclay, 91405 Orsay Cedex, France
| | - Clément Falaise
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, 45 Av. des Etats-Unis, 78035 Versailles, France.
| | - Vincent Guérineau
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - David Touboul
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Mohamed Haouas
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, 45 Av. des Etats-Unis, 78035 Versailles, France.
| | - Aurelian Gulea
- State University of Moldova, MD-2009 Chisinau, Republic of Moldova
| | - Sébastien Floquet
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, 45 Av. des Etats-Unis, 78035 Versailles, France.
| |
Collapse
|
22
|
Fernández-Fariña S, Velo-Heleno I, Carballido R, Martínez-Calvo M, Barcia R, Palacios Ò, Capdevila M, González-Noya AM, Pedrido R. Exploring the Biological Properties of Zn(II) Bisthiosemicarbazone Helicates. Int J Mol Sci 2023; 24:ijms24032246. [PMID: 36768568 PMCID: PMC9916454 DOI: 10.3390/ijms24032246] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/10/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
The design of artificial helicoidal molecules derived from metal ions with biological properties is one of the objectives within metallosupramolecular chemistry. Herein, we report three zinc helicates derived from a family of bisthiosemicarbazone ligands with different terminal groups, Zn2(LMe)2∙2H2O 1, Zn2(LPh)2∙2H2O 2 and Zn2(LPhNO2)23, obtained by an electrochemical methodology. These helicates have been fully characterized by different techniques, including X-ray diffraction. Biological studies of the zinc(II) helicates such as toxicity assays with erythrocytes and interaction studies with proteins and oligonucleotides were performed, demonstrating in all cases low toxicity and an absence of covalent interaction with the proteins and oligonucleotides. The in vitro cytotoxicity of the helicates was tested against MCF-7 (human breast carcinoma), A2780 (human ovarian carcinoma cells), NCI-H460 (human lung carcinoma cells) and MRC-5 (normal human lung fibroblasts), comparing the IC50 values with cisplatin. We will try to demonstrate if the terminal substituent of the ligand precursor exerts any effect in toxicity or in the antitumor activity of the zinc helicates.
Collapse
Affiliation(s)
- Sandra Fernández-Fariña
- Departamento de Química Inorgánica, Facultade de Química, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Correspondence: (S.F.-F.); (A.M.G.-N.)
| | - Isabel Velo-Heleno
- Departamento de Química Inorgánica, Facultade de Química, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Rocío Carballido
- Departamento de Química Inorgánica, Facultade de Química, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Miguel Martínez-Calvo
- Departamento de Química Inorgánica, Facultade de Química, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ramiro Barcia
- Departamento de Bioquímica y Biología Molecular, Facultade de Veterinaria, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Òscar Palacios
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Mercè Capdevila
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Ana M. González-Noya
- Departamento de Química Inorgánica, Facultade de Química, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Correspondence: (S.F.-F.); (A.M.G.-N.)
| | - Rosa Pedrido
- Departamento de Química Inorgánica, Facultade de Química, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
23
|
Preparation of Tryptanthrin Derivates Bearing a Thiosemicarbazone Moiety to Inhibit SARS-CoV-2 Replication. SEPARATIONS 2023. [DOI: 10.3390/separations10020073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
SARS-CoV-2 is a serious viral pathogen, and agents that inhibit its replication are in high demand. In the present work, we prepared two novel tryptanthrin derivates bearing a thiosemicarbazone moiety as potential antiviral agents. Both compounds displayed potent chelation activity against Fe(III/II) ion-associated COVID-19. The molecular docking results suggest that the compounds can display significant affinity towards SARS-CoV-2 papain-like proteases and SARS-CoV-2 main proteases. In addition, administering T8H-TSC can repress viral replication in the used model (Vero cells). Moreover, the therapeutic potential of the prepared compounds was predicted and analysed in terms of Lipinski’s rules, drug-likeness and drug score.
Collapse
|
24
|
4-[Bis(thiazol-2-ylamino)methyl]phenol. MOLBANK 2023. [DOI: 10.3390/m1550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We have designed and synthesized novel bis-thiazole derivative. A 4-[bis(thiazol-2-ylamino)methyl]phenol was efficiently prepared in 71% yield by the reaction of 2-aminothiazole with 4-hydroxybenzaldehyde in ethanol for 24 h. The structure of newly obtained compound was characterized by 1H, 13C NMR and mass spectrometry. Bis-thiazole derivative exhibits high tyrosinase inhibitory activity with an IC50 value of 29.71 μM. This inhibitory activity is 2.4 times higher than that of activity of kojic acid (IC50 72.27 µM) and almost 13 times higher than that of ascorbic acid (IC50 385.6 µM). Obtained data suggest that the presented compound may be a leading candidate for a tyrosinase inhibitor.
Collapse
|
25
|
Baird SR, Vogels CM, Geier SJ, Watanabe LK, Binder JF, Macdonald CLB, Westcott SA. The phosphinoboration of thiosemicarbazones. CAN J CHEM 2022. [DOI: 10.1139/cjc-2022-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study reports on the exploration of the phosphinoboration reaction with several thiosemicarbazones (R5R4NC(S)NR3N=CR1R2). Reactions between either Ph2PBpin (pin = 1,2-O2C2Me4) or Ph2PBcat (cat = 1,2-O2C6H4) with thiosemicarbazones containing a terminal primary or secondary amine afforded boron-containing heterocyclic 1,3,4-thiadiazoline products in excellent yield. The addition of Ph2PBpin to thiosemicarbazones containing an NMe2 group in the terminal position generated novel five-membered heterocycles in moderate yield, which included boron, sulfur, and nitrogen atoms. Heterocyclization of the thiosemicarbazones occurs preferentially in the presence of functional groups such as acetyl and pyridyl groups.
