1
|
Azam U, Naseer MM, Rochais C. Analysis of skeletal diversity of multi-target directed ligands (MTDLs) targeting Alzheimer's disease. Eur J Med Chem 2025; 286:117277. [PMID: 39848035 DOI: 10.1016/j.ejmech.2025.117277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/25/2025]
Abstract
Alzheimer's disease (AD) remains a significant healthcare challenge, necessitating innovative therapeutic approaches to address its complex and multifactorial nature. Traditional drug discovery strategies targeting single molecular targets are not sufficient for the effective treatment of AD. In recent years, MTDLs have emerged as promising candidates for AD therapy, aiming to simultaneously modulate multiple pathological targets. Among the various strategies employed in MTDL design, pharmacophore hybridization offers a versatile approach to integrate diverse pharmacophoric features within a single molecular scaffold. This strategy provides access to a wide array of chemical space for the design and development of novel therapeutic agents. This review, therefore, provides a comprehensive overview of skeletal diversity exhibited by MTDLs designed recently for AD therapy based on pharmacophore hybridization approach. A diverse range of pharmacophoric elements and core scaffolds hybridized to construct MTDLs that has the potential to target multiple pathological features of AD including amyloid-beta aggregation, tau protein hyperphosphorylation, cholinergic dysfunction, oxidative stress, and neuroinflammation are discussed. Through the comprehensive analysis and integration of structural insights of key biomolecular targets, this review aims to enhance optimization efforts in MTDL design, ultimately striving towards a comprehensive cure for the multifaceted pathophysiology of the disease.
Collapse
Affiliation(s)
- Uzma Azam
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Moazzam Naseer
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Université de Caen Normandie, Normandie Univ., CERMN, 14000, Caen, France.
| | - Christophe Rochais
- Université de Caen Normandie, Normandie Univ., CERMN, 14000, Caen, France.
| |
Collapse
|
2
|
Zhao X, Hu Q, Wang X, Li C, Chen X, Zhao D, Qiu Y, Xu H, Wang J, Ren L, Zhang N, Li S, Gong P, Hou Y. Dual-target inhibitors based on acetylcholinesterase: Novel agents for Alzheimer's disease. Eur J Med Chem 2024; 279:116810. [PMID: 39243456 DOI: 10.1016/j.ejmech.2024.116810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia among the elderly, accounting for 60 %-70 % of cases. At present, the pathogenesis of this condition remains unclear, but the hydrolysis of acetylcholine (ACh) is thought to play a role. Acetylcholinesterase (AChE) can break down ACh transmission from the presynaptic membrane and stop neurotransmitters' excitatory effect on the postsynaptic membrane, which plays a key role in nerve conduction. Acetylcholinesterase inhibitors (AChEIs) can delay the hydrolysis of acetylcholine (ACh), which represents a key strategy for treating AD. Due to its complex etiology, AD has proven challenging to treat. Various inhibitors and antagonists targeting key enzymes and proteins implicated in the disease's pathogenesis have been explored as potential therapeutic agents. These include Glycogen Synthase Kinase 3β (GSK-3β) inhibitors, β-site APP Cleaving Enzyme (BACE-1) inhibitors, Monoamine Oxidase (MAO) inhibitors, Phosphodiesterase inhibitors (PDEs), N-methyl--aspartic Acid (NMDA) antagonists, Histamine 3 receptor antagonists (H3R), Serotonin receptor subtype 4 (5-HT4R) antagonists, Sigma1 receptor antagonists (S1R) and soluble Epoxide Hydrolase (sEH) inhibitors. The drug development strategy of multi-target-directed ligands (MTDLs) offers unique advantages in the treatment of complex diseases. On the one hand, it can synergistically enhance the therapeutic efficacy of single-target drugs. On the other hand, it can also reduce the side effects. In this review, we discuss the design strategy of dual inhibitors based on acetylcholinesterase and the structure-activity relationship of these drugs.
Collapse
Affiliation(s)
- Xingyi Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Qiaoguan Hu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xiaoqian Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Chunting Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xiao Chen
- Yangtze River Pharmaceutical Group Jiangsu Haici Biological Pharmaceutical Co., Ltd. 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou City, Jiangsu Province, 225321, China
| | - Dong Zhao
- Yangtze River Pharmaceutical Group Jiangsu Haici Biological Pharmaceutical Co., Ltd. 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou City, Jiangsu Province, 225321, China
| | - Yue Qiu
- Yangtze River Pharmaceutical Group Jiangsu Haici Biological Pharmaceutical Co., Ltd. 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou City, Jiangsu Province, 225321, China
| | - Haoyu Xu
- Yangtze River Pharmaceutical (Group) CO., Ltd. NO.1 South Yangtze River Road, Taizhou City, Jiangsu Province, 225321, China
| | - Jiaqi Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Le Ren
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Na Zhang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Shuang Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Ping Gong
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| | - Yunlei Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| |
Collapse
|
3
|
Singh YP, Kumar H. Recent Advances in Medicinal Chemistry of Memantine Against Alzheimer's Disease. Chem Biol Drug Des 2024; 104:e14638. [PMID: 39370170 DOI: 10.1111/cbdd.14638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/16/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024]
Abstract
Alzheimer's disease (AD) is a chronic progressive, age-related neurodegenerative brain disorder characterized by the irreversible decline of memory and other cognitive functions. It is one of the major health threat of the 21st century, which affects around 60% of the population over the age of 60 years. The problem of this disease is even more major because the existing pharmacotherapies only provide symptomatic relief without addressing the basic factors of the disease. It is characterized by the extracellular deposition of amyloid β (Aβ) to form senile plaques, and the intracellular hyperphosphorylation of tau to form neurofibrillary tangles (NFTs). Due to the complex pathophysiology of this disease, various hypotheses have been proposed, including the cholinergic, Aβ, tau, oxidative stress, and the metal-ion hypothesis. Among these, the cholinergic and Aβ hypotheses are the primary targets for addressing AD. Therefore, continuous advances have been made in developing potential cholinesterase inhibitors and N-methyl-D-aspartate (NMDA) receptor antagonists to delay disease progression and restore cholinergic neurotransmission. In this review article, we tried to comprehensively summarize the recent advancement in NMDA receptor antagonist (memantine) and their hybrid analogs as potential disease-modifying agents for the treatment of AD. Furthermore, we also depicted the design, rationale, and SAR analysis of the memantine-based hybrids used in the last decade for the treatment of AD.
Collapse
Affiliation(s)
- Yash Pal Singh
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia, USA
- Himachal Pradesh Technical University, Hamirpur, India
| | - Harish Kumar
- Himachal Pradesh Technical University, Hamirpur, India
- Government College of Pharmacy, Shimla, India
| |
Collapse
|
4
|
La Spada G, Miniero DV, Rullo M, Cipolloni M, Delre P, Colliva C, Colella M, Leonetti F, Liuzzi GM, Mangiatordi GF, Giacchè N, Pisani L. Structure-based design of multitargeting ChEs-MAO B inhibitors based on phenyl ring bioisosteres: AChE/BChE selectivity switch and drug-like characterization. Eur J Med Chem 2024; 274:116511. [PMID: 38820854 DOI: 10.1016/j.ejmech.2024.116511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 06/02/2024]
Abstract
A structure-based drug design approach was focused on incorporating phenyl ring heterocyclic bioisosteres into coumarin derivative 1, previously reported as potent dual AChE-MAO B inhibitor, with the aim of improving drug-like features. Structure-activity relationships highlighted that bioisosteric rings were tolerated by hMAO B enzymatic cleft more than hAChE. Interestingly, linker homologation at the basic nitrogen enabled selectivity to switch from hAChE to hBChE. In the present work, we identified thiophene-based isosteres 7 and 15 as dual AChE-MAO B (IC50 = 261 and 15 nM, respectively) and BChE-MAO B (IC50 = 375 and 20 nM, respectively) inhibitors, respectively. Both 7 and 15 were moderately water-soluble and membrane-permeant agents by passive diffusion (PAMPA-HDM). Moreover, they were able to counteract oxidative damage induced by both H2O2 and 6-OHDA in SH-SY5Y cells and predicted to penetrate into CNS in a cell-based model mimicking blood-brain barrier. Molecular dynamics (MD) simulations shed light on key differences in AChE and BChE recognition processes promoted by the basic chain homologation from 7 to 15.
