1
|
Yang Y, Wang Y, Liu Y, Wang K, Wang G, Yang Y, Jang WJ, James TD, Yoon J, Zhang H. Tumor oxygen microenvironment-tailored electron transfer-type photosensitizers for precise cancer therapy. Chem Sci 2024; 15:d4sc03424d. [PMID: 39328193 PMCID: PMC11421038 DOI: 10.1039/d4sc03424d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
The oxygen level in a tumor typically exhibits complex characteristics, ranging from mild hypoxia to moderate and even severe hypoxia. This poses significant challenges for the efficacy of photodynamic therapy, where oxygen is an essential element. Herein, we propose a novel therapeutic strategy and develop a series of lipid droplet-targeting photosensitive dyes (Ser-TPAs), i.e., in situ synergistic activation of two different electron transfer-type reactions. Based on this strategy, Ser-TPAs can synergistically generate O2˙- and nitrogen radicals regardless of the oxygen content, which results in a sustained high concentration of strongly oxidizing substances in the lipid droplets of cancer cells. As such, Ser-TPAs exhibited inhibitory activity against tumor growth in vivo, resulting in a significant reduction in tumor volume (V experimental group : V control group ≈ 0.07). This strategy offers a conceptual framework for the design of innovative photosensitive dyes that are suitable for cancer therapy in complex oxygen environments.
Collapse
Affiliation(s)
- Yiting Yang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Organic Functional Molecules and Drug Innovation, Henan Province, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Yafu Wang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Organic Functional Molecules and Drug Innovation, Henan Province, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Yang Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Organic Functional Molecules and Drug Innovation, Henan Province, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Kui Wang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Organic Functional Molecules and Drug Innovation, Henan Province, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Ge Wang
- College of Basic Medicine, Xinxiang Medical University Xinxiang Henan 453007 P. R. China
| | - Yonggang Yang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Organic Functional Molecules and Drug Innovation, Henan Province, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Won Jun Jang
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Korea
| | - Tony D James
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Organic Functional Molecules and Drug Innovation, Henan Province, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
- Department of Chemistry, University of Bath Bath BA2 7AY UK
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Korea
| | - Hua Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Organic Functional Molecules and Drug Innovation, Henan Province, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| |
Collapse
|
2
|
Tu Y, Gong J, Mou J, Jiang H, Zhao H, Gao J. Strategies for the development of stimuli-responsive small molecule prodrugs for cancer treatment. Front Pharmacol 2024; 15:1434137. [PMID: 39144632 PMCID: PMC11322083 DOI: 10.3389/fphar.2024.1434137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Approved anticancer drugs typically face challenges due to their narrow therapeutic window, primarily because of high systemic toxicity and limited selectivity for tumors. Prodrugs are initially inactive drug molecules designed to undergo specific chemical modifications. These modifications render the drugs inactive until they encounter specific conditions or biomarkers in vivo, at which point they are converted into active drug molecules. This thoughtful design significantly improves the efficacy of anticancer drug delivery by enhancing tumor specificity and minimizing off-target effects. Recent advancements in prodrug design have focused on integrating these strategies with delivery systems like liposomes, micelles, and polymerosomes to further improve targeting and reduce side effects. This review outlines strategies for designing stimuli-responsive small molecule prodrugs focused on cancer treatment, emphasizing their chemical structures and the mechanisms controlling drug release. By providing a comprehensive overview, we aim to highlight the potential of these innovative approaches to revolutionize cancer therapy.