Collapse
Affiliation(s)
- Samuel R. Baird
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Christopher M. Vogels
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Stephen J. Geier
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Lara K. Watanabe
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Justin F. Binder
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | | | - Stephen A. Westcott
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| |
Collapse
|
26
|
Warda ET, El-Ashmawy MB, Habib ESE, Abdelbaky MSM, Garcia-Granda S, Thamotharan S, El-Emam AA. Synthesis and in vitro antibacterial, antifungal, anti-proliferative activities of novel adamantane-containing thiazole compounds. Sci Rep 2022; 12:21058. [PMID: 36474013 PMCID: PMC9726863 DOI: 10.1038/s41598-022-25390-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
A series of (Z)-N-(adamantan-1-yl)-3,4-diarylthiazol-2(3H)-imines (5a-r) was synthesized via condensation of 1-(adamantan-1-yl)-3-arylthioureas (3a-c) with various aryl bromomethyl ketones (4a-f). The structures of the synthesized compounds were characterized by 1H NMR, 13C NMR and by X-ray crystallography. The in vitro inhibitory activities of the synthesized compounds were assessed against a panel of Gram-positive and Gram-negative bacteria, and pathogenic fungi. Compounds 5c, 5g, 5l, 5m, and 5q displayed potent broad-spectrum antibacterial activity, while compounds 5a and 5o showed activity against the tested Gram-positive bacteria. Compounds 5b, 5l and 5q displayed potent antifungal activity against Candida albicans. In addition, the synthesized compounds were evaluated for anti-proliferative activity towards five human tumor cell lines. The optimal anti-proliferative activity was attained by compounds 5e and 5k which showed potent inhibitory activity against all the tested cell lines. Molecular docking analysis reveals that compounds 5e and 5k can occupy the positions of NAD cofactor and the histone deacetylase inhibitor EX527 at the active site of SIRT1 enzyme.
Collapse
Affiliation(s)
- Eman T. Warda
- grid.10251.370000000103426662Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516 Egypt
| | - Mahmoud B. El-Ashmawy
- grid.10251.370000000103426662Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516 Egypt
| | - El-Sayed E. Habib
- grid.10251.370000000103426662Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516 Egypt
| | - Mohammed S. M. Abdelbaky
- grid.10863.3c0000 0001 2164 6351Department of Physical and Analytical Chemistry, Faculty of Chemistry, Oviedo University-CINN, 33006 Oviedo, Spain
| | - Santiago Garcia-Granda
- grid.10863.3c0000 0001 2164 6351Department of Physical and Analytical Chemistry, Faculty of Chemistry, Oviedo University-CINN, 33006 Oviedo, Spain
| | - Subbiah Thamotharan
- grid.412423.20000 0001 0369 3226Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613 401 India
| | - Ali A. El-Emam
- grid.10251.370000000103426662Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516 Egypt
| |
Collapse
|
27
|
Fuior A, Cebotari D, Garbuz O, Calancea S, Gulea A, Floquet S. Biological properties of a new class of [Mo2O2S2]-based thiosemicarbazone coordination complexes. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Abdel-Azziz IA, Amin NH, El-Saadi MT, Abdel-Rahman HM. Design, synthesis and mechanistic studies of benzophenones hydrazone derivatives as cathepsin inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Bai XG, Zheng Y, Qi J. Advances in thiosemicarbazone metal complexes as anti-lung cancer agents. Front Pharmacol 2022; 13:1018951. [PMID: 36238553 PMCID: PMC9551402 DOI: 10.3389/fphar.2022.1018951] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/13/2022] [Indexed: 01/31/2023] Open
Abstract
The great success of cisplatin as a chemotherapeutic agent considerably increased research efforts in inorganic biochemistry to identify more metallic drugs having the potential of treating lung cancer. Metal coordination centres, which exhibit a wide range of coordination numbers and geometries, various oxidised and reduced states and the inherent ligand properties offer pharmaceutical chemists a plethora of drug structures. Owing to the presence of C=N and C=S bonds in a thiosemicarbazone Schiff base, N and S atoms in its hybrid orbital has lone pair of electrons, which can generate metal complexes with different stabilities with most metal elements under certain conditions. Such ligands and complexes play key roles in the treatment of anti-lung cancer. Research regarding metallic anti-lung cancer has advanced considerably, but there remain several challenges. In this review, we discuss the potential of thiosemicarbazone Schiff base complexes as anti-lung cancer drugs, their anti-cancer activities and the most likely action mechanisms involving the recent families of copper, nickel, platinum, ruthenium and other complexes.
Collapse
Affiliation(s)
| | | | - Jinxu Qi
- *Correspondence: Yunyun Zheng, ; Jinxu Qi,
| |
Collapse
|
30
|
Brogyányi T, Kaplánek R, Kejík Z, Hosnedlová B, Antonyová V, Abramenko N, Veselá K, Martásek P, Vokurka M, Richardson DR, Jakubek M. Azulene hydrazide-hydrazones for selective targeting of pancreatic cancer cells. Biomed Pharmacother 2022; 155:113736. [PMID: 36156366 DOI: 10.1016/j.biopha.2022.113736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/02/2022] Open
Abstract
Dysregulation of iron homeostasis is one of the important processes in the development of many oncological diseases, such as pancreatic cancer. Targeting it with specific agents, such as an iron chelator, are promising therapeutic methods. In this study, we tested the cytotoxicity of novel azulene hydrazide-hydrazone-based chelators against pancreatic cancer cell lines (MIA PaCa-2, PANC-1, AsPC-1). All prepared chelators (compounds 4-6) showed strong cytotoxicity against pancreatic cancer cell lines and high selectivity for cancer cell lines compared to the healthy line. Their cytotoxicity is lower than thiosemicarbazone-based chelators Dp44mT and DpC, but significantly higher than hydroxamic acid-based chelator DFO. The chelator tested showed mitochondrial and lysosomal co-localization and its mechanism of action was based on the induction of hypoxia-inducible factor-1-alpha (HIF-1α), N-myc downstream-regulated gene-1 (NDRG1) and transferrin receptor 1 (TfR1). This strongly implies that the cytotoxic effect of tested chelators could be associated with mitophagy induction. Lipinski's rule of five analyses was performed to determine whether the prepared compounds had properties ensuring their bioavailability. In addition, the drug-likeness and drug-score were calculated and discussed.
