1
|
Zhang B, Wang M, Sun L, Liu J, Yin L, Xia M, Zhang L, Liu X, Cheng Y. Recent Advances in Targeted Cancer Therapy: Are PDCs the Next Generation of ADCs? J Med Chem 2024; 67:11469-11487. [PMID: 38980167 DOI: 10.1021/acs.jmedchem.4c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Antibody-drug conjugates (ADCs) comprise antibodies, cytotoxic payloads, and linkers, which can integrate the advantages of antibodies and small molecule drugs to achieve targeted cancer treatment. However, ADCs also have some shortcomings, such as non-negligible drug resistance, a low therapeutic index, and payload-related toxicity. Many studies have focused on changing the composition of ADCs, and some have even further extended the concept and types of targeted conjugated drugs by replacing the targeted antibodies in ADCs with peptides, revolutionarily introducing peptide-drug conjugates (PDCs). This Perspective summarizes the current research status of ADCs and PDCs and highlights the structural innovations of ADC components. In particular, PDCs are regarded as the next generation of potential targeted drugs after ADCs, and the current challenges of PDCs are analyzed. Our aim is to offer fresh insights for the efficient design and expedited development of innovative targeted conjugated drugs.
Collapse
Affiliation(s)
- Baochen Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, P.R. China
| | - Mo Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, P.R. China
| | - Li Sun
- School of Chemical Technology, Shijiazhuang University, Shijiazhuang 050035, P.R. China
| | - Jiawei Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, P.R. China
| | - Libinghan Yin
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, P.R. China
| | - Mingjing Xia
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, P.R. China
| | - Ling Zhang
- School of Chemical Technology, Shijiazhuang University, Shijiazhuang 050035, P.R. China
| | - Xifu Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, P.R. China
| | - Yu Cheng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, P.R. China
| |
Collapse
|
2
|
Zhou L, Lu Y, Liu W, Wang S, Wang L, Zheng P, Zi G, Liu H, Liu W, Wei S. Drug conjugates for the treatment of lung cancer: from drug discovery to clinical practice. Exp Hematol Oncol 2024; 13:26. [PMID: 38429828 PMCID: PMC10908151 DOI: 10.1186/s40164-024-00493-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024] Open
Abstract
A drug conjugate consists of a cytotoxic drug bound via a linker to a targeted ligand, allowing the targeted delivery of the drug to one or more tumor sites. This approach simultaneously reduces drug toxicity and increases efficacy, with a powerful combination of efficient killing and precise targeting. Antibody‒drug conjugates (ADCs) are the best-known type of drug conjugate, combining the specificity of antibodies with the cytotoxicity of chemotherapeutic drugs to reduce adverse reactions by preferentially targeting the payload to the tumor. The structure of ADCs has also provided inspiration for the development of additional drug conjugates. In recent years, drug conjugates such as ADCs, peptide‒drug conjugates (PDCs) and radionuclide drug conjugates (RDCs) have been approved by the Food and Drug Administration (FDA). The scope and application of drug conjugates have been expanding, including combination therapy and precise drug delivery, and a variety of new conjugation technology concepts have emerged. Additionally, new conjugation technology-based drugs have been developed in industry. In addition to chemotherapy, targeted therapy and immunotherapy, drug conjugate therapy has undergone continuous development and made significant progress in treating lung cancer in recent years, offering a promising strategy for the treatment of this disease. In this review, we discuss recent advances in the use of drug conjugates for lung cancer treatment, including structure-based drug design, mechanisms of action, clinical trials, and side effects. Furthermore, challenges, potential approaches and future prospects are presented.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wei Liu
- Department of Geriatrics, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shanglong Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lingling Wang
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengdou Zheng
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guisha Zi
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030000, China.