Collapse
Affiliation(s)
- Gabriella La Spada
- Dept. of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125, Bari, Italy
| | - Daniela Valeria Miniero
- Dept. of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Mariagrazia Rullo
- Dept. of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125, Bari, Italy
| | - Marco Cipolloni
- Tes Pharma s.r.l., via Palmiro Togliatti 20, 06073, Corciano, PG, Italy
| | - Pietro Delre
- CNR, Institute of Crystallography, 70126, Bari, Italy
| | - Carolina Colliva
- Tes Pharma s.r.l., via Palmiro Togliatti 20, 06073, Corciano, PG, Italy
| | - Marco Colella
- Dept. of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125, Bari, Italy
| | - Francesco Leonetti
- Dept. of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125, Bari, Italy
| | - Grazia Maria Liuzzi
- Dept. of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | | | - Nicola Giacchè
- Tes Pharma s.r.l., via Palmiro Togliatti 20, 06073, Corciano, PG, Italy
| | - Leonardo Pisani
- Dept. of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125, Bari, Italy.
| |
Collapse
|
5
|
Luque FJ, Muñoz-Torrero D. Acetylcholinesterase: A Versatile Template to Coin Potent Modulators of Multiple Therapeutic Targets. Acc Chem Res 2024. [PMID: 38333993 PMCID: PMC10882973 DOI: 10.1021/acs.accounts.3c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
ConspectusThe enzyme acetylcholinesterase (AChE) hydrolyzes the neurotransmitter acetylcholine (ACh) at cholinergic synapses of the peripheral and central nervous system. Thus, it is a prime therapeutic target for diseases that occur with a cholinergic deficit, prominently Alzheimer's disease (AD). Working at a rate near the diffusion limit, it is considered one of nature's most efficient enzymes. This is particularly meritorious considering that its catalytic site is buried at the bottom of a 20-Å-deep cavity, which is preceded by a bottleneck with a diameter shorter than that of the trimethylammonium group of ACh, which has to transit through it. Not only the particular architecture and amino acid composition of its active site gorge enable AChE to largely overcome this potential drawback, but it also offers plenty of possibilities for the design of novel inhibitor drug candidates.In this Account, we summarize our different approaches to colonize the vast territory of the AChE gorge in the pursuit of increased occupancy and hence of inhibitors with increased affinity. We pioneered the use of molecular hybridization to design inhibitors with extended binding at the CAS, reaching affinities among the highest reported so far. Further application of molecular hybridization to grow CAS extended binders by attaching a PAS-binding moiety through suitable linkers led to multisite inhibitors that span the whole length of the gorge, reaching the PAS and even interacting with midgorge residues. We show that multisite AChE inhibitors can also be successfully designed the other way around, by starting with an optimized PAS binder and then colonizing the gorge and CAS. Molecular hybridization from a multicomponent reaction-derived PAS binder afforded a single-digit picomolar multisite AChE inhibitor with more than 1.5 million-fold increased potency relative to the initial hit. This illustrates the powerful alliance between molecular hybridization and gorge occupancy for designing potent AChE inhibitors.Beyond AChE, we show that the stereoelectronic requirements imposed by the AChE gorge for multisite binding have a templating effect that leads to compounds that are active in other key biological targets in AD and other neurological and non-neurological diseases, such as BACE-1 and the aggregation of amyloidogenic proteins (β-amyloid, tau, α-synuclein, prion protein, transthyretin, and human islet amyloid polypeptide). The use of known pharmacophores for other targets as the PAS-binding motif enables the rational design of multitarget agents with multisite binding within AChE and activity against a variety of targets or pathological events, such as oxidative stress and the neuroinflammation-modulating enzyme soluble epoxide hydrolase, among others.We hope that our results can contribute to the development of drug candidates that can modify the course of neurodegeneration and may inspire future works that exploit the power of molecular hybridization in other proteins featuring large cavities.
Collapse
Affiliation(s)
- F Javier Luque
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, E-08921 Santa Coloma de Gramenet, Spain
- Institute of Biomedicine (IBUB), University of Barcelona, E-08028 Barcelona, Spain
- Institute of Theoretical and Computational Chemistry (IQTC), University of Barcelona, E-08028 Barcelona, Spain
| | - Diego Muñoz-Torrero
- Institute of Biomedicine (IBUB), University of Barcelona, E-08028 Barcelona, Spain
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, University of Barcelona, E-08028 Barcelona, Spain
| |
Collapse
|
6
|
Egunlusi AO, Malan SF, Palchykov VA, Joubert J. Calcium Modulating Effect of Polycyclic Cages: A Suitable Therapeutic Approach Against Excitotoxic-induced Neurodegeneration. Mini Rev Med Chem 2024; 24:1277-1292. [PMID: 38275027 DOI: 10.2174/0113895575273868231128104121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 01/27/2024]
Abstract
Neurodegenerative disorders pose a significant challenge to global healthcare systems due to their progressive nature and the resulting loss of neuronal cells and functions. Excitotoxicity, characterized by calcium overload, plays a critical role in the pathophysiology of these disorders. In this review article, we explore the involvement of calcium dysregulation in neurodegeneration and neurodegenerative disorders. A promising therapeutic strategy to counter calcium dysregulation involves the use of calcium modulators, particularly polycyclic cage compounds. These compounds, structurally related to amantadine and memantine, exhibit neuroprotective properties by attenuating calcium influx into neuronal cells. Notably, the pentacycloundecylamine NGP1-01, a cage-like structure, has shown efficacy in inhibiting both N-methyl-D-aspartate (NMDA) receptors and voltage- gated calcium channels (VGCCs), making it a potential candidate for neuroprotection against excitotoxic-induced neurodegenerative disorders. The structure-activity relationship of polycyclic cage compounds is discussed in detail, highlighting their calcium-inhibitory activities. Various closed, open, and rearranged cage compounds have demonstrated inhibitory effects on calcium influx through NMDA receptors and VGCCs. Additionally, these compounds have exhibited neuroprotective properties, including free radical scavenging, attenuation of neurotoxicities, and reduction of neuroinflammation. Although the calcium modulatory activities of polycyclic cage compounds have been extensively studied, apart from amantadine and memantine, none have undergone clinical trials. Further in vitro and in vivo studies and subsequent clinical trials are required to establish the efficacy and safety of these compounds. The development of polycyclic cages as potential multifunctional agents for treating complex neurodegenerative diseases holds great promise.