Collapse
Affiliation(s)
- Tereza Brogyányi
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Průmyslová 595, 252 50 Vestec, Czech Republic; Institute of Pathological Physiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 5, 128 53 Prague, Czech Republic
| | - Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00 Prague, Czech Republic
| | - Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00 Prague, Czech Republic
| | - Božena Hosnedlová
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00 Prague, Czech Republic
| | - Veronika Antonyová
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00 Prague, Czech Republic
| | - Nikita Abramenko
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Kateřina Veselá
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00 Prague, Czech Republic
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00 Prague, Czech Republic
| | - Martin Vokurka
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 5, 128 53 Prague, Czech Republic
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, QLD, Australia
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00 Prague, Czech Republic.
| |
Collapse
|
31
|
El-Abd A, Bayomi SM, El-Damasy AK, Mansour B, Abdel-Aziz NI, El-Sherbeny MA. Synthesis and Molecular Docking Study of New Thiazole Derivatives as Potential Tubulin Polymerization Inhibitors. ACS OMEGA 2022; 7:33599-33613. [PMID: 36157722 PMCID: PMC9494671 DOI: 10.1021/acsomega.2c05077] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
A new series of 2,4-disubstituted thiazole derivatives containing 4-(3,4,5-trimethoxyphenyl) moiety was synthesized and evaluated for their potential anticancer activity as tubulin polymerization inhibitors. All designed compounds were screened for cytotoxic activity against four human cancer cell lines, namely, HepG2, MCF-7, HCT116, and HeLa, using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay, with combretastatin A-4 as a reference drug. Compounds 5c, 6d, 7c, 8, and 9a,b showed superior activity against the tested cell lines, with IC50 values ranging from 3.35 ± 0.2 to 18.69 ± 0.9 μM. Further investigation for the most active cytotoxic agents as tubulin polymerization inhibitors was also performed in order to explore the mechanism of their antiproliferative activity. The obtained results suggested that compounds 5c, 7c, and 9a remarkably inhibit tubulin polymerization, with IC50 values of 2.95 ± 0.18, 2.00 ± 0.12, and 2.38 ± 0.14 μM, respectively, which exceeded that of the reference drug combretastatin A-4 (IC50 2.96 ± 0.18 μM). Molecular docking studies were also conducted to investigate the possible binding interactions between the targeted compounds and the tubulin active site. The interpretation of the results showed clearly that compounds 7c and 9a were identified as the most potent tubulin polymerization inhibitors with promising cytotoxic activity and excellent binding mode in the docking study.
Collapse
Affiliation(s)
- Azhar
O. El-Abd
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Delta University for Science and Technology, 11152 Gamasa, Egypt
| | - Said M. Bayomi
- Department
of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, 35516 Mansoura, Egypt
| | - Ashraf K. El-Damasy
- Department
of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, 35516 Mansoura, Egypt
| | - Basem Mansour
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Delta University for Science and Technology, 11152 Gamasa, Egypt
| | - Naglaa I. Abdel-Aziz
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Delta University for Science and Technology, 11152 Gamasa, Egypt
- Department
of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, 35516 Mansoura, Egypt
| | - Magda A. El-Sherbeny
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Delta University for Science and Technology, 11152 Gamasa, Egypt
- Department
of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, 35516 Mansoura, Egypt
| |
Collapse
|
32
|
Pósa V, Stefanelli A, Nunes JHB, Hager S, Mathuber M, May NV, Berger W, Keppler BK, Kowol CR, Enyedy ÉA, Heffeter P. Thiosemicarbazone Derivatives Developed to Overcome COTI-2 Resistance. Cancers (Basel) 2022; 14:4455. [PMID: 36139615 PMCID: PMC9497102 DOI: 10.3390/cancers14184455] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
COTI-2 is currently being evaluated in a phase I clinical trial for the treatment of gynecological and other solid cancers. As a thiosemicarbazone, this compound contains an N,N,S-chelating moiety and is, therefore, expected to bind endogenous metal ions. However, besides zinc, the metal interaction properties of COTI-2 have not been investigated in detail so far. This is unexpected, as we have recently shown that COTI-2 forms stable ternary complexes with copper and glutathione, which renders this drug a substrate for the resistance efflux transporter ABCC1. Herein, the complex formation of COTI-2, two novel terminal N-disubstituted derivatives (COTI-NMe2 and COTI-NMeCy), and the non-substituted analogue (COTI-NH2) with iron, copper, and zinc ions was characterized in detail. Furthermore, their activities against drug-resistant cancer cells was investigated in comparison to COTI-2 and Triapine. These data revealed that, besides zinc, also iron and copper ions need to be considered to play a role in the mode of action and resistance development of these thiosemicarbazones. Moreover, we identified COTI-NMe2 as an interesting new drug candidate with improved anticancer activity and resistance profile.