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030000, China.
| |
Collapse
|
3
|
Tiberghien AC, Vijayakrishnan B, Esfandiari A, Ahmed M, Pardo R, Bingham J, Adams L, Santos K, Kang GD, Pugh KM, Afif-Rider S, Vashisht K, Haque K, Tammali R, Rosfjord E, Savoca A, Hartley JA, Howard PW. Comparison of Pyrrolobenzodiazepine Dimer Bis-imine versus Mono-imine: DNA Interstrand Cross-linking, Cytotoxicity, Antibody-Drug Conjugate Efficacy and Toxicity. Mol Cancer Ther 2023; 22:254-263. [PMID: 36722141 DOI: 10.1158/1535-7163.mct-21-0693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 07/12/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Antibody-drug conjugates (ADC) delivering pyrrolobenzodiazepine (PBD) DNA cross-linkers are currently being evaluated in clinical trials, with encouraging results in Hodgkin and non-Hodgkin lymphomas. The first example of an ADC delivering a PBD DNA cross-linker (loncastuximab tesirine) has been recently approved by the FDA for the treatment of relapsed and refractory diffuse large B-cell lymphoma. There has also been considerable interest in mono-alkylating PBD analogs. We conducted a head-to-head comparison of a conventional PBD bis-imine and a novel PBD mono-imine. Key Mitsunobu chemistry allowed clean and convenient access to the mono-imine class. Extensive DNA-binding studies revealed that the mono-imine mediated a type of DNA interaction that is described as "pseudo cross-linking," as well as alkylation. The PBD mono-imine ADC demonstrated robust antitumor activity in mice bearing human tumor xenografts at doses 3-fold higher than those that were efficacious for the PBD bis-imine ADC. A single-dose toxicology study in rats demonstrated that the MTD of the PBD mono-alkylator ADC was approximately 3-fold higher than that of the ADC bearing a bis-imine payload, suggesting a comparable therapeutic index for this molecule. However, although both ADCs caused myelosuppression, renal toxicity was observed only for the bis-imine, indicating possible differences in toxicologic profiles that could influence tolerability and therapeutic index. These data show that mono-amine PBDs have physicochemical and pharmacotoxicologic properties distinct from their cross-linking analogs and support their potential utility as a novel class of ADC payload.
Collapse
Affiliation(s)
| | | | - Arman Esfandiari
- Cancer Research UK, Drug DNA Interactions Research Group, UCL Cancer Institute, London, United Kingdom
| | - Mahammad Ahmed
- Tumor Targeted Delivery, Oncology R&D, AstraZeneca, London, United Kingdom
| | - Raul Pardo
- Tumor Targeted Delivery, Oncology R&D, AstraZeneca, London, United Kingdom
| | - John Bingham
- Cancer Research UK, Drug DNA Interactions Research Group, UCL Cancer Institute, London, United Kingdom
| | - Lauren Adams
- Tumor Targeted Delivery, Oncology R&D, AstraZeneca, London, United Kingdom
| | - Kathleen Santos
- Tumor Targeted Delivery, Oncology R&D, AstraZeneca, London, United Kingdom
| | - Gyoung-Dong Kang
- Tumor Targeted Delivery, Oncology R&D, AstraZeneca, London, United Kingdom
| | - Kathryn M Pugh
- Tumor Targeted Delivery, Oncology R&D, AstraZeneca, London, United Kingdom
| | - Shameen Afif-Rider
- Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland
| | - Kapil Vashisht
- Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland
| | - Kemal Haque
- Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland
| | - Ravinder Tammali
- Tumor Targeted Delivery, Oncology R&D, AstraZeneca, Gaithersburg, Maryland
| | - Edward Rosfjord
- Tumor Targeted Delivery, Oncology R&D, AstraZeneca, Gaithersburg, Maryland
| | - Adriana Savoca
- Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland
- Drug Metabolism and Pharmacokinetics, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - John A Hartley
- Cancer Research UK, Drug DNA Interactions Research Group, UCL Cancer Institute, London, United Kingdom
| | - Philip W Howard
- Tumor Targeted Delivery, Oncology R&D, AstraZeneca, London, United Kingdom
| |
Collapse
|
4
|
Maecker H, Jonnalagadda V, Bhakta S, Jammalamadaka V, Junutula JR. Exploration of the antibody-drug conjugate clinical landscape. MAbs 2023; 15:2229101. [PMID: 37639687 PMCID: PMC10464553 DOI: 10.1080/19420862.2023.2229101] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 08/31/2023] Open
Abstract
The antibody-drug conjugate (ADC) field has undergone a renaissance, with substantial recent developmental investment and subsequent drug approvals over the past 6 y. In November 2022, ElahereTM became the latest ADC to be approved by the US Food and Drug Administration (FDA). To date, over 260 ADCs have been tested in the clinic against various oncology indications. Here, we review the clinical landscape of ADCs that are currently FDA approved (11), agents currently in clinical trials but not yet approved (164), and candidates discontinued following clinical testing (92). These clinically tested ADCs are further analyzed by their targeting tumor antigen(s), linker, payload choices, and highest clinical stage achieved, highlighting limitations associated with the discontinued drug candidates. Lastly, we discuss biologic engineering modifications preclinically demonstrated to improve the therapeutic index that if incorporated may increase the proportion of molecules that successfully transition to regulatory approval.