Collapse
Affiliation(s)
- Yuxuan Tu
- The Afffliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jianbao Gong
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao Municipal Hospital, Qingdao, China
| | - Jing Mou
- Department of Neonatology, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, Shandong, China
| | - Hongfei Jiang
- The Afffliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Haibo Zhao
- The Afffliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jiake Gao
- The Afffliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Fan S, Liu Q, Dong J, Ai X, Li J, Huang W, Sun T. In situ forming an injectable hyaluronic acid hydrogel for drug delivery and synergistic tumor therapy. Heliyon 2024; 10:e32135. [PMID: 38867981 PMCID: PMC11168435 DOI: 10.1016/j.heliyon.2024.e32135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024] Open
Abstract
Stimulus-responsive injectable hydrogel has the key characteristics of in situ drug-loading ability and the controlled drug release, enabling efficient delivery and precise release of chemotherapy drugs at the tumor site, thereby being used as a local drug delivery system for sustained tumor treatment. This article designed a smart responsive injectable hydrogel loaded with anti-tumor drugs and nanoparticles to achieve efficient and specific synergistic treatment of tumors. Hyaluronic acid (HA) hydrogel obtained by cross-linking HA-SH (HS) and HA-Tyr (HT) through horseradish peroxidase (HRP), and doxorubicin hydrochloride (DOX) and folic acid-polyethylene glycol-amine (FA-PEG-NH2) modified PDA (denoted as PPF) were encapsulated to construct the HS/HT@PPF/D hydrogel. The hydrogel had good biocompatibility, injectability, and could respond to multiple stimuli at the tumor site, thereby achieving controlled drug release. At the same time, PPF gave it excellent photothermal efficiency, photothermal stability and tumor targeting. In vitro and in vivo experimental results showed that the HS/HT@PPF/D hydrogel combined with near-infrared laser irradiation could significantly improve its anti-tumor effect and could almost eliminate the entire tumor mass without obvious adverse reactions. The HS/HT@PPF/D hydrogel could achieve multi-stimulus-responsive drug delivery and be used for precise chemo-photothermal synergistic tumor treatment, thus providing a new platform for local synergistic tumor treatment.
Collapse
Affiliation(s)
- Sisi Fan
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Qinghuan Liu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Jia Dong
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Xiaorui Ai
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Jing Li
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Wei Huang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| |
Collapse
|
4
|
Zhao Y, Guo P, Li D, Liu M, Zhang J, Yuan K, Zheng H, Liu L. Preparation and evaluation of oxidized-dextran based on antibacterial hydrogel for synergistic photodynamic therapy. Int J Biol Macromol 2023; 253:127648. [PMID: 37890748 DOI: 10.1016/j.ijbiomac.2023.127648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/13/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023]
Abstract
Skin trauma is a widespread, extremely susceptible health issue that affects people all over the world. In this study, an innovative antibacterial hydrogel (ODAA hydrogel) with photosensitizer and antibiotics was developed. Oxidized dextran (ODEX) was used as a carrier to prepare a pH-responsive hydrogel by loading the antibiotic amikacin (AMK) and the photosensitizer hexyl 5-aminolevulinate (HAL) via imine bonds. The ODAA hydrogel has a uniformly distributed cavity structure. The cumulative release rates of HAL and AMK in a simulated inflammatory environment at pH 5.0 were approximately 62.3 % and 71.9 % during 15 days. These results demonstrate the ODAA hydrogel's ability to deliver antibiotics on demand, where the antibiotic content is reduced within the effective range. Regarding the in vitro antibacterial behavior, the combination of HAL and AMK synergistically destroyed the majority of Gram-positive and Gram-negative bacteria through several pathways with broad-spectrum antibacterial effects. ODAA hydrogel has been shown to be biocompatible, nearly non-cytotoxic, and capable of promoting wound healing. It is anticipated that the simultaneous targeted delivery of multiple drugs to lesions in the same carrier at ideal dose ratios for particular therapeutic combinations will produce the most synergistic effects.
Collapse
Affiliation(s)
- Yuting Zhao
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Peiyong Guo
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Dan Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Mengjie Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Junhao Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Kai Yuan
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Hua Zheng
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
| | - Liang Liu
- School of Traditional Chinese Medicine, Inner Mongolia Medical University, Huhehot 010010, China.
| |
Collapse
|
5
|
Cheng Y, Zhong C, Yan S, Chen C, Gao X. Structure modification: a successful tool for prodrug design. Future Med Chem 2023; 15:379-393. [PMID: 36946236 DOI: 10.4155/fmc-2022-0309] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Prodrug strategy is critical for innovative drug development. Structural modification is the most straightforward and effective method to develop prodrugs. Improving drug defects and optimizing the physical and chemical properties of a drug, such as lipophilicity and water solubility, changing the way of administration can be achieved through specific structural modification. Designing prodrugs by linking microenvironment-responsive groups to the prototype drugs is of great help in enhancing drug targeting. In the meantime, making connections between prodrugs and suitable drug delivery systems could realize drug loading increases, greater stability, bioavailability and drug release control. In this paper, lipidic, water-soluble, pH-responsive, redox-sensitive and enzyme-activatable prodrugs are reviewed on the basis of structural modification.