Collapse
Affiliation(s)
- Ayodeji O Egunlusi
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Sarel F Malan
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Vitalii A Palchykov
- Research Institute of Chemistry and Geology, Oles Honchar Dnipropetrovsk National University, 72 Gagarina Av., Dnipro 49010, Ukraine
| | - Jacques Joubert
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| |
Collapse
|
7
|
Gutti G, Leifeld J, Kakarla R, Bajad NG, Ganeshpurkar A, Kumar A, Krishnamurthy S, Klein-Schmidt C, Tapken D, Hollmann M, Singh SK. Discovery of triazole-bridged aryl adamantane analogs as an intriguing class of multifunctional agents for treatment of Alzheimer's disease. Eur J Med Chem 2023; 259:115670. [PMID: 37515920 DOI: 10.1016/j.ejmech.2023.115670] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 07/31/2023]
Abstract
Alzheimer's disease (AD) is a progressive brain disorder associated with slow loss of brain functions leading to memory failure and modest changes in behavior. The multifactorial neuropathological condition is due to a depletion of cholinergic neurons and accumulation of amyloid-beta (Aβ) plaques. Recently, a multi-target-directed ligand (MTDL) strategy has emerged as a robust drug discovery tool to overcome current challenges. In this research work, we aimed to design and develop a library of triazole-bridged aryl adamantane analogs for the treatment of AD. All synthesized analogs were characterized and evaluated through various in vitro and in vivo biological studies. The optimal compounds 32 and 33 exhibited potent inhibitory activities against acetylcholinesterase (AChE) (32 - IC50 = 0.086 μM; 33 - 0.135 μM), and significant Aβ aggregation inhibition (20 μM). N-methyl-d-aspartate (NMDA) receptor (GluN1-1b/GluN2B subunit combination) antagonistic activity of compounds 32 and 33 measured upon heterologous expression in Xenopus laevis oocytes showed IC50 values of 3.00 μM and 2.86 μM, respectively. The compounds possessed good blood-brain barrier permeability in the PAMPA assay and were safe for SH-SY5Y neuroblastoma (10 μM) and HEK-293 cell lines (30 μM). Furthermore, in vivo behavioral studies in rats demonstrated that both compounds improved cognitive and spatial memory impairment at a dose of 10 mg/kg oral administration. Together, our findings suggest triazole-bridged aryl adamantane as a promising new scaffold for the development of anti-Alzheimer's drugs.
Collapse
Affiliation(s)
- Gopichand Gutti
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India; Department of Biochemistry I - Receptor Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Jennifer Leifeld
- Department of Biochemistry I - Receptor Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Ramakrishna Kakarla
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Nilesh Gajanan Bajad
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ankit Ganeshpurkar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ashok Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Sairam Krishnamurthy
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Christina Klein-Schmidt
- Department of Biochemistry I - Receptor Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Daniel Tapken
- Department of Biochemistry I - Receptor Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Michael Hollmann
- Department of Biochemistry I - Receptor Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Sushil Kumar Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India.
| |
Collapse
|
8
|
Pasieka A, Panek D, Zaręba P, Sługocka E, Gucwa N, Espargaró A, Latacz G, Khan N, Bucki A, Sabaté R, Więckowska A, Malawska B. Novel drug-like fluorenyl derivatives as selective butyrylcholinesterase and β-amyloid inhibitors for the treatment of Alzheimer's disease. Bioorg Med Chem 2023; 88-89:117333. [PMID: 37236021 DOI: 10.1016/j.bmc.2023.117333] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/23/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
Butyrylcholinesterase (BuChE) and amyloid β (Aβ) aggregation remain important biological target and mechanism in the search for effective treatment of Alzheimer's disease. Simultaneous inhibition thereof by the application of multifunctional agents may lead to improvement in terms of symptoms and causes of the disease. Here, we present the rational design, synthesis, biological evaluation and molecular modelling studies of novel series of fluorene-based BuChE and Aβ inhibitors with drug-like characteristics and advantageous Central Nervous System Multiparameter Optimization scores. Among 17 synthesized and tested compounds, we identified 22 as the most potent eqBuChE inhibitor with IC50 of 38 nM and 37.4% of Aβ aggregation inhibition at 10 μM. Based on molecular modelling studies, including molecular dynamics, we determined the binding mode of the compounds within BuChE and explained the differences in the activity of the two enantiomers of compound 22. A novel series of fluorenyl compounds meeting the drug-likeness criteria seems to be a promising starting point for further development as anti-Alzheimer agents.
Collapse
Affiliation(s)
- Anna Pasieka
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688 Kraków, Poland
| | - Dawid Panek
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688 Kraków, Poland.
| | - Paula Zaręba
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688 Kraków, Poland
| | - Emilia Sługocka
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688 Kraków, Poland; Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 16 Łazarza St., 31-530 Kraków, Poland
| | - Natalia Gucwa
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688 Kraków, Poland
| | - Alba Espargaró
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, Av Joan XXIII 27-31, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Av Joan XXIII, S/N, 08028 Barcelona, Spain
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688 Kraków, Poland
| | - Nadia Khan
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688 Kraków, Poland; Departement of Pathophysiology, Jagiellonian University Medical College, 18 Czysta St., 31-121 Kraków, Poland
| | - Adam Bucki
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Kraków, Poland
| | - Raimon Sabaté
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, Av Joan XXIII 27-31, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Av Joan XXIII, S/N, 08028 Barcelona, Spain
| | - Anna Więckowska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688 Kraków, Poland
| | - Barbara Malawska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688 Kraków, Poland
| |
Collapse
|
9
|
Bubley A, Erofeev A, Gorelkin P, Beloglazkina E, Majouga A, Krasnovskaya O. Tacrine-Based Hybrids: Past, Present, and Future. Int J Mol Sci 2023; 24:ijms24021717. [PMID: 36675233 PMCID: PMC9863713 DOI: 10.3390/ijms24021717] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder which is characterized by β-amyloid (Aβ) aggregation, τ-hyperphosphorylation, and loss of cholinergic neurons. The other important hallmarks of AD are oxidative stress, metal dyshomeostasis, inflammation, and cell cycle dysregulation. Multiple therapeutic targets may be proposed for the development of anti-AD drugs, and the "one drug-multiple targets" strategy is of current interest. Tacrine (THA) was the first clinically approved cholinesterase (ChE) inhibitor, which was withdrawn due to high hepatotoxicity. However, its high potency in ChE inhibition, low molecular weight, and simple structure make THA a promising scaffold for developing multi-target agents. In this review, we summarized THA-based hybrids published from 2006 to 2022, thus providing an overview of strategies that have been used in drug design and approaches that have resulted in significant cognitive improvements and reduced hepatotoxicity.
Collapse
Affiliation(s)
- Anna Bubley
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Alexaner Erofeev
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Peter Gorelkin
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Elena Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Alexander Majouga
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Olga Krasnovskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
- Correspondence:
| |
Collapse
|
10
|
Patil VM, Masand N, Gautam V, Kaushik S, Wu D. Multi-Target-Directed Ligand Approach in Anti-Alzheimer’s Drug Discovery. DECIPHERING DRUG TARGETS FOR ALZHEIMER’S DISEASE 2023:285-319. [DOI: 10.1007/978-981-99-2657-2_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Alzheimer's disease: Updated multi-targets therapeutics are in clinical and in progress. Eur J Med Chem 2022; 238:114464. [DOI: 10.1016/j.ejmech.2022.114464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 12/14/2022]
|
12
|
Huang N, Xiang T, Huang X. Analysis of the Effects of Curculin on Neuronal Cells, Glutamate Transporter Solute Carrier Family 1, Learning and Memory in Alzheimer’s Disease Rats. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Our study assessed curculin’s effects on neurons, GLT-1, and behavioral learning ability of AD rats. 40 rats were divided randomly into low curculoside group (CAS1 group), high curculoside group (CAS2 group), normal group (WG group) and model group (GS group) (stereotactic injection
of Aβ into hippocampus) followed by analysis of learning ability by Y-maze, GLT-1 level by immunofluorescence histochemistry, neuron morphology by HE staining, GLU content by HPLC, GLT-1 level by western blot, and apoptosis by TUNEL assay. Compared with WG group, GS group had significantly
elevated number of exercises and wrong actions, total reaction time and Glu content (20.52±2.09 μmol/L versus 7.51±1.21 μmol/L) and reduced GLT-1 level (0.47±0.06 versus 1.23±0.07) (P < 0.01). In addition, increased apoptosis rate was
found in GS group (69.78±9.97) compared to WG group (8.42±2.13) (P < 0.01). Compared with GS group, CAS1 and CAS2 groups had improved changes (P < 0.01) with more improvement in CAS2 group than CAS1 group. In conclusion, curculoside can inhibit GLU expression,
reduce neuronal cell apoptosis, and improve the learning ability of AD rats, which may be related to the inhibition of GLT-1 in AD rats.