Collapse
|
5
|
Ha SYY, Anami Y, Yamazaki CM, Xiong W, Haase CM, Olson SD, Lee J, Ueno NT, Zhang N, An Z, Tsuchikama K. An Enzymatically Cleavable Tripeptide Linker for Maximizing the Therapeutic Index of Antibody-Drug Conjugates. Mol Cancer Ther 2022; 21:1449-1461. [PMID: 35793453 PMCID: PMC9452487 DOI: 10.1158/1535-7163.mct-22-0362] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022]
Abstract
Valine-citrulline is a protease-cleavable linker commonly used in many drug delivery systems, including antibody-drug conjugates (ADC) for cancer therapy. However, its suboptimal in vivo stability can cause various adverse effects such as neutropenia and hepatotoxicity, leading to dose delays or treatment discontinuation. Here, we report that glutamic acid-glycine-citrulline (EGCit) linkers have the potential to solve this clinical issue without compromising the ability of traceless drug release and ADC therapeutic efficacy. We demonstrate that our EGCit ADC resists neutrophil protease-mediated degradation and spares differentiating human neutrophils. Notably, our anti-HER2 ADC shows almost no sign of blood and liver toxicity in healthy mice at 80 mg kg-1. In contrast, at the same dose level, the FDA-approved anti-HER2 ADCs Kadcyla and Enhertu show increased levels of serum alanine aminotransferase and aspartate aminotransferase and morphologic changes in liver tissues. Our EGCit conjugates also exert greater antitumor efficacy in multiple xenograft tumor models compared with Kadcyla and Enhertu. This linker technology could substantially broaden the therapeutic windows of ADCs and other drug delivery agents, providing clinical options with improved efficacy and safety.
Collapse
Affiliation(s)
- Summer Y. Y. Ha
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 1881 East Rd., Houston, TX 77054, USA
| | - Yasuaki Anami
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 1881 East Rd., Houston, TX 77054, USA
| | - Chisato M. Yamazaki
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 1881 East Rd., Houston, TX 77054, USA
| | - Wei Xiong
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 1881 East Rd., Houston, TX 77054, USA
| | - Candice M. Haase
- Department of Pediatric Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, 1881 East Rd., Houston, TX 77054, USA
| | - Scott D. Olson
- Department of Pediatric Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, 1881 East Rd., Houston, TX 77054, USA
| | - Jangsoon Lee
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Naoto T. Ueno
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 1881 East Rd., Houston, TX 77054, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 1881 East Rd., Houston, TX 77054, USA
| | - Kyoji Tsuchikama
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 1881 East Rd., Houston, TX 77054, USA
| |
Collapse
|
6
|
Burnouf PA, Roffler SR, Wu CC, Su YC. Glucuronides: From biological waste to bio-nanomedical applications. J Control Release 2022; 349:765-782. [PMID: 35907593 DOI: 10.1016/j.jconrel.2022.07.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022]
Abstract
Long considered as no more than biological waste meant to be eliminated in urine, glucuronides have recently contributed to tremendous developments in the biomedical field, particularly against cancer. While glucuronide prodrugs monotherapy and antibody-directed enzyme prodrug therapy have been around for some time, new facets have emerged that combine the unique properties of glucuronides notably in the fields of antibody-drug conjugates and nanomedicine. In both cases, glucuronides are utilized as a vector to improve pharmacokinetics and confer localized activation of potent drugs at tumor sites while also decreasing systemic toxicity. Here we will discuss some of the most promising strategies using glucuronides to promote successful anti-tumor therapeutic treatments.