Collapse
Affiliation(s)
- Yuexuan Cheng
- College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Chunhong Zhong
- College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Shujing Yan
- College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Chunli Chen
- College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
- Engineering Research Center of Xinjiang & Central Asian Medicine Resources, Ministry of Education, Urumqi, Xinjiang, 830011, China
| | - Xiaoli Gao
- College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
- Engineering Research Center of Xinjiang & Central Asian Medicine Resources, Ministry of Education, Urumqi, Xinjiang, 830011, China
| |
Collapse
|
6
|
Chen Y, Xu Z, Lu T, Luo J, Xue H. Prostate-specific membrane antigen targeted, glutathione-sensitive nanoparticles loaded with docetaxel and enzalutamide for the delivery to prostate cancer. Drug Deliv 2022; 29:2705-2712. [PMID: 35980107 PMCID: PMC9487954 DOI: 10.1080/10717544.2022.2110998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Prostate cancer (PCa) is the most common malignant tumor in men. Chemotherapy with docetaxel (DTX) and novel hormonal agents such as enzalutamide (EZL) and abiraterone are the preferred first-line therapeutic regimens. Prostate-specific membrane antigen (PSMA) is overexpressed on the surface of PCa cells. This study aimed to prepare a PSMA targeted (Glutamate-Urea-Lysine, GUL ligand modified), glutathione (GSH)-sensitive (Cystamine, SS), DTX and EZL co-loaded nanoparticles (GUL-SS DTX/EZL-NPs) to treat PCa. Polyethylene glycol (PEG) was conjugated with oleic acid (OA) using a GSH-sensitive ligand: cystamine (PEG-SS-OA). GUL was covalently coupled to PEG-SS-OA to achieve GUL-PEG-SS-OA. GUL-PEG-SS-OA was used to prepare GUL-SS DTX/EZL-NPs. To evaluate the in vitro and in vivo efficiency of the system, human prostate cancer cell lines and PCa cells bearing mice were applied. Single drug-loaded nanoparticle and free drugs systems were utilized for the comparison of the anticancer ability. GUL-SS DTX/EZL-NPs showed a size of 143.7 ± 4.1 nm, with a PDI of 0.162 ± 0.037 and a zeta potential of +29.1 ± 2.4 mV. GUL-SS DTX/EZL-NPs showed high cancer cell uptake of about 70%, as well as higher cell growth inhibition efficiency (a maximum 79% of cells were inhibited after treatment) than single drug-loaded NPs and free drugs. GUL-SS DTX/EZL-NPs showed the most prominent tumor inhibition ability and less systemic toxicity. The novel GUL-SS DTX/EZL-NPs could be used as a promising system for PCa therapy.
Collapse
Affiliation(s)
- Yang Chen
- Affiliated Hospital of Jiangnan University, Wuxi214000, Jiangsu Province, China
| | - Zhenyu Xu
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi214000, Jiangsu Province, China
| | - Tingxun Lu
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi214000, Jiangsu Province, China
| | - Jia Luo
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong226000, Jiangsu Province, China
| | - Hua Xue
- Department of Pharmacy, Wuxi Mental Health Center, Wuxi214000, Jiangsu Province, China
| |
Collapse
|
7
|
Yang XY, Yuan B, Xiong H, Zhao Y, Wang L, Zhang SQ, Mao S. Allyl phenyl selenides as H 2O 2 acceptors to develop ROS-responsive theranostic prodrugs. Bioorg Chem 2022; 129:106154. [PMID: 36137311 DOI: 10.1016/j.bioorg.2022.106154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/16/2022] [Accepted: 09/12/2022] [Indexed: 11/02/2022]
Abstract
Reactive oxygen species (ROS)-responsive prodrugs have received significant attention due to their capacity to target tumors to relieve the side effects caused by chemotherapy. Herein, a series of novel H2O2-activated theranostic prodrugs (CPTSe1-CPTSe7) were developed containing allyl phenyl selenide moieties as H2O2 acceptors. Compared with conventional boronate ester-based prodrug CPT-B, CPTSe1 was more stable in human plasma and showed a more complete release of camptothecin (CPT) in H2O2 inducing experiment. The selectively activated fluorescence signals of CPTSe1 in tumor cells make it useful for real-time monitoring of CPT release and H2O2 detection. Furthermore, excellent selectivity of CPTSe1 was achieved for tumor cells over normal cells. Our results provide a new platform for the development of H2O2-responsive theranostic prodrugs.
