1
|
Yakkala PA, Kamal A. Dual-targeting inhibitors involving tubulin for the treatment of cancer. Bioorg Chem 2025; 156:108116. [PMID: 39823818 DOI: 10.1016/j.bioorg.2024.108116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/23/2024] [Accepted: 12/28/2024] [Indexed: 01/20/2025]
Abstract
Combination therapies play a pivotal role in cancer treatment due to the intricate nature of the disease. Tubulin, a protein crucial for cellular functions, is a prime target in tumor therapy as it regulates microtubule dynamics. Combining tubulin inhibitors with other different inhibitors as dual targeting inhibitors has shown synergistic anti-tumor effects, amplifying therapeutic outcomes. Despite clinical approval of several tubulin inhibitors, their efficacy is hampered by drug resistance and toxic side effects. Dual targeting inhibitors of tubulin and other cancer-related pathways have emerged as vital components in cancer therapy, with promising prospects in both market availability and ongoing clinical trials. The rational design of hybrid inhibitors targeting both pathways presents an innovative approach to combatting cancer. However, despite the potent anti-tumor activity exhibited by several compounds, research on their anti-angiogenic potential remains limited. This review emphasizes the significance of tubulin based dual-target inhibitors, elucidating their mechanisms of action. Recent advances in exploring therapeutic efficacy, toxicity profiles, and challenges such as MDR are discussed. By presenting the research progress of tubulin based dual-target inhibitors as potential anticancer agents, this study delivers valuable insights for the development of more efficient drugs for cancer therapy.
Collapse
Affiliation(s)
- Prasanna Anjaneyulu Yakkala
- Department of Human Nutrition and Analytical Chemistry, Human Nutrition Program, The Ohio State University, Columbus, OH 43212, United States of America; Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Ahmed Kamal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Dist. Medchal, 500078 TS, India.
| |
Collapse
|
2
|
Nagavath R, Thupurani MK, Badithapuram V, Manchal R, Vasam CS, Thirukovela NS. Organo NHC catalyzed aqueous synthesis of 4β-isoxazole-podophyllotoxins: in vitro anticancer, caspase activation, tubulin polymerization inhibition and molecular docking studies. RSC Adv 2024; 14:23574-23582. [PMID: 39070249 PMCID: PMC11276401 DOI: 10.1039/d4ra04297b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024] Open
Abstract
We present, for the first time, the organo-N-heterocyclic carbene (NHC) catalyzed 1,3-dipolar cycloaddition of 4β-O-propargyl podophyllotoxin (1) with in situ aromatic nitrile oxides to afford regioselective 4β-isoxazolepodophyllotoxin hybrids (6a-n) in benign aqueous-organic media. Preliminary anticancer activity results showed that compound 6e displayed superior activity against MCF-7, HeLa and MIA PaCa2 human cell lines compared with podophyllotoxin. Compounds 6j and 6n showed greater activity against the MCF-7 cell line than the positive control. Caspase activation studies revealed that compound 6e at 20 μg ml-1 concentration had greater caspase 3/7 activation in MCF-7 and MIAPaCa2 cells than podophyllotoxin. Furthermore, in vitro tubulin polymerization inhibition studies revealed that compound 6e showed comparable activity with podophyllotoxin. Finally, in silico molecular docking studies of compounds 6e, 6j, 6n and podophyllotoxin on α,β-tubulin (pdb id 1SA0) revealed that compound 6n showed excellent binding energies and inhibition constants compared with podophyllotoxin.
Collapse
Affiliation(s)
- Rajkumar Nagavath
- Department of Chemistry, Chaitanya (Deemed to be University) Himayathnagar (V), Moinabad (M), Ranga Reddy (D) Hyderabad India
| | - Murali Krishna Thupurani
- Department of Biotechnology, Chaitanya (Deemed to be University) Himayathnagar (V), Moinabad (M), Ranga Reddy (D) Hyderabad India
| | - Vinitha Badithapuram
- Department of Chemistry, Chaitanya (Deemed to be University) Himayathnagar (V), Moinabad (M), Ranga Reddy (D) Hyderabad India
| | - Ravinder Manchal
- Department of Chemistry, Chaitanya (Deemed to be University) Himayathnagar (V), Moinabad (M), Ranga Reddy (D) Hyderabad India
| | | | - Narasimha Swamy Thirukovela
- Department of Chemistry, Chaitanya (Deemed to be University) Himayathnagar (V), Moinabad (M), Ranga Reddy (D) Hyderabad India
| |
Collapse
|
3
|
Srithanyarat T, Taoma K, Sutthibutpong T, Ruengjitchatchawalya M, Liangruksa M, Laomettachit T. Interpreting drug synergy in breast cancer with deep learning using target-protein inhibition profiles. BioData Min 2024; 17:8. [PMID: 38424554 PMCID: PMC10905801 DOI: 10.1186/s13040-024-00359-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/23/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Breast cancer is the most common malignancy among women worldwide. Despite advances in treating breast cancer over the past decades, drug resistance and adverse effects remain challenging. Recent therapeutic progress has shifted toward using drug combinations for better treatment efficiency. However, with a growing number of potential small-molecule cancer inhibitors, in silico strategies to predict pharmacological synergy before experimental trials are required to compensate for time and cost restrictions. Many deep learning models have been previously proposed to predict the synergistic effects of drug combinations with high performance. However, these models heavily relied on a large number of drug chemical structural fingerprints as their main features, which made model interpretation a challenge. RESULTS This study developed a deep neural network model that predicts synergy between small-molecule pairs based on their inhibitory activities against 13 selected key proteins. The synergy prediction model achieved a Pearson correlation coefficient between model predictions and experimental data of 0.63 across five breast cancer cell lines. BT-549 and MCF-7 achieved the highest correlation of 0.67 when considering individual cell lines. Despite achieving a moderate correlation compared to previous deep learning models, our model offers a distinctive advantage in terms of interpretability. Using the inhibitory activities against key protein targets as the main features allowed a straightforward interpretation of the model since the individual features had direct biological meaning. By tracing the synergistic interactions of compounds through their target proteins, we gained insights into the patterns our model recognized as indicative of synergistic effects. CONCLUSIONS The framework employed in the present study lays the groundwork for future advancements, especially in model interpretation. By combining deep learning techniques and target-specific models, this study shed light on potential patterns of target-protein inhibition profiles that could be exploited in breast cancer treatment.