Collapse
Affiliation(s)
- Nianping Huang
- Department of Encephalopathy Department, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, 445000, China
| | - Taoying Xiang
- Department of Encephalopathy Department, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, 445000, China
| | - Xinquan Huang
- Department of Encephalopathy Department, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, 445000, China
| |
Collapse
|
13
|
Pradhan LK, Sahoo PK, Chauhan S, Das SK. Recent Advances Towards Diagnosis and Therapeutic Fingerprinting for Alzheimer's Disease. J Mol Neurosci 2022; 72:1143-1165. [PMID: 35553375 DOI: 10.1007/s12031-022-02009-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/02/2022] [Indexed: 12/12/2022]
Abstract
Since the report of "a peculiar severe disease process of the cerebral cortex" by Alois Alzheimer in 1906, it was considered to be a rare condition characterized by loss of cognition, memory impairment, and pathological markers such as senile plaques or neurofibrillary tangles (NFTs). Later on, the report was published in the textbook "Psychiatrie" and the disease was named as Alzheimer's disease (AD) and was known to be the consequences of aging; however, owing to its complex etiology, there is no cure for the progressive neurodegenerative disorder. Our current understanding of the mechanisms involved in the pathogenesis of AD is still at the mechanistic level. The treatment strategies applied currently only alleviate the symptoms and co-morbidities. For instance, the available treatments such as the usage of acetylcholinesterase inhibitors and N-methyl D-aspartate antagonists have minimal impact on the disease progression and target the later aspects of the disease. The recent advancements in the last two decades have made us more clearly understand the pathophysiology of the disease which has led to the development of novel therapeutic strategies. This review gives a brief idea about the various facets of AD pathophysiology and its management through modern investigational therapies to give a new direction for development of targeted therapeutic measures.
Collapse
Affiliation(s)
- Lilesh Kumar Pradhan
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to Be University), Kalinga Nagar, Bhubaneswar-751003, India
| | - Pradyumna Kumar Sahoo
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to Be University), Kalinga Nagar, Bhubaneswar-751003, India
| | - Santosh Chauhan
- Autophagy Laboratory, Infectious Disease Biology Division, Institute of Life Sciences, Bhubaneswar-751023, India.
| | - Saroj Kumar Das
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to Be University), Kalinga Nagar, Bhubaneswar-751003, India.
| |
Collapse
|
14
|
Codony S, Pont C, Griñán-Ferré C, Di Pede-Mattatelli A, Calvó-Tusell C, Feixas F, Osuna S, Jarné-Ferrer J, Naldi M, Bartolini M, Loza MI, Brea J, Pérez B, Bartra C, Sanfeliu C, Juárez-Jiménez J, Morisseau C, Hammock BD, Pallàs M, Vázquez S, Muñoz-Torrero D. Discovery and In Vivo Proof of Concept of a Highly Potent Dual Inhibitor of Soluble Epoxide Hydrolase and Acetylcholinesterase for the Treatment of Alzheimer's Disease. J Med Chem 2022; 65:4909-4925. [PMID: 35271276 PMCID: PMC8958510 DOI: 10.1021/acs.jmedchem.1c02150] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
With innumerable clinical failures of target-specific drug candidates for multifactorial diseases, such as Alzheimer's disease (AD), which remains inefficiently treated, the advent of multitarget drug discovery has brought a new breath of hope. Here, we disclose a class of 6-chlorotacrine (huprine)-TPPU hybrids as dual inhibitors of the enzymes soluble epoxide hydrolase (sEH) and acetylcholinesterase (AChE), a multitarget profile to provide cumulative effects against neuroinflammation and memory impairment. Computational studies confirmed the gorge-wide occupancy of both enzymes, from the main site to a secondary site, including a so far non-described AChE cryptic pocket. The lead compound displayed in vitro dual nanomolar potencies, adequate brain permeability, aqueous solubility, human microsomal stability, lack of neurotoxicity, and it rescued memory, synaptic plasticity, and neuroinflammation in an AD mouse model, after low dose chronic oral administration.
Collapse
Affiliation(s)
- Sandra Codony
- Laboratory
of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy
and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona (UB), Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Caterina Pont
- Laboratory
of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy
and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona (UB), Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Christian Griñán-Ferré
- Pharmacology
Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry,
Faculty of Pharmacy and Food Sciences, and Institute of Neurosciences, University of Barcelona (UB), Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Ania Di Pede-Mattatelli
- Department
of Pharmacy and Pharmaceutical Technology and Physical Chemistry,
Faculty of Pharmacy and Food Sciences, and Institute of Theoretical
and Computational Chemistry (IQTCUB), University
of Barcelona (UB), Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Carla Calvó-Tusell
- CompBioLab
Group, Departament de Química and Institut de Química
Computacional i Catàlisi (IQCC), Universitat de Girona, C/ Maria Aurèlia Capmany 69, E-17003 Girona, Spain
| | - Ferran Feixas
- CompBioLab
Group, Departament de Química and Institut de Química
Computacional i Catàlisi (IQCC), Universitat de Girona, C/ Maria Aurèlia Capmany 69, E-17003 Girona, Spain
| | - Sílvia Osuna
- CompBioLab
Group, Departament de Química and Institut de Química
Computacional i Catàlisi (IQCC), Universitat de Girona, C/ Maria Aurèlia Capmany 69, E-17003 Girona, Spain,Institució
Catalana de Recerca i Estudis Avançats (ICREA), E-08010 Barcelona, Spain
| | - Júlia Jarné-Ferrer
- Pharmacology
Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry,
Faculty of Pharmacy and Food Sciences, and Institute of Neurosciences, University of Barcelona (UB), Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Marina Naldi
- Department
of Pharmacy and Biotechnology, University
of Bologna, Via Belmeloro, 6, I-40126 Bologna, Italy
| | - Manuela Bartolini
- Department
of Pharmacy and Biotechnology, University
of Bologna, Via Belmeloro, 6, I-40126 Bologna, Italy
| | - María Isabel Loza
- BioFarma
Research Group, Centro Singular de Investigación en Medicina
Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Av. de Barcelona s/n, E-15782 Santiago de Compostela, Spain
| | - José Brea
- BioFarma
Research Group, Centro Singular de Investigación en Medicina
Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Av. de Barcelona s/n, E-15782 Santiago de Compostela, Spain
| | - Belén Pérez
- Department
of Pharmacology, Therapeutics and Toxicology, Autonomous University of Barcelona, E-08193 Bellaterra, Spain
| | - Clara Bartra
- Institute
of Biomedical Research of Barcelona, CSIC and Institut d’Investigacions
Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló, 149, E-08036 Barcelona, Spain
| | - Coral Sanfeliu
- Institute
of Biomedical Research of Barcelona, CSIC and Institut d’Investigacions
Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló, 149, E-08036 Barcelona, Spain
| | - Jordi Juárez-Jiménez
- Department
of Pharmacy and Pharmaceutical Technology and Physical Chemistry,
Faculty of Pharmacy and Food Sciences, and Institute of Theoretical
and Computational Chemistry (IQTCUB), University
of Barcelona (UB), Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Christophe Morisseau
- Department
of Entomology and Nematology and Comprehensive Cancer Center, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Bruce D. Hammock
- Department
of Entomology and Nematology and Comprehensive Cancer Center, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Mercè Pallàs
- Pharmacology
Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry,
Faculty of Pharmacy and Food Sciences, and Institute of Neurosciences, University of Barcelona (UB), Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Santiago Vázquez
- Laboratory
of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy
and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona (UB), Av. Joan XXIII 27-31, E-08028 Barcelona, Spain,. Phone: (+34) 934024533
| | - Diego Muñoz-Torrero
- Laboratory
of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy
and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona (UB), Av. Joan XXIII 27-31, E-08028 Barcelona, Spain,. Phone: (+34) 934024533
| |
Collapse
|
15
|
Xia D, Liu H, Cheng X, Maraswami M, Chen Y, Lv X. Recent Developments of Coumarin-based Hybrids in Drug Discovery. Curr Top Med Chem 2022; 22:269-283. [PMID: 34986774 DOI: 10.2174/1568026622666220105105450] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/23/2021] [Accepted: 12/05/2021] [Indexed: 11/22/2022]
Abstract
Coumarin scaffold is a highly significant O-heterocycle, namely benzopyran-2-ones, form an elite class of naturally occurring compounds that possess promising therapeutic perspectives. Based on its broad spectrum of biological activities, the privileged coumarin scaffold is applied to medicinal and pharmacological treatments by several rational design strategies and approaches. Structure-activity relationships of the coumarin-based hybrids with various bioactivity fragments revealed significant information toward the further development of highly potent and selective disorder therapeutic agents. The molecular docking studies between coumarins and critical therapeutic enzymes demonstrated mode of action by forming noncovalent interactions with more than one receptor, further rationally confirm information about structure-activity relationships. This review summarizes recent developments relating to coumarin-based hybrids with other pharmacophores aiming to numerous feasible therapeutic enzymatic targets to combat various therapeutic fields, including anticancer, antimicrobic, anti-Alzheimer, anti-inflammatory activities.