Collapse
Affiliation(s)
- Xue-Yan Yang
- Department of Medicinal Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Bo Yuan
- Department of Medicinal Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China.
| | - Yahao Zhao
- Department of Medicinal Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Lu Wang
- College of Pharmacy, University of Michigan, NCRC, 1600 Huron Pkwy, Ann Arbor, 48109, USA
| | - San-Qi Zhang
- Department of Medicinal Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.
| | - Shuai Mao
- Department of Medicinal Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China; College of Pharmacy, University of Michigan, NCRC, 1600 Huron Pkwy, Ann Arbor, 48109, USA.
| |
Collapse
|
8
|
Sun S, Wang D, Yin R, Zhang P, Jiang R, Xiao C. A Two-In-One Nanoprodrug for Photoacoustic Imaging-Guided Enhanced Sonodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202558. [PMID: 35657017 DOI: 10.1002/smll.202202558] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Sonodynamic therapy (SDT) is garnering considerable attention in cancer treatment due to its non-invasive nature and the potential of spatiotemporal control. However, the high level of glutathione (GSH) in cancer cells can alleviate the SDT-mediated ROS-damages, resulting in a reduced SDT effect. Here, a two-in-one nano-prodrug for photoacoustic imaging-guided enhanced SDT against skin cancers is synthesized. A dual-prodrug molecule (DOA) of sulfide dioxide (SO2 ) and 5-aminolevulinic acid (ALA) is first synthesized and then co-assembled with methoxyl poly(ethylene glycol)-b-poly(l-lysine) (mPEG-b-PLL) to generate the two-in-one prodrug nanoparticles (P-DOA NPs). The P-DOA NPs simultaneously released ALA and SO2 in response to the overexpressed GSH in tumor cells. The released ALA is metabolically converted into protoporphyrin IX (PpIX) in tumor cells for SDT and photoacoustic imaging. Meanwhile, the released SO2 , together with the consumption of GSH based on the reaction of DOA in P-DOA NPs with intracellular GSH, can significantly increase the intracellular ROS content, leading to enhanced SDT. As a result, the P-DOA NPs significantly inhibited the growth of melanoma and squamous cell carcinoma xenografts in mouse models under the guidance of real-time photoacoustic imaging. Therefore, this novel two-in-one nano-prodrug is promising for effective SDT against skin cancers.
Collapse
Affiliation(s)
- Songjia Sun
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, 130033, P.R. China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
| | - Dianwei Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
| | - Renyong Yin
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
| | - Peng Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
| | - Rihua Jiang
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, 130033, P.R. China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, P.R. China
| |
Collapse
|
9
|
Wei B, Zhang J, Li NN, Yang LH, Xu XL, Shi YY, Liu SH, Chen YJ. Discovery of cinnamamide-barbiturate hybrids as a novel class of Nrf2 activator against myocardial ischemia/reperfusion injury. Bioorg Chem 2022; 124:105828. [DOI: 10.1016/j.bioorg.2022.105828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/28/2022] [Accepted: 04/20/2022] [Indexed: 12/28/2022]
|
10
|
Ye YX, Wu SY, Chen XY, Yu YW, Zeng SMZ, Wang ZC, Jiao QC, Zhu HL. Glutathione-responsive prodrug conjugates for image-guided combination in cancer therapy. Eur J Med Chem 2021; 225:113746. [PMID: 34388382 DOI: 10.1016/j.ejmech.2021.113746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/26/2021] [Accepted: 08/03/2021] [Indexed: 01/03/2023]