Collapse
Affiliation(s)
- Vivien Pósa
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre and MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Alessia Stefanelli
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Julia H. Bormio Nunes
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
- Inorganic Chemistry Department, Institute of Chemistry, University of Campinas—UNICAMP, Campinas 13083-970, SP, Brazil
| | - Sonja Hager
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
- Research Cluster ‘‘Translational Cancer Therapy Research’’, 1090 Vienna, Austria
| | - Marlene Mathuber
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Nóra V. May
- Centre for Structural Science, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | - Walter Berger
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
- Research Cluster ‘‘Translational Cancer Therapy Research’’, 1090 Vienna, Austria
| | - Bernhard K. Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
- Research Cluster ‘‘Translational Cancer Therapy Research’’, 1090 Vienna, Austria
| | - Christian R. Kowol
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
- Research Cluster ‘‘Translational Cancer Therapy Research’’, 1090 Vienna, Austria
| | - Éva A. Enyedy
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre and MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Petra Heffeter
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
- Research Cluster ‘‘Translational Cancer Therapy Research’’, 1090 Vienna, Austria
| |
Collapse
|
33
|
Pivovarova E, Climova A, Świątkowski M, Staszewski M, Walczyński K, Dzięgielewski M, Bauer M, Kamysz W, Krześlak A, Jóźwiak P, Czylkowska A. Synthesis and Biological Evaluation of Thiazole-Based Derivatives with Potential against Breast Cancer and Antimicrobial Agents. Int J Mol Sci 2022; 23:ijms23179844. [PMID: 36077257 PMCID: PMC9456159 DOI: 10.3390/ijms23179844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Investigating novel, biologically-active coordination compounds that may be useful in the design of breast anticancer, antifungal, and antimicrobial agents is still the main challenge for chemists. In order to get closer to solving this problem, three new copper coordination compounds containing thiazole-based derivatives were synthesized. The structures of the synthesized compounds and their physicochemical characterization were evaluated based on elemental analysis, 1H and l3C nuclear magnetic resonance (NMR), flame atomic absorption spectroscopy (F-AAS), single-crystal X-ray diffraction, thermogravimetric analysis (TGA), and Fourier-transform infrared spectroscopy (FTIR). The pharmacokinetics were studied using SwissADME. The results obtained from the computational studies supported the results obtained from the MTT analysis, and the antimicrobial activity was expressed as the minimum inhibitory concentration (MIC).
Collapse
Affiliation(s)
- Ekaterina Pivovarova
- Institute of General and Ecological Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
- Correspondence: (E.P.); (A.C.)
| | - Alina Climova
- Institute of General and Ecological Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
| | - Marcin Świątkowski
- Institute of General and Ecological Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
| | - Marek Staszewski
- Department of Synthesis and Technology of Drugs, Medical University, Muszyńskiego Street 1, 90-145 Łódź, Poland
| | - Krzysztof Walczyński
- Department of Synthesis and Technology of Drugs, Medical University, Muszyńskiego Street 1, 90-145 Łódź, Poland
| | - Marek Dzięgielewski
- Department of Synthesis and Technology of Drugs, Medical University, Muszyńskiego Street 1, 90-145 Łódź, Poland
| | - Marta Bauer
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland
| | - Wojciech Kamysz
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland
| | - Anna Krześlak
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Łódź, Poland
| | - Paweł Jóźwiak
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Łódź, Poland
| | - Agnieszka Czylkowska
- Institute of General and Ecological Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
- Correspondence: (E.P.); (A.C.)
| |
Collapse
|
34
|
Discovery of New 3,3-Diethylazetidine-2,4-dione Based Thiazoles as Nanomolar Human Neutrophil Elastase Inhibitors with Broad-Spectrum Antiproliferative Activity. Int J Mol Sci 2022; 23:ijms23147566. [PMID: 35886913 PMCID: PMC9321231 DOI: 10.3390/ijms23147566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 01/03/2023] Open
Abstract
A series of 3,3-diethylazetidine-2,4-dione based thiazoles 3a–3j were designed and synthesized as new human neutrophil elastase (HNE) inhibitors in nanomolar range. The representative compounds 3c, 3e, and 3h exhibit high HNE inhibitory activity with IC50 values of 35.02–44.59 nM, with mixed mechanism of action. Additionally, the most active compounds 3c and 3e demonstrate high stability under physiological conditions. The molecular docking study showed good correlation of the binding energies with the IC50 values, suggesting that the inhibition properties are largely dependent on the stage of ligand alignment in the binding cavity. The inhibition properties are correlated with the energy level of substrates of the reaction of ligand with Ser195. Moreover, most compounds showed high and broad-spectrum antiproliferative activity against human leukemia (MV4-11), human lung carcinoma (A549), human breast adenocarcinoma (MDA-MB-231), and urinary bladder carcinoma (UMUC-3), with IC50 values of 4.59–9.86 μM. Additionally, compounds 3c and 3e can induce cell cycle arrest at the G2/M phase and apoptosis via caspase-3 activation, leading to inhibition of A549 cell proliferation. These findings suggest that these new types of drugs could be used to treat cancer and other diseases in which immunoreactive HNE is produced.
Collapse
|
35
|
De S, Aamna B, Sahu R, Parida S, Behera SK, Dan AK. Seeking heterocyclic scaffolds as antivirals against dengue virus. Eur J Med Chem 2022; 240:114576. [PMID: 35816877 PMCID: PMC9250831 DOI: 10.1016/j.ejmech.2022.114576] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 12/20/2022]
Abstract
Dengue is one of the most typical viral infection categorized in the Neglected Tropical Diseases (NTDs). It is transmitted via the female Aedes aegypti mosquito to humans and majorly puts risk to the lives of more than half of the world. Recent advancements in medicinal chemistry have led to the design and development of numerous potential heterocyclic scaffolds as antiviral drug candidates for the inhibition of the dengue virus (DENV). Thus, in this review, we have discussed the significance of inhibitory and antiviral activities of nitrogen, oxygen, and mixed (nitrogen-sulfur and nitrogen-oxygen) heterocyclic scaffolds that are published in the last seven years (2016–2022). Furthermore, we have also discussed the probable mechanisms of action and the diverse structure-activity relationships (SARs) of the heterocyclic scaffolds. In addition, this review has elaborately outlined the mechanism of viral infection and the life cycle of DENV in the host cells. The wide set of heterocycles and their SARs will aid in the development of pharmaceuticals that will allow the researchers to synthesize the promising anti-dengue drug candidate in the future.