Collapse
Affiliation(s)
- Dongguo Xia
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| | - Hao Liu
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| | - Xiang Cheng
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| | - Manikantha Maraswami
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Yiting Chen
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, Minjiang University, 350108, Fuzhou, China
| | - Xianhai Lv
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| |
Collapse
|
16
|
Structure-activity relationships of dually-acting acetylcholinesterase inhibitors derived from tacrine on N-methyl-d-Aspartate receptors. Eur J Med Chem 2021; 219:113434. [PMID: 33892271 DOI: 10.1016/j.ejmech.2021.113434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/27/2022]
Abstract
Tacrine is a classic drug whose efficacy against neurodegenerative diseases is still shrouded in mystery. It seems that besides its inhibitory effect on cholinesterases, the clinical benefit is co-determined by NMDAR-antagonizing activity. Our previous data showed that the direct inhibitory effect of tacrine, as well as its 7-methoxy derivative (7-MEOTA), is ensured via a "foot-in-the-door" open-channel blockage, and that interestingly both tacrine and 7-MEOTA are slightly more potent at the GluN1/GluN2A receptors when compared with the GluN1/GluN2B receptors. Here, we report that in a series of 30 novel tacrine derivatives, designed for assessment of structure-activity relationship, blocking efficacy differs among different compounds and receptors using electrophysiology with HEK293 cells expressing the defined types of NMDARs. Selected compounds (4 and 5) potently inhibited both GluN1/GluN2A and GluN1/GluN2B receptors; other compounds (7 and 23) more effectively inhibited the GluN1/GluN2B receptors; or the GluN1/GluN2A receptors (21 and 28). QSAR study revealed statistically significant model for the data obtained for inhibition of GluN1/Glu2B at -60 mV expressed as IC50 values, and for relative inhibition of GluN1/Glu2A at +40 mV caused by a concentration of 100 μM. The models can be utilized for a ligand-based virtual screening to detect potential candidates for inhibition of GluN1/Glu2A and/or GluN1/Glu2B subtypes. Using in vivo experiments in rats we observed that unlike MK-801, the tested novel compounds did not induce hyperlocomotion in open field, and also did not impair prepulse inhibition of startle response, suggesting minimal induction of psychotomimetic side effects. We conclude that tacrine derivatives are promising compounds since they are centrally available subtype-specific inhibitors of the NMDARs without detrimental behavioral side-effects.
Collapse
|
17
|
Microwave-Assisted Synthesis of (Piperidin-1-yl)quinolin-3-yl)methylene)hydrazinecarbothioamides as Potent Inhibitors of Cholinesterases: A Biochemical and In Silico Approach. Molecules 2021; 26:molecules26030656. [PMID: 33513837 PMCID: PMC7866225 DOI: 10.3390/molecules26030656] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 12/17/2022] Open
Abstract
Alzheimer’s disease (AD), a progressive neurodegenerative disorder, characterized by central cognitive dysfunction, memory loss, and intellectual decline poses a major public health problem affecting millions of people around the globe. Despite several clinically approved drugs and development of anti-Alzheimer’s heterocyclic structural leads, the treatment of AD requires safer hybrid therapeutics with characteristic structural and biochemical properties. In this endeavor, we herein report a microwave-assisted synthesis of a library of quinoline thiosemicarbazones endowed with a piperidine moiety, achieved via the condensation of 6/8-methyl-2-(piperidin-1-yl)quinoline-3-carbaldehydes and (un)substituted thiosemicarbazides. The target N-heterocyclic products were isolated in excellent yields. The structures of all the synthesized compounds were fully established using readily available spectroscopic techniques (FTIR, 1H- and 13C-NMR). Anti-Alzheimer potential of the synthesized heterocyclic compounds was evaluated using acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. The in vitro biochemical assay results revealed several compounds as potent inhibitors of both enzymes. Among them, five compounds exhibited IC50 values less than 20 μM. N-(3-chlorophenyl)-2-((8-methyl-2-(piperidin-1-yl)quinolin-3-yl)methylene)hydrazine carbothioamide emerged as the most potent dual inhibitor of AChE and BChE with IC50 values of 9.68 and 11.59 μM, respectively. Various informative structure–activity relationship (SAR) analyses were also concluded indicating the critical role of substitution pattern on the inhibitory efficacy of the tested derivatives. In vitro results were further validated through molecular docking analysis where interactive behavior of the potent inhibitors within the active pocket of enzymes was established. Quinoline thiosemicarbazones were also tested for their cytotoxicity using MTT assay against HepG2 cells. Among the 26 novel compounds, there were five cytotoxical and 18 showed proliferative properties.
Collapse
|
18
|
Zhang Q, Hao C, Miao Y, Yun Y, Sun X, Pan Y, Sun J, Wang X. Design and synthesis of benzyl aminocoumarin and its anti-Alzheimer's activity. NEW J CHEM 2021. [DOI: 10.1039/d1nj02950a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Benzylaminocoumarin is a kind of compound with coumarin skeleton and benzylamino side chain structure at positions 3 and 4.