Abstract
Theranostic prodrug was highly desirable for precise diagnosis and anti-cancer therapy to decrease side effects. However, it is difficult to conjugate chemo-drug and molecular probe for combined therapy due to the complex pharmacokinetics of different molecules. Here, a novel anticancer theranostic prodrug (BTMP-SS-PTX) had been designed and synthesized by conjugating paclitaxel (PTX) with 2-(benzo[d]thiazol-2-yl)-4-methoxyphenol (BTMP) through a disulphide (-S-S-) linkage, which was redox-sensitive to the high concentration of glutathione in tumors. Upon activation with glutathione in weakly acid media, the BTMP-SS-PTX can be dissociated to release free PTX and visible BTMP, which realized the visual tracking of free drug. The cytotoxicity study demonstrated that soluble prodrug BTMP-SS-PTX displayed more outstanding anticancer activity in HepG2, MCF-7 and HeLa cells, lower toxicity to non-cancer cells (293 T) than free drugs. Furthermore, BTMP-SS-PTX was still able to induce apoptosis of HeLa cells and significantly inhibited tumor growth in HeLa-xenograft mouse model. On the basis of these findings, BTMP-SS-PTX could play a potential role in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Ya-Xi Ye
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, 210023, PR China
| | - Song-Yu Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, 210023, PR China
| | - Xin-Yue Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, 210023, PR China
| | - Ya-Wen Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, 210023, PR China
| | - Shang-Ming-Zhu Zeng
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, 210023, PR China
| | - Zhong-Chang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, 210023, PR China.
| | - Qing-Cai Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, 210023, PR China.
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, 210023, PR China; Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, 450018, China.
| |
Collapse
|
11
|
Hu YW, Liu Y, Guo EY, Wang YY, Xu WQ, Gao Y, Jiang XY, Feng F, Xu J, Liu WY. Naphtho-γ-pyrone Dimers from an Endozoic Aspergillus niger and the Effects of Coisolated Monomers in Combination with Cisplatin on a Cisplatin-Resistant A549 Cell Line. JOURNAL OF NATURAL PRODUCTS 2021; 84:1889-1897. [PMID: 34156846 DOI: 10.1021/acs.jnatprod.0c01262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chemotherapy resistance is one of the main causes of lung cancer treatment failure, and a combination regimen may be an effective way to overcome this. Here we report 5 new (1-3, 7, and 9) and 15 known polyketides, isolated from an endozoic Aspergillus niger. The structures of the new compounds were determined by the interpretation of IR, HRESIMS, NMR, and ECD spectra. The ESI-MS/MS fragmentation of the isolated naphtho-γ-pyrone isomers in positive mode is discussed. The effects of isolated compounds in combination with cisplatin (DDP) on a DDP-resistant A549 cell line (A459/DDP) are investigated. The most active compound, 12, could reduce the ratio of GSH/GSSG, promote the generation of intracellular ROS, and cooperate with DDP to down-regulated levels of Nrf2, Akt, HO-1, and NQO1, suggesting that inhibition of Nrf2 and Akt pathways might be involved in the combined effect of 12 and DDP in A549/DDP cells.