Collapse
|
36
|
Mathews NA, Kurup MP. Copper(II) complexes as novel anticancer drug: Synthesis, spectral studies, crystal structures, in silico molecular docking and cytotoxicity. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
37
|
Fuior A, Cebotari D, Haouas M, Marrot J, Espallargas GM, Guérineau V, Touboul D, Rusnac RV, Gulea A, Floquet S. Synthesis, Structures, and Solution Studies of a New Class of [Mo 2O 2S 2]-Based Thiosemicarbazone Coordination Complexes. ACS OMEGA 2022; 7:16547-16560. [PMID: 35601294 PMCID: PMC9118386 DOI: 10.1021/acsomega.2c00705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/01/2022] [Indexed: 06/01/2023]
Abstract
This paper deals with the synthesis, structural studies, and behavior in solution of unprecedented coordination complexes built by the association of a panel of 14 representative thiosemicarbazone ligands with the cluster [Mo2O2S2]2+. These complexes have been thoroughly characterized both in the solid state and in solution by XRD and by NMR, respectively. In particular, HMBC 1H{15N} and 1H DOSY NMR experiments bring important elements for understanding the complexes' behavior in solution. These studies demonstrate that playing on the nature and the position of various substituents on the ligands strongly influences the coordination modes of the ligands as well as the numbers of isomers in solution, mainly 2 products for the majority of complexes and up to 5 for some of them.
Collapse
Affiliation(s)
- Arcadie Fuior
- Institut
Lavoisier de Versailles, CNRS UMR 8180, Univ. Versailles Saint Quentin en Yvelines, Université Paris-Saclay, 45 av. des Etats-Unis, 78035 Cedex Versailles, France
- State
University of Moldova, Chişinău 2009, Republic of Moldova
| | - Diana Cebotari
- Institut
Lavoisier de Versailles, CNRS UMR 8180, Univ. Versailles Saint Quentin en Yvelines, Université Paris-Saclay, 45 av. des Etats-Unis, 78035 Cedex Versailles, France
- State
University of Moldova, Chişinău 2009, Republic of Moldova
| | - Mohamed Haouas
- Institut
Lavoisier de Versailles, CNRS UMR 8180, Univ. Versailles Saint Quentin en Yvelines, Université Paris-Saclay, 45 av. des Etats-Unis, 78035 Cedex Versailles, France
| | - Jérôme Marrot
- Institut
Lavoisier de Versailles, CNRS UMR 8180, Univ. Versailles Saint Quentin en Yvelines, Université Paris-Saclay, 45 av. des Etats-Unis, 78035 Cedex Versailles, France
| | | | - Vincent Guérineau
- Institut
de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, Avenue de la Terrasse, 91198 Cedex Gif-sur-Yvette, France
| | - David Touboul
- Institut
de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, Avenue de la Terrasse, 91198 Cedex Gif-sur-Yvette, France
| | - Roman V. Rusnac
- State
University of Moldova, Chişinău 2009, Republic of Moldova
| | - Aurelian Gulea
- State
University of Moldova, Chişinău 2009, Republic of Moldova
| | - Sébastien Floquet
- Institut
Lavoisier de Versailles, CNRS UMR 8180, Univ. Versailles Saint Quentin en Yvelines, Université Paris-Saclay, 45 av. des Etats-Unis, 78035 Cedex Versailles, France
| |
Collapse
|
38
|
Ha JH, Prela O, Carpizo DR, Loh SN. p53 and Zinc: A Malleable Relationship. Front Mol Biosci 2022; 9:895887. [PMID: 35495631 PMCID: PMC9043292 DOI: 10.3389/fmolb.2022.895887] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/30/2022] [Indexed: 12/14/2022] Open
Abstract
A large percentage of transcription factors require zinc to bind DNA. In this review, we discuss what makes p53 unique among zinc-dependent transcription factors. The conformation of p53 is unusually malleable: p53 binds zinc extremely tightly when folded, but is intrinsically unstable in the absence of zinc at 37°C. Whether the wild-type protein folds in the cell is largely determined by the concentration of available zinc. Consequently, zinc dysregulation in the cell as well as a large percentage of tumorigenic p53 mutations can cause p53 to lose zinc, misfold, and forfeit its tumor suppressing activity. We highlight p53’s noteworthy biophysical properties that give rise to its malleability and how proper zinc binding can be restored by synthetic metallochaperones to reactivate mutant p53. The activity and mechanism of metallochaperones are compared to those of other mutant p53-targeted drugs with an emphasis on those that have reached the clinical trial stage.