Collapse
Affiliation(s)
- Thanyawee Srithanyarat
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
- School of Information Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| | - Kittisak Taoma
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
- School of Information Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| | - Thana Sutthibutpong
- Department of Physics, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
- Theoretical and Computational Physics Group, Center of Excellence in Theoretical and Computational Science, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| | - Marasri Ruengjitchatchawalya
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
- Biotechnology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Monrudee Liangruksa
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
| | - Teeraphan Laomettachit
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
- Theoretical and Computational Physics Group, Center of Excellence in Theoretical and Computational Science, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand.
| |
Collapse
|
4
|
Cui Y, Zhang J, Zhang G. The Potential Strategies for Overcoming Multidrug Resistance and Reducing Side Effects of Monomer Tubulin Inhibitors for Cancer Therapy. Curr Med Chem 2024; 31:1874-1895. [PMID: 37349994 DOI: 10.2174/0929867330666230622142505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/26/2023] [Accepted: 05/12/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Tubulin is an essential target in tumor therapy, and this is attributed to its ability to target MT dynamics and interfere with critical cellular functions, including mitosis, cell signaling, and intracellular trafficking. Several tubulin inhibitors have been approved for clinical application. However, the shortcomings, such as drug resistance and toxic side effects, limit its clinical application. Compared with single-target drugs, multi-target drugs can effectively improve efficacy to reduce side effects and overcome the development of drug resistance. Tubulin protein degraders do not require high concentrations and can be recycled. After degradation, the protein needs to be resynthesized to regain function, which significantly delays the development of drug resistance. METHODS Using SciFinder® as a tool, the publications about tubulin-based dual-target inhibitors and tubulin degraders were surveyed with an exclusion of those published as patents. RESULTS This study presents the research progress of tubulin-based dual-target inhibitors and tubulin degraders as antitumor agents to provide a reference for developing and applying more efficient drugs for cancer therapy. CONCLUSION The multi-target inhibitors and protein degraders have shown a development prospect to overcome multidrug resistance and reduce side effects in the treatment of tumors. Currently, the design of dual-target inhibitors for tubulin needs to be further optimized, and it is worth further clarifying the detailed mechanism of protein degradation.
Collapse
Affiliation(s)
- Yingjie Cui
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, P.R. China
| | - Jing Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, P.R. China
| | - Guifang Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, P.R. China
| |
Collapse
|
5
|
Chahat, Jha KT, Bhatia R, Chawla PA. Alkaloids as Additional Weapons in the Fight against Breast Cancer: A Review. Curr Med Chem 2024; 31:5113-5148. [PMID: 37702171 DOI: 10.2174/0929867331666230911162527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/03/2023] [Accepted: 07/27/2023] [Indexed: 09/14/2023]
Abstract
Breast carcinoma is among the most frequent cancerous tumour in females around the globe. The major modalities now employed in the therapeutic management of breast cancer include surgeries, chemotherapy, and specialized medicines. Despite their potential to help individuals' problems, they are also associated with many negative impacts. As a result, natural products are increasingly regarded to be a preferable alternative. Alkaloids are essential biochemical substances that can be used to develop new drugs. Numerous alkaloids that originate from natural plants have been shown in vitro and in vivo to have anti-proliferation and anti-metastasis actions on different kinds of carcinoma. According to the data collected in this study, the utilization of alkaloids as anti-tumor medicines appears to be extremely potent; nevertheless, extensive studies and clinical trials are required before utilizing individual alkaloids. In this overview, we provide a detailed and vital exploration of pre-existing alkaloids possessing anti-tumor activities due to bioactive compounds. This study also includes an overview of synthesized analogues and pharmacological characteristics that will be beneficial to scientists working on alkaloids for medicinal purposes. In a recent survey of the literature, alkaloids are an important component of plantderived antitumor medicines that hold great potential for the future development of cancer therapy and preventive therapies. We have also discussed structural analysis relationship (SAR) studies. Moreover, it covers clinical trial medications and FDA-approved medicines from the last five years that will be useful in further research.
Collapse
Affiliation(s)
- Chahat
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| | - Keshav Taruneshwar Jha
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| | - Rohit Bhatia
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| | - Pooja A Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| |
Collapse
|
6
|
Guha Majumdar A, Shree S, Das A, Kumar BK, Dey P, Subramanian M, Patro BS. Design, synthesis and development of a dual inhibitor of Topoisomerase 1 and poly (ADP-ribose) polymerase 1 for efficient killing of cancer cells. Eur J Med Chem 2023; 258:115598. [PMID: 37406384 DOI: 10.1016/j.ejmech.2023.115598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023]
Abstract
Combinatorial inhibition of Topoisomerase 1 (TOP1) and Poly (ADP-ribose) polymerase 1 (PARP1) is an attractive therapeutic strategy which is under active investigation to address chemoresistance to TOP1 inhibitors. However, this combinatorial regimen suffers from severe dose limiting toxicities. Dual inhibitors often offer significant advantages over combinatorial therapies involving individual agents by minimizing toxicity and providing conducive pharmacokinetic profiles. In this study, we have designed, synthesized and evaluated a library of 11 candidate conjugated dual inhibitors for PARP1 and TOP1, named as DiPT-1 to DiPT-11. Our extensive screening showed that one of the hits i.e.DiPT-4 has promising cytotoxicity profile against multiple cancers with limited toxicities towards normal cells. DiPT-4 induces extensive DNA double stand breaks (DSBs), cell cycle arrest and apoptosis in cancer cells. Mechanistically, DiPT-4 has the propensity to bind catalytic pockets of TOP1 and PARP1, leading to significant inhibition of both TOP1 and PARP1 at in vitro and cellular level. Interestingly, DiPT-4 causes extensive stabilization of TOP1-DNA covalent complex (TOP1cc), a key lethal intermediate associated with induction of DSBs and cell death. Moreover, DiPT-4 inhibited poly (ADP-ribosylation) i.e. PARylation of TOP1cc, leading to long lived TOP1cc with a slower kinetics of degradation. This is one of the important molecular processes which helps in overcoming resistance in cancer in response to TOP1 inhibitors. Together, our investigation showed DiPT-4 as a promising dual inhibitor of TOP1 and PARP1, which may have the potential to offer significant advantages over combinatorial therapy in clinical settings.
Collapse
Affiliation(s)
- Ananda Guha Majumdar
- Bio-Organic Division, India; Homi Bhabha National Institute, Mumbai, Maharashtra, 400094, India
| | - Shikha Shree
- Bio-Organic Division, India; Homi Bhabha National Institute, Mumbai, Maharashtra, 400094, India
| | - Amit Das
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, 400085, India; Homi Bhabha National Institute, Mumbai, Maharashtra, 400094, India
| | - Binita K Kumar
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, 400085, India
| | | | - Mahesh Subramanian
- Bio-Organic Division, India; Homi Bhabha National Institute, Mumbai, Maharashtra, 400094, India
| | - Birija Sankar Patro
- Bio-Organic Division, India; Homi Bhabha National Institute, Mumbai, Maharashtra, 400094, India.
| |
Collapse
|
7
|
Ceramella J, Iacopetta D, Caruso A, Mariconda A, Petrou A, Geronikaki A, Rosano C, Saturnino C, Catalano A, Longo P, Sinicropi MS. 5,8-Dimethyl-9H-carbazole Derivatives Blocking hTopo I Activity and Actin Dynamics. Pharmaceuticals (Basel) 2023; 16:ph16030353. [PMID: 36986453 PMCID: PMC10051477 DOI: 10.3390/ph16030353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Over the years, carbazoles have been largely studied for their numerous biological properties, including antibacterial, antimalarial, antioxidant, antidiabetic, neuroprotective, anticancer, and many more. Some of them have gained great interest for their anticancer activity in breast cancer due to their capability in inhibiting essential DNA-dependent enzymes, namely topoisomerases I and II. With this in mind, we studied the anticancer activity of a series of carbazole derivatives against two breast cancer cell lines, namely the triple negative MDA-MB-231 and MCF-7 cells. Compounds 3 and 4 were found to be the most active towards the MDA-MB-231 cell line without interfering with the normal counterpart. Using docking simulations, we assessed the ability of these carbazole derivatives to bind human topoisomerases I and II and actin. In vitro specific assays confirmed that the lead compounds selectively inhibited the human topoisomerase I and interfered with the normal organization of the actin system, triggering apoptosis as a final effect. Thus, compounds 3 and 4 are strong candidates for further drug development in multi-targeted therapy for the treatment of triple negative breast cancer, for which safe therapeutic regimens are not yet available.