Collapse
Affiliation(s)
- Pierre-Alain Burnouf
- International Center for Wound Repair and Regeneration, National Cheng-Kung University, Tainan, Taiwan.
| | - Steve R Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chia-Ching Wu
- International Center for Wound Repair and Regeneration, National Cheng-Kung University, Tainan, Taiwan; Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Cheng Su
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
7
|
Gregson SJ, Pugh K, Patel N, Afif-Rider S, Vijayakrishnan B, Santos K, Riedl J, Hutchinson I, Kang GD, Chooi KP, Beard R, Adams L, Barry CS, Ball K, Masterson LA, McFarlane M, Hartley JA, Howard PW. Efficacy, Tolerability, and Pharmacokinetic Studies of Antibody-Drug Conjugates Containing a Low-Potency Pyrrolobenzodiazepine Dimer. Mol Cancer Ther 2022; 21:1439-1448. [PMID: 35793464 DOI: 10.1158/1535-7163.mct-22-0145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/27/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022]
Abstract
Antibody-drug conjugate (ADC) research has typically focused on the release of highly potent cytotoxic agents to achieve antitumor efficacy. However, recently approved ADCs trastuzumab deruxtecan and sacituzumab govitecan release lower-potency topoisomerase inhibitors. This has prompted interest in ADCs that release lower-potency cytotoxic drugs to potentially enhance therapeutic index and reduce unwanted toxicity. Pyrrolobenzodiazepine (PBD) dimer ADCs have been widely investigated in human clinical trials, which have focused on high-potency PBDs. In this study, we evaluated five ADCs that release the low-potency PBD dimer SG3650. The relatively low cLogD for this agent facilitated higher drug-to-antibody ratio (DAR) conjugation without the need for antibody engineering or functionalization of the drug. The rank order of potency for DAR 2 site-specific ADCs (conjugated at the C239i position) matched the order for the corresponding free drugs in vitro. Despite free drug SG3650 being inactive in vivo, the DAR 2 ADCs derived from the corresponding drug-linker SG3584 showed antitumor efficacy in solid (anti-HER2) and hematological (anti-CD22) xenograft models. Antitumor activity could be enhanced by conjugating SG3584 to trastuzumab at higher DARs of 4 and 8 and by adjusting dosing and schedule. Higher-DAR conjugates were stable and displayed good rat pharmacokinetic profiles as measured by ELISA and LC-MS/MS. A single intravenous dose of isotype control SG3584 DAR 2 ADC resulted in no mortality in rats or monkeys at doses of up to 25 and 30 mg/kg, respectively. These findings suggest that further investigations of low-potency PBD dimers in ADCs that target hematological and solid tumors are warranted.
Collapse
Affiliation(s)
- Stephen J Gregson
- TTD Chemistry, AstraZeneca, QMB Innovation Centre, 42 New Road, London, United Kingdom
| | - Kathryn Pugh
- TTD Chemistry, AstraZeneca, QMB Innovation Centre, 42 New Road, London, United Kingdom
| | - Neki Patel
- TTD Chemistry, AstraZeneca, QMB Innovation Centre, 42 New Road, London, United Kingdom
| | | | | | - Kathleen Santos
- TTD Chemistry, AstraZeneca, QMB Innovation Centre, 42 New Road, London, United Kingdom
| | - Jitka Riedl
- TTD Chemistry, AstraZeneca, QMB Innovation Centre, 42 New Road, London, United Kingdom
| | - Ian Hutchinson
- TTD Chemistry, AstraZeneca, QMB Innovation Centre, 42 New Road, London, United Kingdom
| | - Gyoung-Dong Kang
- TTD Chemistry, AstraZeneca, QMB Innovation Centre, 42 New Road, London, United Kingdom
| | - K Phin Chooi
- TTD Chemistry, AstraZeneca, QMB Innovation Centre, 42 New Road, London, United Kingdom
| | - Rhiannon Beard
- TTD Chemistry, AstraZeneca, QMB Innovation Centre, 42 New Road, London, United Kingdom
| | - Lauren Adams
- TTD Chemistry, AstraZeneca, QMB Innovation Centre, 42 New Road, London, United Kingdom
| | - Conor S Barry
- TTD Chemistry, AstraZeneca, QMB Innovation Centre, 42 New Road, London, United Kingdom
| | - Kathryn Ball
- AstraZeneca, Granta Park, Cambridge, United Kingdom
| | - Luke A Masterson
- TTD Chemistry, AstraZeneca, QMB Innovation Centre, 42 New Road, London, United Kingdom