Collapse
Affiliation(s)
- Jeung-Hoi Ha
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Orjola Prela
- Division of Surgical Oncology, Department of Surgery, Wilmot Cancer Center, University of Rochester, Rochester, NY, United States
| | - Darren R Carpizo
- Division of Surgical Oncology, Department of Surgery, Wilmot Cancer Center, University of Rochester, Rochester, NY, United States
| | - Stewart N Loh
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
39
|
Al-Otaibi JS, Costa RA, Costa EV, Tananta VL, Mary YS, Mary YS. Insights into solvation, chemical reactivity, structural, vibrational and anti-hypertensive properties of a thiazolopyrimidine derivative by DFT and MD simulations. Struct Chem 2022. [DOI: 10.1007/s11224-022-01931-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
40
|
Zhang Z, Yang T, Zhang J, Li W, Li S, Sun H, Liang H, Yang F. Developing a Novel Indium(III) Agent Based on Human Serum Albumin Nanoparticles: Integrating Bioimaging and Therapy. J Med Chem 2022; 65:5392-5406. [PMID: 35324188 DOI: 10.1021/acs.jmedchem.1c01790] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
To effectively integrate diagnosis and therapy for tumors, we proposed to develop an indium (In) agent based on the unique property of human serum albumin (HSA) nanoparticles (NPs). A novel In(III) quinoline-2-formaldehyde thiosemicarbazone compound (C5) was optimized with remarkable cytotoxicity and fluorescence to cancer cells in vitro. An HSA-C5 complex NP delivery system was then successfully constructed. Importantly, the HSA-C5 complex NPs have stronger bioimaging and therapeutic efficiency relative to C5 alone in vivo. Besides, the results of gene chip analysis revealed that C5/HSA-C5 complex NPs act on cancer cells through multiple mechanisms: inducing autophagy, apoptosis, and inhibiting the PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Zhenlei Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Tongfu Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Juzheng Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Wenjuan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Shanhe Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Hongbin Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| |
Collapse
|
41
|
Evaluation of Toxicity and Oxidative Stress of 2-Acetylpyridine-N(4)-orthochlorophenyl Thiosemicarbazone. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4101095. [PMID: 35345833 PMCID: PMC8957429 DOI: 10.1155/2022/4101095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/13/2022] [Accepted: 02/03/2022] [Indexed: 11/18/2022]
Abstract
Thiosemicarbazones are well known for their broad spectrum of action, including antitumoral and antiparasitic activities. Thiosemicarbazones work as chelating binders, reacting with metal ions. The objective of this work was to investigate the in silico, in vitro, and in vivo toxicity and oxidative stress of 2-acetylpyridine-N(4)-orthochlorophenyl thiosemicarbazone (TSC01). The in silico prediction showed good absorption by biological membranes and no theoretical toxicity. Also, the compound did not show cytotoxicity against Hep-G2 and HT-29 cells. In the acute nonclinical toxicological test, the animals treated with TSC01 showed behavioral changes of stimulus of the central nervous system (CNS) at 300 mg/kg. One hour after administration, a dose of 2000 mg/kg caused depressive signs. All changes disappeared after 24 h, with no deaths, which suggest an estimated LD50 of 5000 mg/kg and GSH 5. The group treated with 2000 mg/kg had an increase of water consumption and weight gain in the second week. The biochemical parameters presented no toxicity relevance, and the analysis of oxidative stress in the liver found an increase of lipid peroxidation and nitric oxide. However, histopathological analysis showed organ integrity was maintained without any changes. In conclusion, the results show the low toxicological potential of thiosemicarbazone derivative, indicating future safe use.
Collapse
|
42
|
Iron chelates in the anticancer therapy. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-02001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractIron plays a significant role in the metabolism of cancer cells. In comparison with normal cells, neoplastic ones exhibit enhanced vulnerability to iron. Ferric ions target tumor via the ferroptotic death pathway—a process involving the iron-mediated lipid oxidation. Ferric ion occurs in complex forms in the physiological conditions. Apart from iron, ligands are the other factors to affect the biological activity of the iron complexes. In recent decades the role of iron chelates in targeting the growth of the tumor was extensively examined. The ligand may possess a standalone activity to restrict cancer’s growth. However, a wrong choice of the ligand might lead to the enhanced cancer cell’s growth in in vitro studies. The paper aims to review the role of iron complex compounds in the anticancer therapy both in the experimental and clinical applications. The anticancer properties of the iron complex rely both on the stability constant of the complex and the ligand composition. When the stability constant is high, the properties of the drug are unique. However, when the stability constant remains low, both components—ferric ions and ligands, act separately on the cells. In the paper we show how the difference in complex stability implies the action of ligand and ferric ions in the cancer cell. Iron complexation strategy is an interesting attempt to transport the anticancer Fe2+/3+ ions throughout the cell membrane and release it when the pH of the microenvironment changes. Last part of the paper summarizes the results of clinical trials and in vitro studies of novel iron chelates such as: PRLX 93,936, Ferumoxytol, Talactoferrin, DPC, Triapine, VLX600, Tachypyridine, Ciclopiroxamine, Thiosemicarbazone, Deferoxamine and Deferasirox.
Collapse
|
43
|
Dawbaa S, Evren AE, Cantürk Z, Yurttaş L. Synthesis of new thiazole derivatives and evaluation of their antimicrobial and cytotoxic activities. PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2021.1972299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Sam Dawbaa
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Anadolu University, Eskişehir, Turkey
- Department of Pharmacy, Faculty of Medicine and Health Sciences, Thamar University, Dhamar, Yemen
| | - Asaf Evrim Evren
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Anadolu University, Eskişehir, Turkey
- Vocational School of Health Services, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Zerrin Cantürk
- Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Anadolu University, Eskişehir, Turkey
| | - Leyla Yurttaş
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
44
|
Calix[4]arene-based thiosemicarbazide Schiff-base ligand and its transition metal complexes: synthesis and biological assessment. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-021-02281-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
45
|
Velluti F, Acevedo A, Serra G, Ellena J, Borthagaray G, Facchin G, Scarone L, Alvarez N, Torre MH. Novel bisthiazole ligand and its copper(II) complex with unusual seven membered ring: Synthesis, characterization, experimental and theoretical study of the effect of ligand flexibility, and antimicrobial activity. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
46
|
Zaib S, Munir R, Younas MT, Kausar N, Ibrar A, Aqsa S, Shahid N, Asif TT, Alsaab HO, Khan I. Hybrid Quinoline-Thiosemicarbazone Therapeutics as a New Treatment Opportunity for Alzheimer's Disease‒Synthesis, In Vitro Cholinesterase Inhibitory Potential and Computational Modeling Analysis. Molecules 2021; 26:molecules26216573. [PMID: 34770983 PMCID: PMC8587653 DOI: 10.3390/molecules26216573] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the leading cause of dementia worldwide. The limited pharmacological approaches based on cholinesterase inhibitors only provide symptomatic relief to AD patients. Moreover, the adverse side effects such as nausea, vomiting, loss of appetite, muscle cramps, and headaches associated with these drugs and numerous clinical trial failures present substantial limitations on the use of medications and call for a detailed insight of disease heterogeneity and development of preventive and multifactorial therapeutic strategies on urgent basis. In this context, we herein report a series of quinoline-thiosemicarbazone hybrid therapeutics as selective and potent inhibitors of cholinesterases. A facile multistep synthetic approach was utilized to generate target structures bearing multiple sites for chemical modifications and establishing drug-receptor interactions. The structures of all the synthesized compounds were fully established using readily available spectroscopic techniques (FTIR, 1H- and 13C-NMR). In vitro inhibitory results revealed compound 5b as a promising and lead inhibitor with an IC50 value of 0.12 ± 0.02 μM, a 5-fold higher potency than standard drug (galantamine; IC50 = 0.62 ± 0.01 μM). The synergistic effect of electron-rich (methoxy) group and ethylmorpholine moiety in quinoline-thiosemicarbazone conjugates contributes significantly in improving the inhibition level. Molecular docking analysis revealed various vital interactions of potent compounds with amino acid residues and reinforced the in vitro results. Kinetics experiments revealed the competitive mode of inhibition while ADME properties favored the translation of identified inhibitors into safe and promising drug candidates for pre-clinical testing. Collectively, inhibitory activity data and results from key physicochemical properties merit further research to ensure the design and development of safe and high-quality drug candidates for Alzheimer’s disease.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan;
- Correspondence: (S.Z.); (R.M.); (I.K.)