Collapse
Affiliation(s)
- Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
- Correspondence: ; Tel.: +39-0984-493200
| | - Anna Caruso
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | | | - Anthi Petrou
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Athina Geronikaki
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Camillo Rosano
- U.O. Proteomica e Spettrometria di Massa, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 1632 Genova, Italy
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| |
Collapse
|
8
|
Kannekanti PK, Nukala SK, Bangaru M, Sirassu N, Manchal R, Thirukovela NS. Synthesis of Amide Derivatives as Tubulin Polymerization Inhibiting Antiproliferative Agents. ChemistrySelect 2023. [DOI: 10.1002/slct.202204010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Praveen kumar Kannekanti
- Department of Chemistry Chaitanya Deemed to be University Hanumakonda 506 001 Warangal, Telangana India
| | - Satheesh Kumar Nukala
- Department of Chemistry Chaitanya Deemed to be University Hanumakonda 506 001 Warangal, Telangana India
| | - Mallikarjuna Bangaru
- Department of Chemistry Chaitanya Deemed to be University Hanumakonda 506 001 Warangal, Telangana India
| | - Narsimha Sirassu
- Department of Chemistry Chaitanya Deemed to be University Hanumakonda 506 001 Warangal, Telangana India
| | - Ravinder Manchal
- Department of Chemistry Chaitanya Deemed to be University Hanumakonda 506 001 Warangal, Telangana India
| | | |
Collapse
|
9
|
Iacopetta D, Fazio A, La Torre C, Barbarossa A, Ceramella J, Francomano F, Saturnino C, El-Kashef H, Alcaro S, Sinicropi MS. Annona cherimola Mill. Leaf Extracts Affect Melanoma Cells Growth and Progression. Foods 2022; 11:foods11162420. [PMID: 36010420 PMCID: PMC9407337 DOI: 10.3390/foods11162420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer represents one of the major causes of mortality worldwide; indeed, 19.3 million new cases and almost 10.0 million deaths were estimated last year. Among the different type of cancers, malignant melanoma represents the most aggressive and deadly skin cancer. Unfortunately, the long-term efficacy of melanoma treatments is limited by the lack of clinical efficacy, onset of side effects and resistance. The latter is a major obstacle for the success of the melanoma therapy; thus, the exploration of new potent and safer anticancer agents is of great importance. Recently, numerous plant species, used for therapeutic purposes and containing various non-toxic nutraceuticals have been widely studied. Herein, we investigated the antioxidant and anticancer properties on melanoma cells of the ethanolic, methanolic and aqueous Annona cherimola leaf extracts (ACE, ACM and ACW, respectively). The ethanolic extract showed higher anticancer activity, mostly against the malignant A2058 melanoma cell line (IC50 = 5.6 ± 0.8 ng/mL), together with a very low activity on the normal cells. It blocks the melanoma cells migration process, and induces a clear disorganization of cytoskeleton, triggering cell apoptosis. Finally, some bioactive compounds were identified in the studied extracts.
Collapse
Affiliation(s)
- Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata, di Rende, Italy
| | - Alessia Fazio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata, di Rende, Italy
| | - Chiara La Torre
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata, di Rende, Italy
| | - Alexia Barbarossa
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata, di Rende, Italy
- Correspondence: ; Tel.: +39-0984493200
| | - Fabrizio Francomano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata, di Rende, Italy
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Hussein El-Kashef
- Chemistry Department, Faculty of Science, Assiut University, Assiut 17516, Egypt
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
- Net4Science SRL, Academic Spinoff, Università “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
- Associazione CRISEA-Centro di Ricerca e Servizi Avanzati per l’Innovazione Rurale, Belcastro, 88055 Catanzaro, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata, di Rende, Italy
| |
Collapse
|
10
|
Ghalia HE, Amina G, Aissouq AE, Oussama C, Hicham EH, Abdelkrim O, Mohammed B. A quantitative study of the structure-activity relationship and molecular docking of 5.6.7-trimethoxy-N-aryl-2-styrylquinolin-4-amines as potential anticancer agents using quantum chemical descriptors and statistical methods. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
New Achievements for the Treatment of Triple-Negative Breast Cancer. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115554] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Triple-negative breast cancer (TNBC) constitutes a heterogeneous group of malignancies that are often aggressive and associated with a poor prognosis. The development of new TNBC treatment strategies has become an urgent clinical need. Diagnosis and subtyping of TNBC are essential to establish alternative treatments and targeted therapies for every TNBC patient. Chemotherapy, particularly with anthracycline and taxanes, remains the backbone for medical management for both early and metastatic TNBC. More recently, immune checkpoint inhibitors and targeted therapy have revolutionized cancer treatment. Included in the different strategies studied for TNBC treatment is drug repurposing. Despite the numerous medications available, numerous studies in medicinal chemistry are still aimed at the synthesis of new compounds in order to find new antiproliferative agents capable of treating TNBC. Additionally, some supplemental micronutrients, nutraceuticals and functional foods can potentially reduce the risk of developing cancer or can retard the rate of growth and metastases of established malignant diseases. Finally, nanotechnology in medicine, termed nanomedicines, introduces nanoparticles of variable chemistry and architecture for cancer treatment. This review highlights the most recent studies in search of new therapies for the treatment of TNBC, along with nutraceuticals and repositioning of drugs.
Collapse
|
12
|
De Luca M, Occhiuzzi MA, Rizzuti B, Ioele G, Ragno G, Garofalo A, Grande F. Interaction of letrozole and its degradation products with aromatase: chemometric assessment of kinetics and structure-based binding validation. J Enzyme Inhib Med Chem 2022; 37:1600-1609. [PMID: 35635194 PMCID: PMC9176668 DOI: 10.1080/14756366.2022.2081845] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Letrozole is one of the most prescribed drugs for the treatment of breast cancer in post-menopausal women, and it is endowed with selective peripheral aromatase inhibitory activity. The efficacy of this drug is also a consequence of its long-lasting activity, likely due to its metabolic stability. The reactivity of cyano groups in the letrozole structure could, however, lead to chemical derivatives still endowed with residual biological activity. Herein, the chemical degradation process of the drug was studied by coupling multivariate curve resolution and spectrophotometric methodologies in order to assess a detailed kinetic profile. Three main derivatives were identified after drug exposure to different degradation conditions, consisting of acid-base and oxidative environments and stressing light. Molecular docking confirmed the capability of these compounds to accommodate into the active site of the enzyme, suggesting that the sustained inhibitory activity of letrozole may be at least in part attributed to the degradation compounds.