| | | | - John A Hartley
- TTD Chemistry, AstraZeneca, QMB Innovation Centre, 42 New Road, London, United Kingdom
| | - Philip W Howard
- TTD Chemistry, AstraZeneca, QMB Innovation Centre, 42 New Road, London, United Kingdom
| |
Collapse
|
8
|
Peng Y, Shi Z, Liang Y, Ding K, Wang Y. Targeting the tumor microenvironment by an enzyme-responsive prodrug of tubulin destabilizer for triple-negative breast cancer therapy with high safety. Eur J Med Chem 2022; 236:114344. [PMID: 35405397 DOI: 10.1016/j.ejmech.2022.114344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/21/2022] [Accepted: 03/31/2022] [Indexed: 11/04/2022]
Abstract
In response to the long-term potential toxicity concerns of tubulin destabilizer, an enzyme-responsive prodrug therapy for triple-negative breast cancer was developed based on the different β-glucuronidase levels between tumor and normal tissues in this study. All the prodrugs synthesized herein showed remarkable stability in phosphate buffer and bovine serum solution, among which 17a was found to be more susceptible to enzymatic cleavage. 17a exhibited excellent selectivity between the in vitro antiproliferative activities against β-glucuronidase-pretreated and -untreated cancer cells (IC50 (+Enz) = 8.9-15.7 nM, IC50 (-Enz) > 50 μM), along with favorable liver microsomal metabolic stability and improved aqueous solubility. Furthermore, as a candidate prodrug 17a showed potent antitumor efficacy in MDA-MB-231 xenograft mouse model without causing perceptible injury to organs. Importantly, 17a exhibited superior safety profiles with higher LD50 value and no perceivable cardiotoxicity, which was a major dose-limiting adverse effect for the parent compound 1. These salient toxicity-reduced effects of 17a would merit further in-depth assessment of this compound for preclinical therapeutic usages.
Collapse
Affiliation(s)
- Yingyuan Peng
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Zhixian Shi
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yuru Liang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Kuiling Ding
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Yang Wang
- School of Pharmacy, Fudan University, Shanghai, 201203, China; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China; Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
9
|
Peng H. Perspectives on the development of antibody-drug conjugates targeting ROR1 for hematological and solid cancers. Antib Ther 2021; 4:222-227. [PMID: 34805745 PMCID: PMC8597957 DOI: 10.1093/abt/tbab023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/13/2021] [Accepted: 10/10/2021] [Indexed: 02/07/2023] Open
Abstract
Antibody–drug conjugates (ADCs) are targeted therapeutics generated by conjugation of cytotoxic small molecules to monoclonal antibodies (mAbs) via chemical linkers. Due to their selective delivery of toxic payloads to antigen-positive cancer cells, ADCs demonstrate wider therapeutic indexes compared with conventional chemotherapy. After decades of intensive research and development, significant advances have been made in the field, leading to a total of 10 U.S. food and drug administration (FDA)-approved ADCs to treat cancer patients. Currently, ~80 ADCs targeting different antigens are under clinical evaluation for treatment of either hematological or solid malignancies. Notably, three ADCs targeting the same oncofetal protein, receptor tyrosine kinase like orphan receptor 1 (ROR1), have attracted considerable attention when they were acquired or licensed successively in the fourth quarter of 2020 by three major pharmaceutical companies. Apparently, ROR1 has emerged as an attractive target for cancer therapy. Since all the components of ADCs, including the antibody, linker and payload, as well as the conjugation method, play critical roles in ADC’s efficacy and performance, their choice and combination will determine how far they can be advanced. This review summarizes the design and development of current anti-ROR1 ADCs and highlights an emerging trend to target ROR1 for cancer therapy.