Collapse
Affiliation(s)
- Qiang Zhang
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, P. R. China
| | - Canhua Hao
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, P. R. China
| | - Yuhang Miao
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, P. R. China
| | - Yinling Yun
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, P. R. China
| | - Xiaoya Sun
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, P. R. China
| | - Yinbo Pan
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, P. R. China
| | - Jie Sun
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, P. R. China
| | - Xiaojing Wang
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, P. R. China
| |
Collapse
|
19
|
Viayna E, Coquelle N, Cieslikiewicz-Bouet M, Cisternas P, Oliva CA, Sánchez-López E, Ettcheto M, Bartolini M, De Simone A, Ricchini M, Rendina M, Pons M, Firuzi O, Pérez B, Saso L, Andrisano V, Nachon F, Brazzolotto X, García ML, Camins A, Silman I, Jean L, Inestrosa NC, Colletier JP, Renard PY, Muñoz-Torrero D. Discovery of a Potent Dual Inhibitor of Acetylcholinesterase and Butyrylcholinesterase with Antioxidant Activity that Alleviates Alzheimer-like Pathology in Old APP/PS1 Mice. J Med Chem 2020; 64:812-839. [PMID: 33356266 DOI: 10.1021/acs.jmedchem.0c01775] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The combination of the scaffolds of the cholinesterase inhibitor huprine Y and the antioxidant capsaicin results in compounds with nanomolar potencies toward human acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) that retain or improve the antioxidant properties of capsaicin. Crystal structures of their complexes with AChE and BChE revealed the molecular basis for their high potency. Brain penetration was confirmed by biodistribution studies in C57BL6 mice, with one compound (5i) displaying better brain/plasma ratio than donepezil. Chronic treatment of 10 month-old APP/PS1 mice with 5i (2 mg/kg, i.p., 3 times per week, 4 weeks) rescued learning and memory impairments, as measured by three different behavioral tests, delayed the Alzheimer-like pathology progression, as suggested by a significantly reduced Aβ42/Aβ40 ratio in the hippocampus, improved basal synaptic efficacy, and significantly reduced hippocampal oxidative stress and neuroinflammation. Compound 5i emerges as an interesting anti-Alzheimer lead with beneficial effects on cognitive symptoms and on some underlying disease mechanisms.
Collapse
Affiliation(s)
- Elisabet Viayna
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Nicolas Coquelle
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS UMR 5075, F-38054 Grenoble, France.,Large Scale Structures Group, Institut Laue-Langevin, F-38042 Grenoble Cedex 9, France
| | | | - Pedro Cisternas
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, P.O. Box 114, 8331150 Santiago, Chile
| | - Carolina A Oliva
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, P.O. Box 114, 8331150 Santiago, Chile
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, E-28031 Madrid, Spain
| | - Miren Ettcheto
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, E-28031 Madrid, Spain.,Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Neuroscience, University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain.,Department of Biochemistry and Biotechnology, Faculty of Medicine and Health Sciences, University Rovira i Virgili, E-43201 Reus, Spain
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Angela De Simone
- Department of Drug Science and Technology, University of Turin, I-10125 Torino, Italy
| | - Mattia Ricchini
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Marisa Rendina
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Mégane Pons
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, PO Box 3288, 71345 Shiraz, Iran
| | - Belén Pérez
- Department of Pharmacology, Therapeutics and Toxicology, Autonomous University of Barcelona, E-08193 Bellaterra, Barcelona, Spain
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Vincenza Andrisano
- Department for Life Quality Studies, University of Bologna, Corso d'Augusto 237, I-47921 Rimini, Italy
| | - Florian Nachon
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées BP73, 91993 Brétigny sur Orge, France
| | - Xavier Brazzolotto
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées BP73, 91993 Brétigny sur Orge, France
| | - Maria Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, E-28031 Madrid, Spain
| | - Antoni Camins
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, E-28031 Madrid, Spain.,Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Neuroscience, University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Israel Silman
- Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Ludovic Jean
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Nibaldo C Inestrosa
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, P.O. Box 114, 8331150 Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, 6200000 Punta Arenas, Chile
| | - Jacques-Philippe Colletier
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS UMR 5075, F-38054 Grenoble, France
| | - Pierre-Yves Renard
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Diego Muñoz-Torrero
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| |
Collapse
|
20
|
Zhao Z, Kang K, Yue J, Ji X, Qiao H, Fan P, Zheng X. Research progress in biological activities of isochroman derivatives. Eur J Med Chem 2020; 210:113073. [PMID: 33310287 DOI: 10.1016/j.ejmech.2020.113073] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/16/2020] [Accepted: 11/29/2020] [Indexed: 10/22/2022]
Abstract
Isochromans are well recognized heterocyclic compounds in drug discovery which produce diverse therapeutically related applications in pharmacological practices. Medicinal chemistry investigators have synthesized drug-like isochroman candidates with multiple medicinal features including central nervous system (CNS), antioxidant, antimicrobial, antihypertensive, antitumor and anti-inflammatory agents. Simultaneously, SAR (Structure-Activity Relationship) analysis has drawn attentions among medicinal chemists, along with a great deal of derivatives have been derived for potential targets. In this article, we thoroughly summarize the biological activities and part of typical SAR for isochroman derivatives reported on existing literatures and patents, wishing to provide an overall retrospect and prospect on the isochroman analogues.
Collapse
Affiliation(s)
- Zefeng Zhao
- College of Acupuncture & Massage, Shaanxi University of Chinese Medicine, Xixian New Area, Shaanxi Province, 712046, PR China; Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province, 712046, PR China; School of Pharmacy, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, 710069, PR China
| | - Kaiwen Kang
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province, 712046, PR China
| | - Jiangxin Yue
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province, 712046, PR China
| | - Xiaotong Ji
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province, 712046, PR China
| | - Haifa Qiao
- College of Acupuncture & Massage, Shaanxi University of Chinese Medicine, Xixian New Area, Shaanxi Province, 712046, PR China; Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province, 712046, PR China.
| | - Peinan Fan
- School of Pharmacy, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, 710069, PR China
| | - Xiaohui Zheng
- School of Pharmacy, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, 710069, PR China
| |
Collapse
|
21
|
Uddin MS, Al Mamun A, Kabir MT, Ashraf GM, Bin-Jumah MN, Abdel-Daim MM. Multi-Target Drug Candidates for Multifactorial Alzheimer's Disease: AChE and NMDAR as Molecular Targets. Mol Neurobiol 2020; 58:281-303. [PMID: 32935230 DOI: 10.1007/s12035-020-02116-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is one of the most common forms of dementia among elder people, which is a progressive neurodegenerative disease that results from a chronic loss of cognitive activities. It has been observed that AD is multifactorial, hence diverse pharmacological targets that could be followed for the treatment of AD. The Food and Drug Administration has approved two types of medications for AD treatment such as cholinesterase inhibitors (ChEIs) and N-methyl-D-aspartic acid receptor (NMDAR) antagonists. Rivastigmine, donepezil, and galantamine are the ChEIs that have been approved to treat AD. On the other hand, memantine is the only non-competitive NMDAR antagonist approved in AD treatment. As compared with placebo, it has been revealed through clinical studies that many single-target therapies are unsuccessful to treat multifactorial Alzheimer's symptoms or disease progression. Therefore, due to the complex nature of AD pathophysiology, diverse pharmacological targets can be hunted. In this article, based on the entwined link of acetylcholinesterase (AChE) and NMDAR, we represent several multifunctional compounds in the rational design of new potential AD medications. This review focus on the significance of privileged scaffolds in the generation of the multi-target lead compound for treating AD, investigating the idea and challenges of multi-target drug design. Furthermore, the most auspicious elementary units for designing as well as synthesizing hybrid drugs are demonstrated as pharmacological probes in the rational design of new potential AD therapeutics.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh.
| | - Abdullah Al Mamun
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | | | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - May N Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
22
|
Marotta G, Basagni F, Rosini M, Minarini A. Memantine Derivatives as Multitarget Agents in Alzheimer's Disease. Molecules 2020; 25:molecules25174005. [PMID: 32887400 PMCID: PMC7504780 DOI: 10.3390/molecules25174005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/24/2022] Open
Abstract
Memantine (3,5-dimethyladamantan-1-amine) is an orally active, noncompetitive N-methyl-D-aspartate receptor (NMDAR) antagonist approved for treatment of moderate-to-severe Alzheimer’s disease (AD), a neurodegenerative condition characterized by a progressive cognitive decline. Unfortunately, memantine as well as the other class of drugs licensed for AD treatment acting as acetylcholinesterase inhibitors (AChEIs), provide only symptomatic relief. Thus, the urgent need in AD drug development is for disease-modifying therapies that may require approaching targets from more than one path at once or multiple targets simultaneously. Indeed, increasing evidence suggests that the modulation of a single neurotransmitter system represents a reductive approach to face the complexity of AD. Memantine is viewed as a privileged NMDAR-directed structure, and therefore, represents the driving motif in the design of a variety of multi-target directed ligands (MTDLs). In this review, we present selected examples of small molecules recently designed as MTDLs to contrast AD, by combining in a single entity the amantadine core of memantine with the pharmacophoric features of known neuroprotectants, such as antioxidant agents, AChEIs and Aβ-aggregation inhibitors.