Collapse
Affiliation(s)
- Michele De Luca
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | | | - Bruno Rizzuti
- CNR-NANOTEC, SS Rende (CS), Department of Physics, University of Calabria, Rende, Italy
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, University of Zaragoza, Zaragoza, Spain
| | - Giuseppina Ioele
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Gaetano Ragno
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Antonio Garofalo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| |
Collapse
|
13
|
Ceramella J, Mariconda A, Sirignano M, Iacopetta D, Rosano C, Catalano A, Saturnino C, Sinicropi MS, Longo P. Novel Au Carbene Complexes as Promising Multi-Target Agents in Breast Cancer Treatment. Pharmaceuticals (Basel) 2022; 15:507. [PMID: 35631334 PMCID: PMC9146163 DOI: 10.3390/ph15050507] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/09/2022] [Accepted: 04/19/2022] [Indexed: 01/27/2023] Open
Abstract
Over the past decade, metal complexes based on N-heterocyclic carbenes (NHCs) have attracted great attention due to their wide and exciting applications in material sciences and medicinal chemistry. In particular, the gold-based complexes are the focus of research efforts for the development of new anticancer compounds. Literature data and recent results, obtained by our research group, reported the design, the synthesis and the good anticancer activity of some silver and gold complexes with NHC ligands. In particular, some of these complexes were active towards some breast cancer cell lines. Considering this evidence, here we report some new Au-NHC complexes prepared in order to improve solubility and biological activity. Among them, the compounds 1 and 6 showed an interesting anticancer activity towards the breast cancer MDA-MB-231 and MCF-7 cell lines, respectively. In addition, in vitro and in silico studies demonstrated that they were able to inhibit the activity of the human topoisomerases I and II and the actin polymerization reaction. Moreover, a downregulation of vimentin expression and a reduced translocation of NF-kB into the nucleus was observed. The interference with these vital cell structures induced breast cancer cells' death by triggering the extrinsic apoptotic pathway.
Collapse
Affiliation(s)
- Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy; (J.C.); (M.S.S.)
| | - Annaluisa Mariconda
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (A.M.); (C.S.)
| | - Marco Sirignano
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.S.); (P.L.)
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy; (J.C.); (M.S.S.)
| | - Camillo Rosano
- U.O. Proteomica e Spettrometria di Massa, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 1632 Genova, Italy
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy;
| | - Carmela Saturnino
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (A.M.); (C.S.)
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy; (J.C.); (M.S.S.)
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.S.); (P.L.)
| |
Collapse
|
14
|
Koperniku A, Garcia AA, Mochly-Rosen D. Boosting the Discovery of Small Molecule Inhibitors of Glucose-6-Phosphate Dehydrogenase for the Treatment of Cancer, Infectious Diseases, and Inflammation. J Med Chem 2022; 65:4403-4423. [PMID: 35239352 PMCID: PMC9553131 DOI: 10.1021/acs.jmedchem.1c01577] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We present an overview of small molecule glucose-6-phosphate dehydrogenase (G6PD) inhibitors that have potential for use in the treatment of cancer, infectious diseases, and inflammation. Both steroidal and nonsteroidal inhibitors have been identified with steroidal inhibitors lacking target selectivity. The main scaffolds encountered in nonsteroidal inhibitors are quinazolinones and benzothiazinones/benzothiazepinones. Three molecules show promise for development as antiparasitic (25 and 29) and anti-inflammatory (32) agents. Regarding modality of inhibition (MOI), steroidal inhibitors have been shown to be uncompetitive and reversible. Nonsteroidal small molecules have exhibited all types of MOI. Strategies to boost the discovery of small molecule G6PD inhibitors include exploration of structure-activity relationships (SARs) for established inhibitors, employment of high-throughput screening (HTS), and fragment-based drug discovery (FBDD) for the identification of new hits. We discuss the challenges and gaps associated with drug discovery efforts of G6PD inhibitors from in silico, in vitro, and in cellulo to in vivo studies.
Collapse
Affiliation(s)
- Ana Koperniku
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, 269 Campus Dr, Stanford, CA 94305, USA
- Corresponding Author: Ana Koperniku,
| | - Adriana A. Garcia
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, 269 Campus Dr, Stanford, CA 94305, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, 269 Campus Dr, Stanford, CA 94305, USA
| |
Collapse
|
15
|
Xu S, Yao H, Qiu Y, Zhou M, Li D, Wu L, Yang DH, Chen ZS, Xu J. Discovery of Novel Polycyclic Heterocyclic Derivatives from Evodiamine for the Potential Treatment of Triple-Negative Breast Cancer. J Med Chem 2021; 64:17346-17365. [PMID: 34844412 DOI: 10.1021/acs.jmedchem.1c01411] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Evodiamine (Evo) is a quinazolinocarboline alkaloid found in Evodia rutaecarpa and exhibits moderate antiproliferative activity. Herein, we report using a scaffold-hopping approach to identify a series of novel polycyclic heterocyclic derivatives based on Evo as the topoisomerase I (Top1) inhibitor for the treatment of triple-negative breast cancer (TNBC), which is an aggressive subtype of breast cancer with limited treatment options. The most potent compound 7f inhibited cell growth in a human breast carcinoma cell line (MDA-MB-231) with an IC50 value of 0.36 μM. Further studies revealed that Top1 was the target of 7f, which directly induced irreversible Top1-DNA covalent complex formation or induced an oxidative DNA lesion through an indirect mechanism mediated by reactive oxygen species. More importantly, in vivo studies showed that 7f exhibited potent antitumor activity in a TNBC-patient-derived tumor xenograft model. These results suggest that compound 7f deserves further investigation as a promising candidate for the treatment of TNBC.
Collapse
Affiliation(s)
- Shengtao Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Hong Yao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Yangyi Qiu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China.,Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, P. R. China
| | - Manzhen Zhou
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Dahong Li
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China.,Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Liang Wu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Dong-Hua Yang
- College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York 11439, United States
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York 11439, United States
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| |
Collapse
|
16
|
Amewu RK, Sakyi PO, Osei-Safo D, Addae-Mensah I. Synthetic and Naturally Occurring Heterocyclic Anticancer Compounds with Multiple Biological Targets. Molecules 2021; 26:7134. [PMID: 34885716 PMCID: PMC8658833 DOI: 10.3390/molecules26237134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 01/09/2023] Open
Abstract
Cancer is a complex group of diseases initiated by abnormal cell division with the potential of spreading to other parts of the body. The advancement in the discoveries of omics and bio- and cheminformatics has led to the identification of drugs inhibiting putative targets including vascular endothelial growth factor (VEGF) family receptors, fibroblast growth factors (FGF), platelet derived growth factors (PDGF), epidermal growth factor (EGF), thymidine phosphorylase (TP), and neuropeptide Y4 (NY4), amongst others. Drug resistance, systemic toxicity, and drug ineffectiveness for various cancer chemo-treatments are widespread. Due to this, efficient therapeutic agents targeting two or more of the putative targets in different cancer cells are proposed as cutting edge treatments. Heterocyclic compounds, both synthetic and natural products, have, however, contributed immensely to chemotherapeutics for treatments of various diseases, but little is known about such compounds and their multimodal anticancer properties. A compendium of heterocyclic synthetic and natural product multitarget anticancer compounds, their IC50, and biological targets of inhibition are therefore presented in this review.
Collapse
Affiliation(s)
- Richard Kwamla Amewu
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana; (R.K.A.); (P.O.S.); (D.O.-S.)
| | - Patrick Opare Sakyi
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana; (R.K.A.); (P.O.S.); (D.O.-S.)