| | - Rubina Munir
- Department of Chemistry, Kinnaird College for Women, Lahore 54000, Pakistan; (S.A.); (N.S.); (T.T.A.)
- Correspondence: (S.Z.); (R.M.); (I.K.)
| | - Muhammad Tayyab Younas
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan;
| | - Naghmana Kausar
- Department of Chemistry, University of Gujrat, Gujrat 50700, Pakistan;
| | - Aliya Ibrar
- Department of Chemistry, Faculty of Natural Sciences, The University of Haripur, Haripur 22620, Pakistan;
| | - Sehar Aqsa
- Department of Chemistry, Kinnaird College for Women, Lahore 54000, Pakistan; (S.A.); (N.S.); (T.T.A.)
| | - Noorma Shahid
- Department of Chemistry, Kinnaird College for Women, Lahore 54000, Pakistan; (S.A.); (N.S.); (T.T.A.)
| | - Tahira Tasneem Asif
- Department of Chemistry, Kinnaird College for Women, Lahore 54000, Pakistan; (S.A.); (N.S.); (T.T.A.)
| | - Hashem O. Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Imtiaz Khan
- Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
- Correspondence: (S.Z.); (R.M.); (I.K.)
| |
Collapse
|
47
|
Lee KH, Yen WC, Lin WH, Wang PC, Lai YL, Su YC, Chang CY, Wu CS, Huang YC, Yang CM, Chou LH, Yeh TK, Chen CT, Shih C, Hsieh HP. Discovery of BPR1R024, an Orally Active and Selective CSF1R Inhibitor that Exhibits Antitumor and Immunomodulatory Activity in a Murine Colon Tumor Model. J Med Chem 2021; 64:14477-14497. [PMID: 34606263 DOI: 10.1021/acs.jmedchem.1c01006] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Colony-stimulating factor-1 receptor (CSF1R) is implicated in tumor-associated macrophage (TAM) repolarization and has emerged as a promising target for cancer immunotherapy. Herein, we describe the discovery of orally active and selective CSF1R inhibitors by property-driven optimization of BPR1K871 (9), our clinical multitargeting kinase inhibitor. Molecular docking revealed an additional nonclassical hydrogen-bonding (NCHB) interaction between the unique 7-aminoquinazoline scaffold and the CSF1R hinge region, contributing to CSF1R potency enhancement. Structural studies of CSF1R and Aurora kinase B (AURB) demonstrated the differences in their back pockets, which inspired the use of a chain extension strategy to diminish the AURA/B activities. A lead compound BPR1R024 (12) exhibited potent CSF1R activity (IC50 = 0.53 nM) and specifically inhibited protumor M2-like macrophage survival with a minimal effect on antitumor M1-like macrophage growth. In vivo, oral administration of 12 mesylate delayed the MC38 murine colon tumor growth and reversed the immunosuppressive tumor microenvironment with the increased M1/M2 ratio.
Collapse
Affiliation(s)
- Kun-Hung Lee
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350, Taiwan, ROC
- Department of Chemistry, National Tsing Hua University, Hsinchu City 300, Taiwan, ROC
- Biomedical Translation Research Center, Academia Sinica, Taipei City 115, Taiwan, ROC
| | - Wan-Ching Yen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350, Taiwan, ROC
| | - Wen-Hsing Lin
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350, Taiwan, ROC
| | - Pei-Chen Wang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350, Taiwan, ROC
| | - You-Liang Lai
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350, Taiwan, ROC
| | - Yu-Chieh Su
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350, Taiwan, ROC
| | - Chun-Yu Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350, Taiwan, ROC
| | - Cai-Syuan Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350, Taiwan, ROC
- Department of Chemistry, National Tsing Hua University, Hsinchu City 300, Taiwan, ROC
| | - Yu-Chen Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350, Taiwan, ROC
| | - Chen-Ming Yang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350, Taiwan, ROC
| | - Ling-Hui Chou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350, Taiwan, ROC
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350, Taiwan, ROC
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350, Taiwan, ROC
| | - Chuan Shih
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350, Taiwan, ROC
| | - Hsing-Pang Hsieh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350, Taiwan, ROC
- Department of Chemistry, National Tsing Hua University, Hsinchu City 300, Taiwan, ROC
- Biomedical Translation Research Center, Academia Sinica, Taipei City 115, Taiwan, ROC
| |
Collapse
|
48
|
Wu J, Yang T, Wang X, Li W, Pang M, Sun H, Liang H, Yang F. Development of a multi-target anticancer Sn(ii) pyridine-2-carboxaldehyde thiosemicarbazone complex. Dalton Trans 2021; 50:10909-10921. [PMID: 34313274 DOI: 10.1039/d1dt01272j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this study, we proposed to design effective multi-target anticancer agents based on the chelation of nontoxic metals with ligands that possess anticancer activity. In total, five Sn(ii) pyridine-2-carboxaldehyde thiosemicarbazone complexes are synthesized and their activities are tested. Among these complexes, C5 is found to show the highest cytotoxicity on investigating their structure-activity relationships. In addition, C5 not only exhibits an effective inhibitory effect against tumor growth in vivo, but also suppresses angiogenesis and restricts the metastasis of cancer cells in vitro. Multiple mechanisms underlie the antitumor effect of C5, and they include acting against DNA, inducing apoptosis, and inhibiting the activities of anti-apoptotic Bcl-xL protein, metalloproteinase MMP2 and topoisomerase II.