Collapse
Affiliation(s)
- Yun-Wei Hu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Ying Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Er-Yan Guo
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yu-Ying Wang
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Wan-Qi Xu
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yan Gao
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xue-Yang Jiang
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
- Jiangsu Food & Pharmaceutical Science College, Huaian 223003, People's Republic of China
| | - Jian Xu
- Department of Traditional Chinese Medicine, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Wen-Yuan Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| |
Collapse
|
12
|
Li K, Dong W, Miao Y, Liu Q, Qiu L, Lin J. Dual-targeted 5-aminolevulinic acid derivatives with glutathione depletion function for enhanced photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 215:112107. [PMID: 33401190 DOI: 10.1016/j.jphotobiol.2020.112107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/19/2020] [Accepted: 12/17/2020] [Indexed: 12/29/2022]
Abstract
Photodynamic therapy (PDT) is a promising tumor therapy which utilizes reactive oxygen species (ROSs) to cause tumor cells death. 5-aminolevulinic acid (ALA) and two of its esters are FDA-approved photosensitizers. However, their clinical application suffers from their instability and lack of tumor selectivity. In addition, the overexpression of glutathione (GSH) in some tumor cells reduces the PDT efficiency due to the ROS-scavenging ability of GSH. In this work, we present three multifunctional ALA derivates with the characteristics of dual-targeting and GSH depletion to improve the therapeutic effect of ALA-based PDT. The general structure of these compounds consists of an ALA methyl ester (ALA-OMe) moiety that can metabolize to photosensitive protoporphyin IX (PpIX) inside the cells, a biotin group for targeting biotin receptor-positive tumor cells and a disulfide bond-based self-immolative linker which can be activated by GSH to liberate ALA-OMe. Simultaneously, the reaction between the disulfide bond and GSH also depletes intracellular GSH, causing tumor cells more vulnerable to ROSs. All three compounds exhibited high stability under physiological conditions. In vitro experiments demonstrated that the more lipophilic compounds 1 and 2 were much more efficient in inducing PpIX production in biotin receptor-overexpressed HeLa cells as compared with their parent compound (ALA-OMe). And the PpIX generation induced by compounds 1 and 2 was positively correlated with the overexpression of biotin receptor and GSH level in tumor cells. More importantly, the GSH depletion ability of them significantly increased their phototoxicity. Furthermore, in comparison with ALA-OMe, compound 2 showed much higher in vivo efficiency in PpIX production. All the results demonstrate that the combination strategy of dual-targeting and GSH depletion can be used to concurrently enhance the tumor-specificity and anti-tumor efficiency of ALA-based PDT. And this strategy may be used for designing other ALA-based photosensitizers with higher tumor-specificity and better therapeutic effects.
Collapse
Affiliation(s)
- Ke Li
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China
| | - Wenyi Dong
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China; School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Yinxing Miao
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China
| | - Qingzhu Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China
| | - Ling Qiu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China.
| | - Jianguo Lin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China.
| |
Collapse
|
13
|
Wang Y, Zu M, Ma X, Jia D, Lu Y, Zhang T, Xue P, Kang Y, Xu Z. Glutathione-Responsive Multifunctional "Trojan Horse" Nanogel as a Nanotheranostic for Combined Chemotherapy and Photodynamic Anticancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50896-50908. [PMID: 33107728 DOI: 10.1021/acsami.0c15781] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
It remains a great challenge to design a multifunctional and robust nanoplatform for stimuli-responsive drug delivery toward a lesion, which tactfully integrates multiple molecules with therapeutic and diagnostic characteristics. Herein, we reported a facile and ingenious cross-linked nanogel (DSA) based on the chemical cross-link of drugs as a straightforward strategy to overcome the instability of the assembly. In DSA, doxorubicin (DOX) and 5-aminolevulinic acid (ALA) were cross-linked with a disulfide linker for realizing synergistic anticancer therapy. The stability of DSA was adjusted via balancing the hydrophobic/hydrophilic property with hydrophilic NH2-PEG1k. After regulating the coordination of the DOX part and ALA moiety, the drug-loaded nanogel exhibited superior chemotherapeutic efficacies. Additionally, the DSA could selectively biosynthesize fluorescent protoporphyrin IX (PpIX) in tumor cells, which could be applied for a real-time imaging probe of accurate cancer diagnosis. Besides, the in situ synthesized PpIX in mitochondria could serve as a photosensitizer to convert oxygen into toxic reactive oxygen species under a near infrared ray at 660 nm irradiation, leading to an excellent tumor-killing efficacy. This work proposed a unique strategy for designing a series of prodrug nanogels as a universal drug delivery platform for realizing precise disease therapy and diagnostics.