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Sunyani P.O. Box 214, Ghana
| | - Dorcas Osei-Safo
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana; (R.K.A.); (P.O.S.); (D.O.-S.)
| | - Ivan Addae-Mensah
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana; (R.K.A.); (P.O.S.); (D.O.-S.)
| |
Collapse
|
17
|
A Nitrocarbazole as a New Microtubule-Targeting Agent in Breast Cancer Treatment. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11199139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Breast cancer is still considered a high-incidence disease, and numerous are the research efforts for the development of new useful and effective therapies. Among anticancer drugs, carbazole compounds are largely studied for their anticancer properties and their ability to interfere with specific targets, such as microtubule components. The latter are involved in vital cellular functions, and the perturbation of their dynamics leads to cell cycle arrest and subsequent apoptosis. In this context, we report the anticancer activity of a series of carbazole analogues 1–8. Among them, 2-nitrocarbazole 1 exhibited the best cytotoxic profile, showing good anticancer activity against two breast cancer cell lines, namely MCF-7 and MDA-MB-231, with IC50 values of 7 ± 1.0 and 11.6 ± 0.8 μM, respectively. Furthermore, compound 1 did not interfere with the growth of the normal cell line MCF-10A, contrarily to Ellipticine, a well-known carbazole derivative used as a reference molecule. Finally, in vitro immunofluorescence analysis and in silico studies allowed us to demonstrate the ability of compound 1 to interfere with tubulin organization, similarly to vinblastine: a feature that results in triggering MCF-7 cell death by apoptosis, as demonstrated using a TUNEL assay.
Collapse
|
18
|
Abstract
The carbazole class is made up of heterocyclically structured compounds first isolated from coal tar. Their structural motif is preponderant in different synthetic materials and naturally occurring alkaloids extracted from the taxonomically related higher plants of the genus Murraya, Glycosmis, and Clausena from the Rutaceae family. Concerning the biological activity of these compounds, many research groups have assessed their antiproliferative action of carbazoles on different types of tumoral cells, such as breast, cervical, ovarian, hepatic, oral cavity, and small-cell lung cancer, and underlined their potential effects against psoriasis. One of the principal mechanisms likely involved in these effects is the ability of carbazoles to target the JAK/STATs pathway, considered essential for cell differentiation, proliferation, development, apoptosis, and inflammation. In this review, we report the studies carried out, over the years, useful to synthesize compounds with carbazole moiety designed to target these kinds of kinases.
Collapse
|
19
|
N-Heterocyclic Carbene-Gold(I) Complexes Targeting Actin Polymerization. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11125626] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Transition metal complexes are attracting attention because of their various chemical and biological properties. In particular, the NHC-gold complexes represent a productive field of research in medicinal chemistry, mostly as anticancer tools, displaying a broad range of targets. In addition to the already known biological targets, recently, an important activity in the organization of the cell cytoskeleton was discovered. In this paper, we demonstrated that two NHC-gold complexes (namely AuL4 and AuL7) possessing good anticancer activity and multi-target properties, as stated in our previous studies, play a major role in regulating the actin polymerization, by the means of in silico and in vitro assays. Using immunofluorescence and direct enzymatic assays, we proved that both the complexes inhibited the actin polymerization reaction without promoting the depolymerization of actin filaments. Our outcomes may contribute toward deepening the knowledge of NHC-gold complexes, with the objective of producing more effective and safer drugs for treating cancer diseases.
Collapse
|
20
|
Shuai W, Wang G, Zhang Y, Bu F, Zhang S, Miller DD, Li W, Ouyang L, Wang Y. Recent Progress on Tubulin Inhibitors with Dual Targeting Capabilities for Cancer Therapy. J Med Chem 2021; 64:7963-7990. [PMID: 34101463 DOI: 10.1021/acs.jmedchem.1c00100] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Microtubules play a crucial role in multiple cellular functions including mitosis, cell signaling, and organelle trafficking, which makes the microtubule an important target for cancer therapy. Despite the great successes of microtubule-targeting agents in the clinic, the development of drug resistance and dose-limiting toxicity restrict their clinical efficacy. In recent years, multitarget therapy has been considered an effective strategy to achieve higher therapeutic efficacy, in particular dual-target drugs. In terms of the synergetic effect of tubulin and other antitumor agents such as receptor tyrosine kinases inhibitors, histone deacetylases inhibitors, DNA-damaging agents, and topoisomerase inhibitors in combination therapy, designing dual-target tubulin inhibitors is regarded as a promising approach to overcome these limitations and improve therapeutic efficacy. In this Perspective, we discussed rational target combinations, design strategies, structure-activity relationships, and future directions of dual-target tubulin inhibitors.
Collapse
Affiliation(s)
- Wen Shuai
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yiwen Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Faqian Bu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Sicheng Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuxi Wang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
21
|
Ahmed EM, Khalil NA, Zaher AF, Alhamaky SM, El-Zoghbi MS. Synthesis, molecular modeling and biological evaluation of new benzo[4,5]thieno[3,2-b]pyran derivatives as topoisomerase I-DNA binary complex poisons. Bioorg Chem 2021; 112:104915. [PMID: 33905973 DOI: 10.1016/j.bioorg.2021.104915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/05/2021] [Accepted: 04/13/2021] [Indexed: 12/20/2022]
Abstract
A series of new benzo[b]thiophenes 2a-f and benzo[4,5]thieno[3,2-b]pyran derivatives 3a-f and 4a-f were synthesized and their structures were confirmed by elemental analyses and spectral data. All synthesized compounds were evaluated by the National Cancer Institute (NCI, USA) against 60 human tumor cell lines. Compounds 3a-f and 4a-f showed potent cytotoxic effects in one dose assay with mean growth inhibition ranging from 62% to 80%. Six compounds 3a, 3d, 3e, 3f, 4d and 4e were selected by NCI, USA for five dose evaluation against 60 human tumor cell lines. Compounds 3a, 3d, 3e and 3f exhibited very potent and broad spectrum cytotoxicity against almost all cancer cell lines with mean concentration that yield 50% growth inhibition (MG-MID GI50) of 0.1-0.58 µM and mean concentration that produce 100% growth inhibition (MG-MID TGI) of 6.03-10.00 µM. Compounds 4d and 4e exhibited very potent and selective cytotoxic activity against MDA-MB-435 subpanel (melanoma cancer) with GI50 of 0.45 µM and 0.59 µM, respectively. The mechanism of antiproliferative activity was determined for the most active compounds 3a, 3d, 3e, 3f, 4d, and 4evia measuring their half maximal inhibitory concentration (IC50) against topoisomerase I enzyme at different concentrations. Compounds 3a and 3e exhibited excellent activity compared with reference drugs with IC50 of 0.295 µM and 0.219 µM, respectively. Plasmid DNA nicking assay verified that these compounds are topoisomerase I poisons not suppressors. The active compound 3e induced a significant disruption in the cell cycle profile parallel to its effect on apoptosis induction.