Collapse
Affiliation(s)
- Haiyong Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, 130 Scripps Way, C278, Jupiter, FL 33458, USA
| |
Collapse
|
10
|
Pettinato MC. Introduction to Antibody-Drug Conjugates. Antibodies (Basel) 2021; 10:antib10040042. [PMID: 34842621 PMCID: PMC8628511 DOI: 10.3390/antib10040042] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/30/2021] [Accepted: 10/06/2021] [Indexed: 02/05/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are innovative biopharmaceutical products in which a monoclonal antibody is linked to a small molecule drug with a stable linker. Most of the ADCs developed so far are for treating cancer, but there is enormous potential for using ADCs to treat other diseases. Currently, ten ADCs have been approved by the United States Food and Drug Administration (FDA), and more than 90 ADCs are under worldwide clinical development. Monoclonal antibodies have evolved from research tools to powerful therapeutics in the past 30 years. Tremendous strides have been made in antibody discovery, protein bioengineering, formulation, and delivery devices. This manuscript provides an overview of the biology, chemistry, and biophysical properties of each component of ADC design. This review summarizes the advances and challenges in the field to date, with an emphasis on antibody conjugation, linker-payload chemistry, novel payload classes, drug-antibody ratio (DAR), and product development. The review emphasizes the lessons learned in the development of oncology antibody conjugates and look towards future innovations enabling other therapeutic indications. The review discusses resistance mechanisms to ADCs, and give an opinion on future perspectives.
Collapse
Affiliation(s)
- Mark C Pettinato
- Department of Biomedical Engineering, School of Engineering, Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064-0001, USA
| |
Collapse
|
11
|
Füssl F, Barry CS, Pugh KM, Chooi KP, Vijayakrishnan B, Kang GD, von Bulow C, Howard PW, Bones J. Simultaneous monitoring of multiple attributes of pyrrolobenzodiazepine antibody-drug conjugates by size exclusion chromatography - high resolution mass spectrometry. J Pharm Biomed Anal 2021; 205:114287. [PMID: 34385015 DOI: 10.1016/j.jpba.2021.114287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/07/2021] [Accepted: 07/24/2021] [Indexed: 11/24/2022]
Abstract
Antibody-drug conjugates (ADCs) are an emerging class of oncology treatments combining the unique specificity of monoclonal antibodies with the highly cytotoxic properties of small molecule compounds. Pyrrolobenzodiazepines (PBDs) are highly potent agents capable of inhibiting cellular DNA replication which leads to apoptosis. To ensure efficacy and patient safety upon administration of such toxic and heterogeneous molecules, their structure and quality attributes must be closely monitored. Size exclusion chromatography (SEC) is a powerful, fast and robust tool for the separation of compounds varying in molecular weight. When using volatile components in the chromatographic mobile phase, SEC has also been shown to be amenable for interfacing to mass spectrometry, providing potential for reliable identification of protein isoforms across the size variants present. Here, we present a SEC-MS method developed for the characterisation of PBD-based ADCs on the intact molecular level. We demonstrate that information on ADC monomers such as the glycoform distribution and the average drug-antibody ratio (DAR) can be obtained in 15 minutes of analysis time. Qualitative and quantitative information on low and high molecular weight impurities such as aggregates and fragments, fundamental for critical quality attribute analysis of biopharmaceuticals, can be generated simultaneously. SEC-MS enables the characterisation of multiple product quality attributes of complex biotherapeutics at the same time.
Collapse
Affiliation(s)
- Florian Füssl
- NIBRT - The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland
| | - Conor S Barry
- Spirogen, a Member of the AstraZeneca Group, QMB Innovation Centre, 42 New Road, London, E1 2AX, United Kingdom
| | - Kathryn M Pugh
- Spirogen, a Member of the AstraZeneca Group, QMB Innovation Centre, 42 New Road, London, E1 2AX, United Kingdom
| | - K Phin Chooi
- Spirogen, a Member of the AstraZeneca Group, QMB Innovation Centre, 42 New Road, London, E1 2AX, United Kingdom
| | - Balakumar Vijayakrishnan
- Spirogen, a Member of the AstraZeneca Group, QMB Innovation Centre, 42 New Road, London, E1 2AX, United Kingdom
| | - Gyoung-Dong Kang
- Spirogen, a Member of the AstraZeneca Group, QMB Innovation Centre, 42 New Road, London, E1 2AX, United Kingdom
| | - Christina von Bulow
- Spirogen, a Member of the AstraZeneca Group, QMB Innovation Centre, 42 New Road, London, E1 2AX, United Kingdom
| | - Philip W Howard
- Spirogen, a Member of the AstraZeneca Group, QMB Innovation Centre, 42 New Road, London, E1 2AX, United Kingdom
| | - Jonathan Bones
- NIBRT - The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland; School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland.