Collapse
MESH Headings
- Animals
- Antibiotics, Antineoplastic/chemistry
- Antibiotics, Antineoplastic/pharmacology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Doxorubicin/chemistry
- Doxorubicin/pharmacology
- Drug Screening Assays, Antitumor
- Female
- Glutathione/analysis
- Glutathione/metabolism
- Hydrophobic and Hydrophilic Interactions
- Levulinic Acids/chemistry
- Levulinic Acids/pharmacology
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred Strains
- Molecular Structure
- Nanogels/chemistry
- Particle Size
- Photochemotherapy
- Rats
- Rats, Sprague-Dawley
- Surface Properties
- Theranostic Nanomedicine
- Aminolevulinic Acid
Collapse
Affiliation(s)
- Yajun Wang
- School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| | - Menghang Zu
- School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| | - Xianbin Ma
- School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| | - Die Jia
- School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| | - Yi Lu
- School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| | - Tian Zhang
- School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| | - Peng Xue
- School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| | - Yuejun Kang
- School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| | - Zhigang Xu
- School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
14
|
Li B, Pang S, Li X, Li Y. PH and redox dual-responsive polymeric micelles with charge conversion for paclitaxel delivery. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:2078-2093. [PMID: 32643545 DOI: 10.1080/09205063.2020.1793708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Here we demonstrate a type of pH and redox dual-responsive micelles, which were self-assembled in aqueous solution by an amphiphilic polymer, methoxypoly(ethylene glycol)-cystamine-poly(L-glutamic acid)-imidazole (mPEG-SS-PGA-IM). Considering tumor cells or tissues exhibiting low pH values and high glutathione (GSH) concentration, mPEG-SS-PGA-IM micelles possessed the charge conversion at pH of tumor tissues, which can facilitate cellular uptake of tumor cells. Furthermore, mPEG-SS-PGA-IM micelles can escape from endo/lysosomes based on the proton sponge effect, following degraded by higher concentration of GSH in cytoplasm. CLSM images of HCT116 cells indicated that mPEG-SS-PGA-IM micelles can escape from endo/lysosomes and enter cytoplasm. MTT assay showed that (paclitaxel) PTX-loaded mPEG-SS-PGA-IM micelles had higher cytotoxicity against HCT116 cells compared with PTX-loaded mPEG-PBLG and mPEG-SS-PBLG micelles. These results indicated that these mPEG-SS-PGA-IM micelles, as novel and effective pH- and redox-responsive nanocarriers, have great potential to both improve drug targeting efficiency while also enhancing the antitumor efficacy of PTX.
Collapse
Affiliation(s)
- Bo Li
- Binzhou People's Hospital, Binzhou, China
| | | | - Xinxin Li
- Binzhou People's Hospital, Binzhou, China
| | - Yanhai Li
- Binzhou People's Hospital, Binzhou, China
| |
Collapse
|
15
|
Bai S, Yang LL, Wang Y, Zhang T, Fu L, Yang S, Wan S, Wang S, Jia D, Li B, Xue P, Kang Y, Sun ZJ, Xu Z. Prodrug-Based Versatile Nanomedicine for Enhancing Cancer Immunotherapy by Increasing Immunogenic Cell Death. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000214. [PMID: 32309900 DOI: 10.1002/smll.202000214] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 05/23/2023]
Abstract
Nanoparticle-based tumor immunotherapy has emerged to show great potential for simultaneously regulating the immunosuppressive tumor microenvironment, reducing the unpleasant side effects, and activating tumor immunity. Herein, an excipient-free glutathione/pH dual-responsive prodrug nanoplatform is reported for immunotherapy, simply by sequentially liberating 5-aminolevulinic acid and immunogenically inducing doxorubicin drug molecules, which can leverage the acidity and reverse tumor microenvironment. The obtained nanoplatform effectively boosts the immune system by promoting dendritic cell maturation and reducing the number of immune suppressive immune cells, which shows the enhanced adjunctive effect of anti-programmed cell death protein 1 therapy. Overall, the prodrug-based immunotherapy nanoplatform may offer a reliable strategy for improving synergistic antitumor efficacy.