Collapse
Affiliation(s)
- Eman M Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Kasr El-Aini Street, 11562, Egypt
| | - Nadia A Khalil
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Kasr El-Aini Street, 11562, Egypt.
| | - Ashraf F Zaher
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Kasr El-Aini Street, 11562, Egypt
| | - Shimaa M Alhamaky
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Menoufia University, Shibin El kom, Gamal Abd El-Nasir Street, Menoufia, Egypt
| | - Mona S El-Zoghbi
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Menoufia University, Shibin El kom, Gamal Abd El-Nasir Street, Menoufia, Egypt.
| |
Collapse
|
22
|
Schiff Bases: Interesting Scaffolds with Promising Antitumoral Properties. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041877] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Schiff bases, named after Hugo Schiff, are highly reactive organic compounds broadly used as pigments and dyes, catalysts, intermediates in organic synthesis, and polymer stabilizers. Lots of Schiff bases are described in the literature for various biological activities, including antimalarial, antibacterial, antifungal, anti-inflammatory, and antiviral. Schiff bases are also known for their ability to form complexes with several metals. Very often, complexes of Schiff bases with metals and Schiff bases alone have demonstrated interesting antitumor activity. Given the innumerable vastness of data regarding antitumor activity of all these compounds, we focused our attention on mono- and bis-Schiff bases alone as antitumor agents. We will highlight the most significant examples of compounds belonging to this class reported in the literature.
Collapse
|
23
|
Catalano A, Iacopetta D, Rosato A, Salvagno L, Ceramella J, Longo F, Sinicropi MS, Franchini C. Searching for Small Molecules as Antibacterials: Non-Cytotoxic Diarylureas Analogues of Triclocarban. Antibiotics (Basel) 2021; 10:204. [PMID: 33669633 PMCID: PMC7922224 DOI: 10.3390/antibiotics10020204] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/11/2021] [Accepted: 02/18/2021] [Indexed: 12/18/2022] Open
Abstract
Triclocarban (TCC), a broad-spectrum lipophilic antimicrobial agent, is a diarylurea derivative that has been used for more than 60 years as a major ingredient of toys, clothing, food packaging materials, food industry floors, medical supplies and especially of personal care products, such as soaps, toothpaste and shampoo. In September 2016, the U.S. FDA banned nineteen antimicrobial ingredients, including TCC, in over-the-counter consumer antiseptic wash products, due to their toxicity. Withdrawal of TCC has prompted efforts to search for new antimicrobial compounds. In this paper, we present the synthesis and biological evaluation, as antibiotic and non-cytotoxic agents, of a series of diarylureas, analogues of TCC. These compounds are characterized by an intriguingly simple chemistry and can be easily synthesized. Among the synthesized compounds, 1ab and 1bc emerge as the most interesting compounds as they show the same activity of TCC (MIC = 16 µg/mL) against Staphylococcus aureus, and a higher activity than TCC against Enterococcus faecalis (MIC = 32 µg/mL versus MIC = 64 µg/mL). Moreover, 1ab and 1bc show no cytotoxicity towards the human mammary epithelial cells MCF-10A and embryonic kidney epithelial cells Hek-293, in opposition to TCC, which exhibits a marked cytotoxicity on the same cell lines and shows a good antitumor activity on a panel of cell lines tested.
Collapse
Affiliation(s)
- Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy; (A.R.); (L.S.); (F.L.); (C.F.)
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata, Italy; (D.I.); (J.C.); (M.S.S.)
| | - Antonio Rosato
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy; (A.R.); (L.S.); (F.L.); (C.F.)
| | - Lara Salvagno
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy; (A.R.); (L.S.); (F.L.); (C.F.)
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata, Italy; (D.I.); (J.C.); (M.S.S.)
| | - Francesca Longo
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy; (A.R.); (L.S.); (F.L.); (C.F.)
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata, Italy; (D.I.); (J.C.); (M.S.S.)
| | - Carlo Franchini
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy; (A.R.); (L.S.); (F.L.); (C.F.)
| |
Collapse
|
24
|
Bunthawong R, Sirion U, Chairoungdua A, Suksen K, Piyachaturawat P, Suksamrarn A, Saeeng R. Synthesis and cytotoxic activity of new 7-acetoxy-12-amino-14-deoxy andrographolide analogues. Bioorg Med Chem Lett 2021; 33:127741. [DOI: 10.1016/j.bmcl.2020.127741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/20/2020] [Accepted: 12/03/2020] [Indexed: 01/10/2023]
|
25
|
Liao LS, Chen Y, Mo ZY, Hou C, Su GF, Liang H, Chen ZF. Ni(ii), Cu(ii) and Zn(ii) complexes with the 1-trifluoroethoxyl-2,9,10-trimethoxy-7-oxoaporphine ligand simultaneously target microtubules and mitochondria for cancer therapy. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01463j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Complexes 1–3 display potent anticancer activity against T-24 cell by disrupting mitochondria and microtubules. Furthermore, complex 1 exhibits almost same tumor growth inhibition activity in T-24 xenograft mouse model as cisplatin and paclitaxel.
Collapse
Affiliation(s)
- Lan-Shan Liao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- China
| | - Yin Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- China
| | - Zu-Yu Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- China
| | - Cheng Hou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- China
| | - Gui-Fa Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- China
| | - Zhen-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- China
| |
Collapse
|
26
|
Iacopetta D, Lappano R, Mariconda A, Ceramella J, Sinicropi MS, Saturnino C, Talia M, Cirillo F, Martinelli F, Puoci F, Rosano C, Longo P, Maggiolini M. Newly Synthesized Imino-Derivatives Analogues of Resveratrol Exert Inhibitory Effects in Breast Tumor Cells. Int J Mol Sci 2020; 21:ijms21207797. [PMID: 33096835 PMCID: PMC7589783 DOI: 10.3390/ijms21207797] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022] Open
Abstract
Breast cancer represents the most frequently diagnosed malignancy in women worldwide. Various therapeutics are currently used in order to halt the progression of breast tumor, even though certain side effects may limit the beneficial effects. In recent years, many efforts have been addressed to the usefulness of natural compounds as anticancer agents due to their low toxicity. Resveratrol, a stilbene found in grapes, berries, peanuts and soybeans, has raised a notable interest for its antioxidant, anti-inflammatory, and antitumor properties. Here, we report the design, the synthesis and the characterization of the anticancer activity of a small series of imino N-aryl-substituted compounds that are analogues of resveratrol. In particular, the most active compound, named 3, exhibited anti-tumor activity in diverse types of breast cancer cells through the inhibition of the human topoisomerase II and the induction of apoptotic cell death. Therefore, the abovementioned compound maybe considered as a promising agent in more comprehensive treatments of breast cancer.
Collapse
Affiliation(s)
- Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy; (D.I.); (R.L.); (J.C.); (M.T.); (F.C.); (F.P.); (M.M.)
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy; (D.I.); (R.L.); (J.C.); (M.T.); (F.C.); (F.P.); (M.M.)
| | - Annaluisa Mariconda
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (A.M.); (F.M.)
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy; (D.I.); (R.L.); (J.C.); (M.T.); (F.C.); (F.P.); (M.M.)
- Department of Biology and Chemistry, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy;
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy; (D.I.); (R.L.); (J.C.); (M.T.); (F.C.); (F.P.); (M.M.)
- Correspondence: (M.S.S.); (C.S.); Tel.: +39-0984-493200 (M.S.S.); Tel.: +39-0971-26442 (C.S.)
| | - Carmela Saturnino
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (A.M.); (F.M.)
- Correspondence: (M.S.S.); (C.S.); Tel.: +39-0984-493200 (M.S.S.); Tel.: +39-0971-26442 (C.S.)
| | - Marianna Talia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy; (D.I.); (R.L.); (J.C.); (M.T.); (F.C.); (F.P.); (M.M.)