Collapse
Affiliation(s)
- Junmiao Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China.
| | - Tongfu Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China.
| | - Xiaojun Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China.
| | - Wenjuan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China.
| | - Min Pang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China.
| | - Hongbin Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China.
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China.
| |
Collapse
|
49
|
Dawood KM, Raslan MA, Abbas AA, Mohamed BE, Abdellattif MH, Nafie MS, Hassan MK. Novel Bis-Thiazole Derivatives: Synthesis and Potential Cytotoxic Activity Through Apoptosis With Molecular Docking Approaches. Front Chem 2021; 9:694870. [PMID: 34458233 PMCID: PMC8397418 DOI: 10.3389/fchem.2021.694870] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/07/2021] [Indexed: 11/13/2022] Open
Abstract
A series of bis-thiazoles 5a-g were synthesized from bis-thiosemicarbazone 3 with hydrazonoyl chlorides 4a-g. Reaction of 3 with two equivalents of α-halocarbonyl compounds 6-8, 10, and 12a-d afforded the corresponding bis-thiazolidines 9, 11, and 13a-d, respectively. Condensation of bis-thiazolidin-4-one 9 with different aromatic aldehydes furnished bis-thiazolidin-4-ones 14a-d. Compounds 5a-g, 9, and 13a,c,d were screened in vitro for their cytotoxic activities in a panel of cancer cell lines. Compounds 5a-c, 5f-g, and 9 exhibited remarkable cytotoxic activities, especially compound 5c with potent IC50 value 0.6 nM (against cervical cancer, Hela cell line) and compound 5f with high IC50 value 6 nM (against ovarian cancer, KF-28 cell line). Compound 5f-induced appreciated apoptotic cell death was measured as 82.76% associated with cell cycle arrest at the G1 phase. The apoptotic pathways activated in KF-28 cells treated with 5a, 5b, and 5f were further investigated. The upregulation of some pro-apoptotic genes, bax and puma, and the downregulation of some anti-apoptotic genes including the Bcl-2 gene were observed, indicating activation of the mitochondrial-dependent apoptosis. Together with the molecular docking studies of compounds 5a and 5b, our data revealed potential Pim-1 kinase inhibition through their high binding affinities indicated by inhibition of phosphorylated C-myc as a downstream target for Pim-1 kinase. Our study introduces a set of bis-thiazoles with potent anti-cancer activities, in vitro.
Collapse
Affiliation(s)
- Kamal M. Dawood
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Mohamed A. Raslan
- Department of Chemistry, Faculty of Science, Aswan University, Aswan, Egypt
| | - Ashraf A. Abbas
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Belal E. Mohamed
- Department of Chemistry, Faculty of Science, Aswan University, Aswan, Egypt
| | | | - Mohamed S. Nafie
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Mohamed K. Hassan
- Biotechnology Program, Department of Zoology, Faculty of Science, Port Said University, Port Said, Egypt
- Center for Genomics, Helmy Institute, Zewail City for Science and Technology, Giza, Egypt
| |
Collapse
|
50
|
Oliveira AR, Dos Santos FA, Ferreira LPDL, Pitta MGDR, Silva MVDO, Cardoso MVDO, Pinto AF, Marchand P, de Melo Rêgo MJB, Leite ACL. Synthesis, anticancer activity and mechanism of action of new phthalimido-1,3-thiazole derivatives. Chem Biol Interact 2021; 347:109597. [PMID: 34303695 DOI: 10.1016/j.cbi.2021.109597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/30/2021] [Accepted: 07/21/2021] [Indexed: 11/30/2022]
Abstract
In this work, 22 new compounds were obtained and evaluated for their cytotoxic activity on peripheral blood mononuclear cells (PBMC) and eight different tumor cell lines. All compounds displayed IC50 values above 100 μM when assayed against PBMCs. The cytotoxic assays in tumor cell lines revealed that sub-series of phthalimido-bis-1,3-thiazoles (5a-f) exhibited the best anti-tumor activity profile, presenting viability values below 59 %. As a result, the IC50 value was calculated for compounds 5a-f and 4c, and compounds 5b and 5e were selected for further assays due to their best IC50s. Considering the results presented by the sub-series 5a-f, the importance of the 1,3-thiazole ring in improving the anti-tumor activity was pointed out. Together, the results highlighted the anti-tumor activity of phthalimido-bis-1,3-thiazole derivatives.
Collapse
Affiliation(s)
- Arsênio Rodrigues Oliveira
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil; Université de Nantes, Cibles et Médicaments des Infections et Du Cancer, IICiMed, EA 1155, F-44000, Nantes, France
| | - Flaviana Alves Dos Santos
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Universidade Federal de Pernambuco (LINAT-UFPE), 50670-901, Recife, PE, Brazil
| | - Larissa Pelágia de Lima Ferreira
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil; Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Universidade Federal de Pernambuco (LINAT-UFPE), 50670-901, Recife, PE, Brazil
| | - Maira Galdino da Rocha Pitta
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Universidade Federal de Pernambuco (LINAT-UFPE), 50670-901, Recife, PE, Brazil
| | | | | | - Aline Ferreira Pinto
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil
| | - Pascal Marchand
- Université de Nantes, Cibles et Médicaments des Infections et Du Cancer, IICiMed, EA 1155, F-44000, Nantes, France
| | - Moacyr Jesus Barreto de Melo Rêgo
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Universidade Federal de Pernambuco (LINAT-UFPE), 50670-901, Recife, PE, Brazil.
| | - Ana Cristina Lima Leite
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil.
| |
Collapse
|