Collapse
Affiliation(s)
- Shuang Bai
- School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Lei-Lei Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Yajun Wang
- School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Tian Zhang
- School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Lvqin Fu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Shaochen Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Shucheng Wan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Shuo Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Die Jia
- School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Baosheng Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Peng Xue
- School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Yuejun Kang
- School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Zhigang Xu
- School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
16
|
A glutathione-responsive photosensitizer with fluorescence resonance energy transfer characteristics for imaging-guided targeting photodynamic therapy. Eur J Med Chem 2020; 193:112203. [PMID: 32197150 DOI: 10.1016/j.ejmech.2020.112203] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/01/2020] [Accepted: 03/01/2020] [Indexed: 01/06/2023]
Abstract
Here, we have synthesized and characterized a novel activatable photosensitizer (PS) 8a in which two well-designed boron dipyrromethene (BODIPY) derivatives are utilized as the photosensitizing fluorophore and quencher respectively, which are connected by a disulfide linker via two successive Cu (І) catalyzed click reactions. The fluorescence emission and singlet oxygen production of 8a are suppressed via intramolecular fluorescence resonance energy transfer (FRET) from the excited BODIPY-based PS part to quencher unit, but both of them can be simultaneously switched on by cancer-related biothiol glutathione (GSH) in phosphate buffered saline (PBS) solution with 0.05% Tween 80 as a result of cleavage of disulfide. Also, 8a exhibits a bright fluorescence image and a substantial ROS production in A549 human lung adenocarcinoma, HeLa human cervical carcinoma and H22 mouse hepatoma cells having a relatively high concentration of GSH, thereby leading to a significant photocytotoxicity, with IC50 values as low as 0.44 μM, 0.67 μM and 0.48 μM, respectively. In addition, the photosensitizer can be effectively activated and imaged in H22 transplanted hepatoma tumors of mice and shows a strong inhibition on tumor growth. All these results suggest that such a GSH-responsive photosensitizer based on FRET mechanism may provide a new strategy for tumor-targeted and fluorescence imaging-guided cancer therapy.
Collapse
|
17
|
Yang S, Zhou C, Sun B, Wang F, Han Z, Zhang H, Han J, Shen Y, Zhang J. Efficacy of microsurgery in combined with topical-PDT in treating recurrent respiratory papillomatosis: compare JORRP with AORRP. Acta Otolaryngol 2019; 139:1133-1139. [PMID: 31556770 DOI: 10.1080/00016489.2019.1667530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background: Recurrent respiratory papillomatosis (RRP) remains a challenging and frustrating disease to treat.Objective: To explore the efficacy of microsurgery in combined with Topical-PDT in treating recurrent respiratory papillomatosis.Materials and methods: Fifty patients with RRP were treated with microsurgery in combined with Topical-PDT. Medical document of each patient was retrospectively reviewed. Detailed clinical information, metrics of clinical course, and current results were evaluated.Results: Juvenile onset RRP (JORRP) might experience a more aggressive course than AORRP (adult onset RRP) with higher Derkay score (p < .01) and higher operation frequency per year (p < .01). Microsurgical excision combined with Topical-PDT every 25 days achieved "remission" of disease in 78% of patients, "clearance" of disease in 52%, and "Cured" in two patients. Each patient who achieved "remission" of disease, performed 6.82 ± 3.39 operations, and continued 8.93 ± 7.03 months of treatment duration. No statistically differences were found in these two aspects between JORRP and AORRP. A negative correlation between tracheotomy and the efficacy of microsurgery in combined with Topical-PDT was found (p = .025, Pearson's r = -0.3).Conclusions and significance: Microsurgery in combined with Topical-PDT might be a powerful method to treat RRP. Tracheotomy is a negative factor for this therapy.
Collapse
Affiliation(s)
- Shuzhi Yang
- Department of Otolaryngology, The 4th Medical Center of the PLA General Hospital, Beijing, China
| | - Chengyong Zhou
- Department of Otolaryngology, The 4th Medical Center of the PLA General Hospital, Beijing, China
| | - Baochun Sun
- Department of Otolaryngology, The 4th Medical Center of the PLA General Hospital, Beijing, China
| | - Feng Wang
- Department of Otolaryngology, The 4th Medical Center of the PLA General Hospital, Beijing, China
| | - Zeli Han
- Department of Otolaryngology, The 4th Medical Center of the PLA General Hospital, Beijing, China
| | - Hongjia Zhang
- Department of Otolaryngology, The 4th Medical Center of the PLA General Hospital, Beijing, China
| | - Jiahong Han
- Department of Otolaryngology, The 4th Medical Center of the PLA General Hospital, Beijing, China
| | - Yao Shen
- Department of Otolaryngology, The 4th Medical Center of the PLA General Hospital, Beijing, China
| | - Jiao Zhang
- Department of Otolaryngology, The 4th Medical Center of the PLA General Hospital, Beijing, China
| |
Collapse
|