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy; (D.I.); (R.L.); (J.C.); (M.T.); (F.C.); (F.P.); (M.M.)
| | - Fabio Martinelli
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (A.M.); (F.M.)
| | - Francesco Puoci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy; (D.I.); (R.L.); (J.C.); (M.T.); (F.C.); (F.P.); (M.M.)
| | - Camillo Rosano
- Biopolymers and Proteomics IRCCS, Ospedale Policlinico San Martino–IST, Largo R. Benzi 10, 16132 Genova, Italy;
| | - Pasquale Longo
- Department of Biology and Chemistry, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy;
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy; (D.I.); (R.L.); (J.C.); (M.T.); (F.C.); (F.P.); (M.M.)
| |
Collapse
|
27
|
Pomegranate: Nutraceutical with Promising Benefits on Human Health. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196915] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pomegranate is an old plant made up by flowers, roots, fruits and leaves, native to Central Asia and principally cultivated in the Mediterranean and California (although now widespread almost all over the globe). The current use of this precious plant regards not only the exteriority of the fruit (employed also for ornamental purpose) but especially the nutritional and, still potential, health benefits that come out from the various parts composing this one (carpellary membranes, arils, seeds and bark). Indeed, the phytochemical composition of the fruit abounds in compounds (flavonoids, ellagitannins, proanthocyanidins, mineral salts, vitamins, lipids, organic acids) presenting a significant biological and nutraceutical value. For these reasons, pomegranate interest is increased over the years as the object of study for many research groups, particularly in the pharmaceutical sector. Specifically, in-depth studies of its biological and functional properties and the research of new formulations could be applied to a wide spectrum of diseases including neoplastic, cardiovascular, viral, inflammatory, metabolic, microbial, intestinal, reproductive and skin diseases. In this review, considering the increasing scientific and commercial interest of nutraceuticals, we reported an update of the investigations concerning the health-promoting properties of pomegranate and its bioactive compounds against principal human pathologies.
Collapse
|
28
|
Ceramella J, Mariconda A, Rosano C, Iacopetta D, Caruso A, Longo P, Sinicropi MS, Saturnino C. α-ω Alkenyl-bis-S-Guanidine Thiourea Dihydrobromide Affects HeLa Cell Growth Hampering Tubulin Polymerization. ChemMedChem 2020; 15:2306-2316. [PMID: 32945626 DOI: 10.1002/cmdc.202000544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Indexed: 12/24/2022]
Abstract
Cancer is going to be the first cause of mortality worldwide in the 21th century. It is considered a multifactorial disease that results from the combined influence of many genetic aberrations, leading to abnormal cell proliferation. As microtubules are strongly implicated in cellular growth, they represent an important target for cancer treatment. The well-known microtubule-targeting agents (MTAs) including paclitaxel, colchicine and vinca alkaloids are commonly used in the treatment of various cancers. However, adverse effects and drug resistance are major limitations in their clinical use. To find new candidates able to induce microtubule alteration with reduced toxic effects or drug resistance, we studied a small new series of derivatives that present imidazolinic, guanidinic, thioureidic and hydrazinic groups (1-9). All the compounds were tested for their antitumor activity against a panel of six tumoral cell models. In particular, compound 8 (nonane-1,9-diyl-bis-S-amidinothiourea dihydrobromide) showed the lowest IC50 value against HeLa cells, together with a low cytotoxicity for normal cells. This compound was able to induce the apoptotic mitochondrial pathway and inhibited tubulin polymerization with a similar efficacy to vinblastine and nocodazole. Taken together, these promising biological properties make compound 8 useful for the development of novel therapeutic approaches in cancer treatment.
Collapse
Affiliation(s)
- Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036, Arcavacata di Rende, Italy.,Department of Biology and Chemistry, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084, Italy
| | - Annaluisa Mariconda
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, Potenza, 85100, Italy
| | - Camillo Rosano
- Biopolymers and Proteomics IRCCS Ospedale Policlinico San Martino - IST, Largo R. Benzi 10, 16132, Genova, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036, Arcavacata di Rende, Italy
| | - Anna Caruso
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036, Arcavacata di Rende, Italy
| | - Pasquale Longo
- Department of Biology and Chemistry, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036, Arcavacata di Rende, Italy
| | - Carmela Saturnino
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, Potenza, 85100, Italy
| |
Collapse
|
29
|
Iacopetta D, Rosano C, Sirignano M, Mariconda A, Ceramella J, Ponassi M, Saturnino C, Sinicropi MS, Longo P. Is the Way to Fight Cancer Paved with Gold? Metal-Based Carbene Complexes with Multiple and Fascinating Biological Features. Pharmaceuticals (Basel) 2020; 13:ph13050091. [PMID: 32403274 PMCID: PMC7281280 DOI: 10.3390/ph13050091] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/28/2020] [Accepted: 05/08/2020] [Indexed: 12/21/2022] Open
Abstract
Herein, we report the synthesis and the multiple anti-tumor properties of new gold and silver carbene complexes. The chemical modifications, grounded on our previous studies, led us to identify a good lead complex, gold-based, whose biological features are very exciting and promising in the anti-cancer research and could be further developed. Indeed, the bis-[4,5-dichloro-(N-methyl-N’(2-hydroxy-2-phenyl)ethyl-imidazole-2-ylidene)gold(I)]+[dichloro-gold]− (AuL7) complex possesses the ability to interfere with at least three important and different intracellular targets, namely the human topoisomerases I and II and tubulin, which are able to modulate metabolic processes not directly correlated each other. We proved that the modifications of the ligands structure in AuL7, with respect to another already published complex, i.e., bis-[4,5-dichloro-(N-methyl-N’(cyclopentane-2ol)-imidazole-2-ylidine)gold(I)]+[dichloro-gold]− (AuL4), produce a different behavior toward tubulin-polymerization process, since AuL7 is a tubulin-polymerization inhibitor and AuL4 a stabilizer, with the final same result of hampering the tumor growth. Taken together, our outcomes designate AuL7 as a promising compound for the development of multi-targeted anti-cancer therapies.
Collapse
Affiliation(s)
- Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy; (D.I.); (M.S.S.)
| | - Camillo Rosano
- Biopolymers and Proteomics IRCCS, Ospedale Policlinico San Martino–IST, Largo R. Benzi 10, 16132 Genova, Italy; (C.R.); (M.P.)
| | - Marco Sirignano
- Department of Biology and Chemistry, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.S.); (P.L.)
| | - Annaluisa Mariconda
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy;
- Correspondence: (A.M.); (J.C.); Tel.: +39-0971-202194 (A.M.); +39-0984-493200 (J.C.)
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy; (D.I.); (M.S.S.)