| |
Collapse
|
12
|
Staben LR, Chen J, Cruz-Chuh JD, Del Rosario G, Go MA, Guo J, Khojasteh SC, Kozak KR, Li G, Ng C, Lewis Phillips GD, Pillow TH, Rowntree RK, Wai J, Wei B, Xu K, Xu Z, Yu SF, Zhang D, Dragovich PS. Systematic Variation of Pyrrolobenzodiazepine (PBD)-Dimer Payload Physicochemical Properties Impacts Efficacy and Tolerability of the Corresponding Antibody-Drug Conjugates. J Med Chem 2020; 63:9603-9622. [PMID: 32787101 DOI: 10.1021/acs.jmedchem.0c00691] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytotoxic pyrrolobenzodiazepine (PBD)-dimer molecules are frequently utilized as payloads for antibody-drug conjugates (ADCs), and many examples are currently in clinical development. In order to further explore this ADC payload class, the physicochemical properties of various PBD-dimer molecules were modified by the systematic introduction of acidic and basic moieties into their chemical structures. The impact of these changes on DNA binding, cell membrane permeability, and in vitro antiproliferation potency was, respectively, determined using a DNA alkylation assay, PAMPA assessments, and cell-based cytotoxicity measurements conducted with a variety of cancer lines. The modified PBD-dimer compounds were subsequently incorporated into CD22-targeting ADCs, and these entities were profiled in a variety of in vitro and in vivo experiments. The introduction of a strongly basic moiety into the PBD-dimer scaffold afforded a conjugate with dramatically worsened mouse tolerability properties relative to ADCs derived from related payloads, which lacked the basic group.
Collapse
Affiliation(s)
- Leanna R Staben
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jinhua Chen
- WuXi AppTec Co., Ltd, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | | | - Geoff Del Rosario
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Mary Ann Go
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jun Guo
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - S Cyrus Khojasteh
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Katherine R Kozak
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Guangmin Li
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Carl Ng
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Thomas H Pillow
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Rebecca K Rowntree
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - John Wai
- WuXi AppTec Co., Ltd, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - BinQing Wei
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Keyang Xu
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Zijin Xu
- WuXi AppTec Co., Ltd, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Shang-Fan Yu
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Donglu Zhang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Peter S Dragovich
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
13
|
Hartley JA. Antibody-drug conjugates (ADCs) delivering pyrrolobenzodiazepine (PBD) dimers for cancer therapy. Expert Opin Biol Ther 2020; 21:931-943. [PMID: 32543981 DOI: 10.1080/14712598.2020.1776255] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION The rationally designed pyrrolobenzodiazepine (PBD) dimers emerged around ten years ago as a new class of drug component for antibody-drug conjugates (ADC). They produce highly cytotoxic DNA cross-links, exploiting a completely different cellular target to the auristatin and maytansinoid tubulin inhibitor classes and a different mode of DNA damage to other DNA interacting warheads such as calicheamicin. AREAS COVERED The properties which make the PBD dimers suitable warheads for ADCs, and the development of the two main payload structures talirine and tesirine, are discussed. The clinical experience with the twenty PBD dimer-containing ADCs to enter the clinic is reviewed, with a focus on vadastuximab talirine and rovalpituzumab tesirine, both of which were discontinued following pivotal studies, and loncastuximab tesirine and camidanlumab tesirine which are progressing towards approval. EXPERT OPINION Reviewing the clinical efficacy and safety data from almost forty clinical trials of PBD dimer-containing ADCs highlights the complexities and challenges of ADC early clinical development. It enables some conclusions to be made about reasons for failure and suggests strategies to optimise the future clinical development of this promising class of ADCs in a rapidly expanding field.
Collapse
Affiliation(s)
- John A Hartley
- Professor of Cancer Studies, UCL Cancer Institute, London, UK
| |
Collapse
|
14
|
Campbell AD, Tomasi S, Tiberghien AC, Parker JS. An Isomerization Approach to Tesirine and Pyrrolobenzodiazepines. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Andrew D. Campbell
- Chemical Development, Pharmaceutical Technology & Development, AstraZeneca, Macclesfield SK10 2NA, United Kingdom
| | - Simone Tomasi
- Chemical Development, Pharmaceutical Technology & Development, AstraZeneca, Macclesfield SK10 2NA, United Kingdom
| | | | - Jeremy S. Parker
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, United Kingdom
| |
Collapse
|