Collapse
|
23
|
Pérez-Areales FJ, Garrido M, Aso E, Bartolini M, De Simone A, Espargaró A, Ginex T, Sabate R, Pérez B, Andrisano V, Puigoriol-Illamola D, Pallàs M, Luque FJ, Loza MI, Brea J, Ferrer I, Ciruela F, Messeguer A, Muñoz-Torrero D. Centrally Active Multitarget Anti-Alzheimer Agents Derived from the Antioxidant Lead CR-6. J Med Chem 2020; 63:9360-9390. [PMID: 32706255 DOI: 10.1021/acs.jmedchem.0c00528] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Oxidative stress is a major pathogenic factor in Alzheimer's disease, but it should not be tackled alone rather together with other key targets to derive effective treatments. The combination of the scaffold of the polar antioxidant lead 7-methoxy-2,2-dimethylchroman-6-ol (CR-6) with that of the lipophilic cholinesterase inhibitor 6-chlorotacrine results in compounds with favorable brain permeability and multiple activities in vitro (acetylcholinesterase, butyrylcholinesterase, β-site amyloid precursor protein (APP) cleaving enzyme-1 (BACE-1), and Aβ42 and tau aggregation inhibition). In in vivo studies on wild-type and APP/presenilin 1 (PS1) mice, two selected compounds were well tolerated and led to positive trends, albeit statistically nonsignificant in some cases, on memory performance, amyloid pathology (reduced amyloid burden and potentiated non-amyloidogenic APP processing), and oxidative stress (reduced cortical oxidized proteins and increased antioxidant enzymes superoxide dismutase 2 (SOD2), catalase, glutathione peroxidase 1 (GPX1), and heme oxygenase 1 (Hmox1) and transcription factor nuclear factor-erythroid 2-related factor 2 (Nrf2)). These compounds emerge as interesting brain-permeable multitarget compounds, with a potential as anti-Alzheimer agents beyond that of the original lead CR-6.
Collapse
Affiliation(s)
- F Javier Pérez-Areales
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona (UB), E-08028 Barcelona, Spain
| | - María Garrido
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), E-08034 Barcelona, Spain
| | - Ester Aso
- Department of Pathology and Experimental Therapeutics, Neurosciences Institute, University of Barcelona (UB) and Bellvitge University Hospital-IDIBELL, E-08908 L'Hospitalet de Llobregat, Spain
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, University of Bologna, I-40126 Bologna, Italy
| | - Angela De Simone
- Department of Drug Science and Technology, University of Turin, I-10125 Torino, Italy
| | - Alba Espargaró
- Department of Pharmacy, Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona (UB), E-08028 Barcelona, Spain
| | - Tiziana Ginex
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, IBUB, and Institute of Theoretical and Computational Chemistry (IQTC), University of Barcelona (UB), E-08921 Santa Coloma de Gramenet, Spain
| | - Raimon Sabate
- Department of Pharmacy, Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona (UB), E-08028 Barcelona, Spain
| | - Belén Pérez
- Department of Pharmacology, Therapeutics, and Toxicology, Autonomous University of Barcelona, E-08193 Bellaterra, Spain
| | - Vincenza Andrisano
- Department for Life Quality Studies, University of Bologna, I-47921 Rimini, Italy
| | - Dolors Puigoriol-Illamola
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Neuroscience (NeuroUB), University of Barcelona (UB), E-08028 Barcelona, Spain
| | - Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Neuroscience (NeuroUB), University of Barcelona (UB), E-08028 Barcelona, Spain
| | - F Javier Luque
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, IBUB, and Institute of Theoretical and Computational Chemistry (IQTC), University of Barcelona (UB), E-08921 Santa Coloma de Gramenet, Spain
| | - María Isabel Loza
- BioFarma Research Group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Av. de Barcelona s/n, E-15782 Santiago de Compostela, Spain
| | - José Brea
- BioFarma Research Group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Av. de Barcelona s/n, E-15782 Santiago de Compostela, Spain
| | - Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, Neurosciences Institute, University of Barcelona (UB) and Bellvitge University Hospital-IDIBELL, E-08908 L'Hospitalet de Llobregat, Spain.,CIBERNED, E-28031 Madrid, Spain
| | - Francisco Ciruela
- Department of Pathology and Experimental Therapeutics, Neurosciences Institute, University of Barcelona (UB) and Bellvitge University Hospital-IDIBELL, E-08908 L'Hospitalet de Llobregat, Spain
| | - Angel Messeguer
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), E-08034 Barcelona, Spain
| | - Diego Muñoz-Torrero
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona (UB), E-08028 Barcelona, Spain
| |
Collapse
|
24
|
Multitarget Therapeutic Strategies for Alzheimer's Disease: Review on Emerging Target Combinations. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5120230. [PMID: 32714977 PMCID: PMC7354643 DOI: 10.1155/2020/5120230] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/12/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases represent nowadays one of the major health problems. Despite the efforts made to unveil the mechanism leading to neurodegeneration, it is still not entirely clear what triggers this phenomenon and what allows its progression. Nevertheless, it is accepted that neurodegeneration is a consequence of several detrimental processes, such as protein aggregation, oxidative stress, and neuroinflammation, finally resulting in the loss of neuronal functions. Starting from these evidences, there has been a wide search for novel agents able to address more than a single event at the same time, the so-called multitarget-directed ligands (MTDLs). These compounds originated from the combination of different pharmacophoric elements which endowed them with the ability to interfere with different enzymatic and/or receptor systems, or to exert neuroprotective effects by modulating proteins and metal homeostasis. MTDLs have been the focus of the latest strategies to discover a new treatment for Alzheimer's disease (AD), which is considered the most common form of dementia characterized by neurodegeneration and cognitive dysfunctions. This review is aimed at collecting the latest and most interesting target combinations for the treatment of AD, with a detailed discussion on new agents with favorable in vitro properties and on optimized structures that have already been assessed in vivo in animal models of dementia.
Collapse
|
25
|
Rodríguez-Lavado J, Gallardo-Garrido C, Mallea M, Bustos V, Osorio R, Hödar-Salazar M, Chung H, Araya-Maturana R, Lorca M, Pessoa-Mahana CD, Mella-Raipán J, Saitz C, Jaque P, Reyes-Parada M, Iturriaga-Vásquez P, Pessoa-Mahana H. Synthesis, in vitro evaluation and molecular docking of a new class of indolylpropyl benzamidopiperazines as dual AChE and SERT ligands for Alzheimer's disease. Eur J Med Chem 2020; 198:112368. [PMID: 32388114 DOI: 10.1016/j.ejmech.2020.112368] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/11/2020] [Accepted: 04/20/2020] [Indexed: 12/22/2022]
Abstract
During the last decade, the one drug-one target strategy has resulted to be inefficient in facing diseases with complex ethiology like Alzheimer's disease and many others. In this context, the multitarget paradigm has emerged as a promising strategy. Based on this consideration, we aim to develop novel molecules as promiscuous ligands acting in two or more targets at the same time. For such purpose, a new series of indolylpropyl-piperazinyl oxoethyl-benzamido piperazines were synthesized and evaluated as multitarget-directed drugs for the serotonin transporter (SERT) and acetylcholinesterase (AChE). The ability to decrease β-amyloid levels as well as cell toxicity of all compounds were also measured. In vitro results showed that at least four compounds displayed promising activity against SERT and AChE. Compounds 18 and 19 (IC50 = 3.4 and 3.6 μM respectively) exhibited AChE inhibition profile in the same order of magnitude as donepezil (DPZ, IC50 = 2.17 μM), also displaying nanomolar affinity in SERT. Moreover, compounds 17 and 24 displayed high SERT affinities (IC50 = 9.2 and 1.9 nM respectively) similar to the antidepressant citalopram, and significant micromolar AChE activity at the same time. All the bioactive compounds showed a low toxicity profile in the range of concentrations studied. Molecular docking allowed us to rationalize the binding mode of the synthesized compounds in both targets. In addition, we also show that compounds 11 and 25 exhibit significant β-amyloid lowering activity in a cell-based assay, 11 (50% inhibition, 10 μM) and 25 (35% inhibition, 10 μM). These results suggest that indolylpropyl benzamidopiperazines based compounds constitute promising leads for a multitargeted approach for Alzheimer's disease.