- Correspondence: (A.M.); (J.C.); Tel.: +39-0971-202194 (A.M.); +39-0984-493200 (J.C.)
| | - Marco Ponassi
- Biopolymers and Proteomics IRCCS, Ospedale Policlinico San Martino–IST, Largo R. Benzi 10, 16132 Genova, Italy; (C.R.); (M.P.)
| | - Carmela Saturnino
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy;
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy; (D.I.); (M.S.S.)
| | - Pasquale Longo
- Department of Biology and Chemistry, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.S.); (P.L.)
| |
Collapse
|
30
|
Mirzaei S, Eisvand F, Hadizadeh F, Mosaffa F, Ghasemi A, Ghodsi R. Design, synthesis and biological evaluation of novel 5,6,7-trimethoxy-N-aryl-2-styrylquinolin-4-amines as potential anticancer agents and tubulin polymerization inhibitors. Bioorg Chem 2020; 98:103711. [PMID: 32179282 DOI: 10.1016/j.bioorg.2020.103711] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 01/17/2023]
Abstract
A new series of styrylquinolines was designed and synthesized as anticancer agents and tubulin polymerization inhibitors. The in vitro anticancer activity of the synthesized quinolines was evaluated against four human cancer cell lines including A-2780 (human ovarian carcinoma), A-2780/RCIS (cisplatin resistant human ovarian carcinoma), MCF-7 (human breast cancer cells), MCF-7/MX (mitoxantrone resistant human breast cancer cells) and normal Huvec cells. Generally, among the forty-eight newly synthesized quinolines, compounds possessing N-trimethoxy phenyl showed stronger cytotoxic activity with IC50 values ranging from 0.38 to 5.01 μM against all four cancer cell lines. Compounds 9VII-c and 9IV-c showed significant cytotoxic activity on A-2780 cancer cells, stronger than the other compounds and comparable to reference drug CA-4. Compound 9IV-c possessing 3,4-dimethoxystyryl and N-trimethoxy phenyl groups demonstrated potent cytotoxic effects with IC50 values ranging from 0.5 to 1.66 µM on resistant cancer cells as well as their parental cells. Annexin V binding staining assay in A-2780 and MCF-7/MX cancer cells, revealed that compound 9IV-c induced early and late apoptosis. Compounds 9IV-c and 9VII-b, inhibited tubulin polymerization similar to CA4. Finally, molecular docking studies of 9IV-c and 9VII-b into the colchicine-binding site of tubulin displayed the possible interactions of these compounds with tubulin.
Collapse
Affiliation(s)
- Salimeh Mirzaei
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farhad Eisvand
- Department of Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Mosaffa
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Ghasemi
- Department of Pediatric Oncology-Hematology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Razieh Ghodsi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
31
|
Ceramella J, Mariconda A, Iacopetta D, Saturnino C, Barbarossa A, Caruso A, Rosano C, Sinicropi MS, Longo P. From coins to cancer therapy: Gold, silver and copper complexes targeting human topoisomerases. Bioorg Med Chem Lett 2019; 30:126905. [PMID: 31874823 DOI: 10.1016/j.bmcl.2019.126905] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023]
Abstract
Cancer is a complex issue and, even though the prevention basics and therapy have been implemented, it is still the second leading death cause worldwide. With the hope to discover new powerful and safer molecules to fight cancer, many researchers focused their attention on metal-based compounds, starting from the most famous and successfully employed anticancer drug, i.e. cisplatin. The current article aims to report the most recent discoveries about the use of gold, silver and copper complexes as antitumor agents, highlighting their influences on important enzymes, namely human topoisomerases. The latter are fundamental for the cell life and, if overexpressed, strongly implicated in cancer onset and progression. The identification of lead complexes targeting human topoisomerases and gifted with the appropriate chemical and pharmacological properties represents a fecund starting point to obtain new and more effective anticancer molecules.
Collapse
Affiliation(s)
- Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | | | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy.
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Alexia Barbarossa
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Anna Caruso
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Camillo Rosano
- Biopolymers and Proteomics IRCCS, Ospedale Policlinico San Martino - IST, 16132 Genova, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Pasquale Longo
- Department of Biology and Chemistry, University of Salerno, 84084 Fisciano, Italy
| |
Collapse
|
32
|
β-Caryophyllene: A Sesquiterpene with Countless Biological Properties. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9245420] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
β-Caryophyllene (BCP), a natural bicyclic sesquiterpene, is a selective phytocannabinoid agonist of type 2 receptors (CB2-R). It isn’t psychogenic due to the absence of an affinity to cannabinoid receptor type 1 (CB1). Among the various biological activities, BCP exerts anti-inflammatory action via inhibiting the main inflammatory mediators, such as inducible nitric oxide synthase (iNOS), Interleukin 1 beta (IL-1β), Interleukin-6 (IL-6), tumor necrosis factor-alfa (TNF-α), nuclear factor kapp a-light-chain-enhancer of activated B cells (NF-κB), cyclooxygenase 1 (COX-1), cyclooxygenase 2 (COX-2). Peroxisome proliferator-activated receptors alpha (PPAR-α) effects are also mediated by the activation of PPAR-α and PPAR-γ receptors. In detail, many studies, in vitro and in vivo, suggest that the treatment with β-caryophyllene improves the phenotype of animals used to model various inflammatory pathologies, such as nervous system diseases (Parkinson’s disease, Alzheimer’s disease, multiple sclerosis, amyotrophic lateral sclerosis, stroke), atherosclerosis, and tumours (colon, breast, pancreas, lymphoma, melanoma and glioma cancer). Furthermore, pre-clinical data have highlighted that BCP is potentially useful in Streptococcus infections, osteoporosis, steatohepatitis, and exerts anticonvulsant, analgesic, myorelaxing, sedative, and antidepressive effects. BCP is non-toxic in rodents, with a Lethal dose, 50% (LD50) greater than 5000 mg/kg. Nevertheless, it inhibits various cytochrome P450 isoforms (above all, CYP3A4), which metabolise xenobiotics, leading to adverse effects, due to drug levels over therapeutic window. All the reported data have highlighted that both pharmacological and toxicological aspects need to be further investigated with clinical trials.
Collapse
|
33
|
Li L, Quan D, Chen J, Ding J, Zhao J, Lv L, Chen J. Design, synthesis, and biological evaluation of 1-substituted -2-aryl imidazoles targeting tubulin polymerization as potential anticancer agents. Eur J Med Chem 2019; 184:111732. [PMID: 31610372 DOI: 10.1016/j.ejmech.2019.111732] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/12/2019] [Accepted: 09/21/2019] [Indexed: 01/21/2023]
Abstract
A series of novel 1-substituted-2-aryl imidazoles (SAI) were designed and synthesized based on our previously reported ABI (2-Aryl-4-Benzoyl Imidazole) analogs and on the structure of combretastatin A-4 (CA-4). These compounds showed potent antiproliferative activities against six human cancer cell lines with IC50 values in nano molar range. Among them, compound 3X exhibited the best anticancer activity with an average IC50 value of ∼100 nM. The compound maintains the mechanism of action by inhibiting tubulin polymerization, thus causing cell arrest at G2/M phase and apoptosis. In vivo efficacy studies indicated that 3X was highly effective in suppressing tumor growth in a MDA-MB-468 xenograft model of nude mouse with a TGI (Tumor Growth Suppression) of 77% at 60 mg/kg without causing significant toxicity. In addition, 3X displayed significantly better water solubility (36.70 μg/mL) than CA-4 (2.83 μg/mL). Molecular modeling study indicated that 3X binds well to the colchicine binding site in tubulin. Our results suggest that the novel SAI analogs deserve further investigation as potential anticancer agents.
Collapse
Affiliation(s)
- Ling Li
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Dongling Quan
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jingxuan Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiahao Ding
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jinwu Zhao
- School of Pharmacy, Guangdong Medical University, Songshan Lake Science and Technology Industry Park, Dongguan, 523808, China
| | - Lin Lv
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|