Collapse
Affiliation(s)
- Julio Rodríguez-Lavado
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos, 1007, Santiago, Chile
| | - Carlos Gallardo-Garrido
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos, 1007, Santiago, Chile
| | - Michael Mallea
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos, 1007, Santiago, Chile
| | - Victor Bustos
- Laboratory of Cellular and Molecular Neuroscience, The Rockefeller University, New York, USA
| | - Rodrigo Osorio
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos, 1007, Santiago, Chile
| | - Martín Hödar-Salazar
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería Ciencias, Universidad de la Frontera, Temuco, Chile
| | - Hery Chung
- Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Marcos Lorca
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - C David Pessoa-Mahana
- Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jaime Mella-Raipán
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Centro de Investigación Farmacopea Chilena (CIFAR), Universidad de Valparaíso, Santa Marta, Valparaíso, Chile
| | - Claudio Saitz
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos, 1007, Santiago, Chile
| | - Pablo Jaque
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos, 1007, Santiago, Chile
| | - Miguel Reyes-Parada
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Chile; Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Patricio Iturriaga-Vásquez
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería Ciencias, Universidad de la Frontera, Temuco, Chile; Center of Excellence in Biotechnology Research Applied to the Environment, Universidad de La Frontera, Temuco, Chile.
| | - Hernán Pessoa-Mahana
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos, 1007, Santiago, Chile.
| |
Collapse
|
26
|
Mishra CB, Shalini S, Gusain S, Prakash A, Kumari J, Kumari S, Yadav AK, Lynn AM, Tiwari M. Development of novel N-(6-methanesulfonyl-benzothiazol-2-yl)-3-(4-substituted-piperazin-1-yl)-propionamides with cholinesterase inhibition, anti-β-amyloid aggregation, neuroprotection and cognition enhancing properties for the therapy of Alzheimer's disease. RSC Adv 2020; 10:17602-17619. [PMID: 35515597 PMCID: PMC9053591 DOI: 10.1039/d0ra00663g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/19/2020] [Indexed: 12/14/2022] Open
Abstract
A novel series of benzothiazole–piperazine hybrids were rationally designed, synthesized, and evaluated as multifunctional ligands against Alzheimer's disease (AD). The synthesized hybrid molecules illustrated modest to strong inhibition of acetylcholinesterase (AChE) and Aβ1-42 aggregation. Compound 12 emerged as the most potent hybrid molecule exhibiting balanced functions with effective, uncompetitive and selective inhibition against AChE (IC50 = 2.31 μM), good copper chelation, Aβ1-42 aggregation inhibition (53.30%) and disaggregation activities. Confocal laser scanning microscopy and TEM analysis also validate the Aβ fibril inhibition ability of this compound. Furthermore, this compound has also shown low toxicity and is capable of impeding loss of cell viability elicited by H2O2 neurotoxicity in SHSY-5Y cells. Notably, compound 12 significantly improved cognition and spatial memory against scopolamine-induced memory deficit in a mouse model. Hence, our results corroborate the multifunctional nature of novel hybrid molecule 12 against AD and it may be a suitable lead for further development as an effective therapeutic agent for therapy in the future. A novel series of benzothiazole–piperazine hybrids were rationally designed, synthesized, and evaluated as multifunctional ligands against Alzheimer's disease (AD).![]()
Collapse
Affiliation(s)
- Chandra Bhushan Mishra
- Dr. B. R. Ambedkar Centre for Biomedical Research
- University of Delhi
- New Delhi 110007
- India
| | - Shruti Shalini
- Dr. B. R. Ambedkar Centre for Biomedical Research
- University of Delhi
- New Delhi 110007
- India
| | - Siddharth Gusain
- Dr. B. R. Ambedkar Centre for Biomedical Research
- University of Delhi
- New Delhi 110007
- India
| | - Amresh Prakash
- Amity Institute of Integrative Sciences and Health (AIISH)
- Amity University Haryana
- Gurgaon-122413
- India
| | - Jyoti Kumari
- Dr. B. R. Ambedkar Centre for Biomedical Research
- University of Delhi
- New Delhi 110007
- India
| | - Shikha Kumari
- Dr. B. R. Ambedkar Centre for Biomedical Research
- University of Delhi
- New Delhi 110007
- India
| | - Anita Kumari Yadav
- Dr. B. R. Ambedkar Centre for Biomedical Research
- University of Delhi
- New Delhi 110007
- India
| | - Andrew M. Lynn
- School of Computational & Integrative Sciences
- Jawaharlal Nehru University
- New Delhi 110067
- India
| | - Manisha Tiwari
- Dr. B. R. Ambedkar Centre for Biomedical Research
- University of Delhi
- New Delhi 110007
- India
| |
Collapse
|
27
|
Fancellu G, Chand K, Tomás D, Orlandini E, Piemontese L, Silva DF, Cardoso SM, Chaves S, Santos MA. Novel tacrine-benzofuran hybrids as potential multi-target drug candidates for the treatment of Alzheimer's Disease. J Enzyme Inhib Med Chem 2019; 35:211-226. [PMID: 31760822 PMCID: PMC7567501 DOI: 10.1080/14756366.2019.1689237] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pursuing the widespread interest on multi-target drugs to combat Alzheimer´s disease (AD), a new series of hybrids was designed and developed based on the repositioning of the well-known acetylcholinesterase (AChE) inhibitor, tacrine (TAC), by its coupling to benzofuran (BF) derivatives. The BF framework aims to endow the conjugate molecules with ability for inhibition of AChE (bimodal way) and of amyloid-beta peptide aggregation, besides providing metal (Fe, Cu) chelating ability and concomitant extra anti-oxidant activity, for the hybrids with hydroxyl substitution. The new TAC-BF conjugates showed very good activity for AChE inhibition (sub-micromolar range) and good capacity for the inhibition of self- and Cu-mediated Aβ aggregation, with dependence on the linker size and substituent groups of each main moiety. Neuroprotective effects were also found for the compounds through viability assays of neuroblastoma cells, after Aβ1-42 induced toxicity. Structure-activity relationship analysis provides insights on the best structural parameters, to take in consideration for future studies in view of potential applications in AD therapy.
Collapse
Affiliation(s)
- Gaia Fancellu
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Department of Earth Sciences, University of Pisa, Pisa, Italy
| | - Karam Chand
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Daniel Tomás
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | | | - Luca Piemontese
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Diana F Silva
- CNC-Center for Neuroscience and Cell Biology, Universidade de Coimbra, Coimbra, Portugal
| | - Sandra M Cardoso
- CNC-Center for Neuroscience and Cell Biology, Universidade de Coimbra, Coimbra, Portugal.,Institute of Molecular and Cell Biology, Faculty of Medicine, Universidade de Coimbra, Coimbra, Portugal
| | - Sílvia Chaves
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - M Amélia Santos
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|